1
|
Ma X, Ge Y, Xia N. Overview of the Design and Application of Dual-Signal Immunoassays. Molecules 2024; 29:4551. [PMID: 39407482 PMCID: PMC11477509 DOI: 10.3390/molecules29194551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/15/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Immunoassays have been widely used for the determination of various analytes in the fields of disease diagnosis, food safety, and environmental monitoring. Dual-signal immunoassays are now advanced and integrated detection technologies with excellent self-correction and self-validation capabilities. In this work, we summarize the recent advances in the development of optical and electrochemical dual-signal immunoassays, including colorimetric, fluorescence, surface-enhanced Raman spectroscopy (SERS), electrochemical, electrochemiluminescence, and photoelectrochemical methods. This review particularly emphasizes the working principle of diverse dual-signal immunoassays and the utilization of dual-functional molecules and nanomaterials. It also outlines the challenges and prospects of future research on dual-signal immunoassays.
Collapse
Affiliation(s)
- Xiaohua Ma
- Department of Physical and Healthy Education, Nanchang Vocational University, Nanchang 330000, China
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China
| | - Yijing Ge
- Department of Physical and Healthy Education, Nanchang Vocational University, Nanchang 330000, China
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
2
|
Tang Y, Chen F, Lv W, Zhou Z, Fu Y, Qin Y, Zhao X, Wang J, Huang B. Establishment of a microspheres-based homogeneous fluorescence immunoassay for the rapid detection of cardiac troponin I. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4402-4408. [PMID: 38904182 DOI: 10.1039/d4ay00921e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Myocardial infarction occurs rapidly, and thus the rapid detection of cTnI levels is the key to its diagnosis. Most current assays take 10-30 min. In this study, we developed a method for accurately measuring cardiac troponin I (cTnI) levels in human sera with amplified luminescence neighborhood homogeneous assay (AlphaLISA). The method involves coupling two cTnI antibodies targeting different epitopes to the surface of carboxylated donor and acceptor beads. The final signal values were detected by the double-antibody sandwich method, and the best reaction conditions were obtained by optimizing the experimental conditions. The sensitivity, specificity, accuracy, and precision of the method were evaluated. Results showed that the method requires only 3 min to produce the results, the detection sensitivity is 27.06 ng L-1, and the measurement range is 34.56-62 500 ng L-1. cTnI-AlphaLISA has an intra-assay precision of 2.18-4.57% (<10%) and an inter-assay precision of 5.60-6.95% (<10%). The relative recovery rates are within reasonable limits. In addition, the serum assay results of the method were compared with chemiluminescence immunoassay, and the results are in agreement with one another (ρ = 0.8803; P < 0.0001). The method is expected to be developed as a routine method, but further studies and evaluations are needed.
Collapse
Affiliation(s)
- Yan Tang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Fuzhong Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Wei Lv
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Zixuan Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Yulin Fu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Xueqin Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Junhong Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Liyang People's Hospital, 70 Jianshe West Road, 213300, Liyang, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
3
|
Liu P, Jiang L, Zhao Y, Wang Y, Ye Y, Xue F, Hammock BD, Zhang C. Fluorescent and Colorimetric Dual-Readout Immunochromatographic Assay for the Detection of Phenamacril Residues in Agricultural Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11241-11250. [PMID: 38709728 DOI: 10.1021/acs.jafc.3c07859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The fungicide phenamacril has been employed to manage Fusarium and mycotoxins in crops, leading to persistent residues in the environment and plants. Detecting phenamacril is pivotal for ensuring environmental and food safety. In this study, haptens and artificial antigens were synthesized to produce antiphenamacril monoclonal antibodies (mAbs). Additionally, gold nanoparticles coated with a polydopamine shell were synthesized and conjugated with mAbs, inducing fluorescence quenching in quantum dots. Moreover, a dual-readout immunochromatographic assay that combines the positive signal from fluorescence with the negative signal from colorimetry was developed to enable sensitive and precise detection of phenamacril within 10 min, achieving detection limits of 5 ng/mL. The method's reliability was affirmed by using spiked wheat flour samples, achieving a limit of quantitation of 0.05 mg/kg. This analytical platform demonstrates high sensitivity, outstanding accuracy, and robust tolerance to matrix effects, making it suitable for the rapid, onsite, quantitative screening of phenamacril residues.
Collapse
Affiliation(s)
- Pengyan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology; Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lan Jiang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology; Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yulong Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology; Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuhui Ye
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology; Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Feng Xue
- Joint International Research Laboratory of Animal Health and Food Safety of the Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Bruce D Hammock
- Department of Entomology and Nematology and the UCD Comprehensive Cancer Center, University of California Davis, Davis, California 95616, United States
| | - Cunzheng Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology; Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Wang M, Jin L, Hang-Mei Leung P, Wang-Ngai Chow F, Zhao X, Chen H, Pan W, Liu H, Li S. Advancements in magnetic nanoparticle-based biosensors for point-of-care testing. Front Bioeng Biotechnol 2024; 12:1393789. [PMID: 38725992 PMCID: PMC11079239 DOI: 10.3389/fbioe.2024.1393789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
The significance of point-of-care testing (POCT) in early clinical diagnosis and personalized patient care is increasingly recognized as a crucial tool in reducing disease outbreaks and improving patient survival rates. Within the realm of POCT, biosensors utilizing magnetic nanoparticles (MNPs) have emerged as a subject of substantial interest. This review aims to provide a comprehensive evaluation of the current landscape of POCT, emphasizing its growing significance within clinical practice. Subsequently, the current status of the combination of MNPs in the Biological detection has been presented. Furthermore, it delves into the specific domain of MNP-based biosensors, assessing their potential impact on POCT. By combining existing research and spotlighting pivotal discoveries, this review enhances our comprehension of the advancements and promising prospects offered by MNP-based biosensors in the context of POCT. It seeks to facilitate informed decision-making among healthcare professionals and researchers while also promoting further exploration in this promising field of study.
Collapse
Affiliation(s)
- Miaomiao Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Lian Jin
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Franklin Wang-Ngai Chow
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaoni Zhao
- Guangzhou Wanfu Biotechnology Company, Guangzhou, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Wenjing Pan
- Hengyang Medical School, University of South China, Hengyang, China
| | - Hongna Liu
- Hengyang Medical School, University of South China, Hengyang, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
- Hengyang Medical School, University of South China, Hengyang, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Healthcare Hospital, Changsha, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, University of South China, Hengyang, China
| |
Collapse
|
5
|
Du J, Liu K, Liu J, Zhao D, Bai Y. Development of a novel lateral flow immunoassay based on Fe3O4@MIL-100(Fe) for visual detection of Listeria monocytogenes. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
6
|
Gumus E, Bingol H, Zor E. Lateral flow assays for detection of disease biomarkers. J Pharm Biomed Anal 2023; 225:115206. [PMID: 36586382 DOI: 10.1016/j.jpba.2022.115206] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Early diagnosis saves lives in many diseases. In this sense, monitoring of biomarkers is crucial for the diagnosis of diseases. Lateral flow assays (LFAs) have attracted great attention among paper-based point-of-care testing (POCT) due to their low cost, user-friendliness, and time-saving advantages. Developments in the field of health have led to an increase of interest in these rapid tests. LFAs are used in the diagnosis and monitoring of many diseases, thanks to biomarkers that can be observed in body fluids. This review covers the recent advances dealing with the design and strategies for the development of LFA for the detection of biomarkers used in clinical applications in the last 5 years. We focus on various strategies such as choosing the nanoparticle type, single or multiple test approaches, and equipment for signal transducing for the detection of the most common biomarkers in different diseases such as cancer, cardiovascular, infectious, and others including Parkinson's and Alzheimer's diseases. We expect that this study will contribute to the different approaches in LFA and pave the way for other clinical applications.
Collapse
Affiliation(s)
- Eda Gumus
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey
| | - Haluk Bingol
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey; Department of Chemistry Education, A.K. Education Faculty, Necmettin Erbakan University, 42090 Konya, Turkey
| | - Erhan Zor
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey; Department of Science Education, A.K. Education Faculty, Necmettin Erbakan University, 42090 Konya, Turkey.
| |
Collapse
|
7
|
Liu X, Xia F, Zhang S, Cheng Y, Fan L, Kang S, Gao X, Sun X, Li J, Li X, Zhu L. Dual-color aggregation-induced emission nanoparticles for simultaneous lateral flow immunoassay of nitrofuran metabolites in aquatic products. Food Chem 2023; 402:134235. [DOI: 10.1016/j.foodchem.2022.134235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
|
8
|
Recent advances in nanomedicines for imaging and therapy of myocardial ischemia-reperfusion injury. J Control Release 2023; 353:563-590. [PMID: 36496052 DOI: 10.1016/j.jconrel.2022.11.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Myocardial ischemia-reperfusion injury (IRI) is becoming a typical cardiovascular disease with increasing worldwide incidence. It is usually induced by the restoration of normal blood flow to the ischemic myocardium after a period of recanalization and directly leads to myocardial damage. Notably, the pathological mechanism of myocardial IRI is closely related to inflammation, oxidative stress, Ca2+ overload, and the opening of mitochondrial permeability transition pore channels. Therefore, monitoring of these changes and imaging lesions is a key to timely clinical diagnosis. Nanomedicines have shown great value in the diagnosis and treatment of myocardial IRI, with advantages including passive/active targeting, prolonged circulation, improved bioavailability, versatile carrier selection, and synergistic integration of different imaging and therapeutic agents in single particles with the same pharmaceutics. Because theranostic nanomedicines for myocardial IRI have advanced rapidly, we conduct an updated review on this topic. The special focus is on how to rationally design the nanomedicines to achieve optimal imaging and therapy. We hope this review would stimulate the interest of researchers with different backgrounds and expedite the development of nanomedicines for myocardial IRI.
Collapse
|
9
|
Zhan T, Su Y, Lai W, Chen Z, Zhang C. A dry chemistry-based ultrasensitive electrochemiluminescence immunosensor for sample-to-answer detection of Cardiac Troponin I. Biosens Bioelectron 2022; 214:114494. [DOI: 10.1016/j.bios.2022.114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/17/2022]
|
10
|
Gao D, Cheng F, Wang X, Yang H, Liu C, Li C, Yang EM, Cheng G, He W. Developing G value as an indicator for assessing the molecular status of immobilized antibody. Colloids Surf B Biointerfaces 2022; 217:112593. [PMID: 35665639 DOI: 10.1016/j.colsurfb.2022.112593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/08/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022]
Abstract
Antibody-functionalized nanoparticles (Ab-NPs) are widely used in bioassays due to their excellent affinity, specificity toward antigen, and ease of operation. However, the uncontrollable molecular status of antibodies on NPs severely limits their applications. This work aims at developing a simple method to evaluate the antigen-binding activity of Ab-NPs using two parameters, i.e., antibody adsorption amount and antigen-binding strength. Herein, we proposed a mathematical expression, G, to quantitively describe the amount and strength of Ab-NPs. G value could be used to assess the antigen-binding performance of NPs influenced by surface and solution factors. Seven types of polymers with different surface properties, including four positively and three negatively charged polymer brushes, were grown from silica NPs via surface-initiated atom transfer radical polymerization (SI-ATRP). A pair of antigen and antibody, human chorionic gonadotropin (hCG) and anti-hCG, were selected to screen the antibody immobilization property of polymer brushes. Among them, the G values of 2 polymer-NPs with opposite charges reached maximum, resulting in low detection limits for hCG, where pDMAEA-NP and pMMA-NP represent Poly[N,N-(dimethylamino)ethyl acrylate]-NP and poly(methyl methacrylate)-NP, respectively. The G value of Ab-NPs makes it feasible to estimate the molecular status of the adsorbed antibodies on surfaces, thus showing great potential for in vitro biosensing and bioseparation.
Collapse
Affiliation(s)
- Dongdong Gao
- Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
| | - Fang Cheng
- Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; Ningbo Institute of Dalian University of Technology, Ningbo 315211, China.
| | - Xinglong Wang
- Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Heqing Yang
- Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Chong Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
| | - Chunmei Li
- Tsinglan School, Songshan Lake, Dongguan 523000, China
| | | | - Gang Cheng
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Wei He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
11
|
Bragina VA, Khomyakova E, Orlov AV, Znoyko SL, Mochalova EN, Paniushkina L, Shender VO, Erbes T, Evtushenko EG, Bagrov DV, Lavrenova VN, Nazarenko I, Nikitin PI. Highly Sensitive Nanomagnetic Quantification of Extracellular Vesicles by Immunochromatographic Strips: A Tool for Liquid Biopsy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1579. [PMID: 35564289 PMCID: PMC9101557 DOI: 10.3390/nano12091579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 05/02/2022] [Indexed: 01/27/2023]
Abstract
Extracellular vesicles (EVs) are promising agents for liquid biopsy-a non-invasive approach for the diagnosis of cancer and evaluation of therapy response. However, EV potential is limited by the lack of sufficiently sensitive, time-, and cost-efficient methods for their registration. This research aimed at developing a highly sensitive and easy-to-use immunochromatographic tool based on magnetic nanoparticles for EV quantification. The tool is demonstrated by detection of EVs isolated from cell culture supernatants and various body fluids using characteristic biomarkers, CD9 and CD81, and a tumor-associated marker-epithelial cell adhesion molecules. The detection limit of 3.7 × 105 EV/µL is one to two orders better than the most sensitive traditional lateral flow system and commercial ELISA kits. The detection specificity is ensured by an isotype control line on the test strip. The tool's advantages are due to the spatial quantification of EV-bound magnetic nanolabels within the strip volume by an original electronic technique. The inexpensive tool, promising for liquid biopsy in daily clinical routines, can be extended to other relevant biomarkers.
Collapse
Affiliation(s)
- Vera A. Bragina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (V.A.B.); (E.K.); (A.V.O.); (S.L.Z.); (E.N.M.)
| | - Elena Khomyakova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (V.A.B.); (E.K.); (A.V.O.); (S.L.Z.); (E.N.M.)
| | - Alexey V. Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (V.A.B.); (E.K.); (A.V.O.); (S.L.Z.); (E.N.M.)
- Moscow Institute of Physics and Technology, 9 Institutskii per., 141700 Dolgoprudny, Russia
| | - Sergey L. Znoyko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (V.A.B.); (E.K.); (A.V.O.); (S.L.Z.); (E.N.M.)
| | - Elizaveta N. Mochalova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (V.A.B.); (E.K.); (A.V.O.); (S.L.Z.); (E.N.M.)
- Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| | - Liliia Paniushkina
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (L.P.); (I.N.)
| | - Victoria O. Shender
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, 1a Malaya Pirogovskaya St., 119992 Moscow, Russia; (V.O.S.); (V.N.L.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Evgeniy G. Evtushenko
- Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia; (E.G.E.); (D.V.B.)
| | - Dmitry V. Bagrov
- Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia; (E.G.E.); (D.V.B.)
| | - Victoria N. Lavrenova
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, 1a Malaya Pirogovskaya St., 119992 Moscow, Russia; (V.O.S.); (V.N.L.)
- Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia; (E.G.E.); (D.V.B.)
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (L.P.); (I.N.)
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (V.A.B.); (E.K.); (A.V.O.); (S.L.Z.); (E.N.M.)
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| |
Collapse
|
12
|
Karam M, Fahs D, Maatouk B, Safi B, Jaffa AA, Mhanna R. Polymeric nanoparticles in the diagnosis and treatment of myocardial infarction: Challenges and future prospects. Mater Today Bio 2022; 14:100249. [PMID: 35434594 PMCID: PMC9006854 DOI: 10.1016/j.mtbio.2022.100249] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
Myocardial infarction (MI) is the leading cause of morbidity and mortality worldwide. Despite extensive efforts to provide early diagnosis and adequate treatment regimens, detection of MI still faces major limitations and pathological MI complications continue to threaten the recovery of survivors. Polymeric nanoparticles (NPs) represent novel noninvasive drug delivery systems for the diagnosis and treatment of MI and subsequent prevention of fatal heart failure. In this review, we cover the recent advances in polymeric NP-based diagnostic and therapeutic approaches for MI and their application as multifunctional theranostic tools. We also discuss the in vivo behavior and toxicity profile of polymeric NPs, their application in noninvasive imaging, passive, and active drug delivery, and use in cardiac regenerative therapy. We conclude with the challenges faced with polymeric nanosystems and suggest future efforts needed for clinical translation.
Collapse
Affiliation(s)
- Mia Karam
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Duaa Fahs
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Batoul Maatouk
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Brouna Safi
- Department of Chemical Engineering, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
| | - Ayad A. Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Rami Mhanna
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
| |
Collapse
|
13
|
Zhang J, Wang Y, Zhao X, Chen M, Peng Y, Bai J, Li S, Han D, Ren S, Qin K, Li S, Han T, Gao Z. Dual Sensitization Smartphone Colorimetric Strategy Based on RCA Coils Gathering Au Tetrahedra and Its Application in the Detection of CK-MB. Anal Chem 2021; 93:16922-16931. [PMID: 34879197 DOI: 10.1021/acs.analchem.1c04139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In recent years, the combination of DNA nanotechnology and biosensing has been extensively reported. Herein, we attempted to develop a dual sensitization smartphone colorimetric strategy based on rolling circle amplification (RCA) coils gathering Au tetrahedra and explore its application. The dual sensitization effect of this strategy was achieved by rolling circle amplification (RCA) and Au tetrahedra. Under the initiation of the complementary DNA, a large number of ssDNA were generated, achieving amplification of the reaction signal. At the same time, due to the formation of Au tetrahedra, more gold nanoparticles could be gathered under the same conditions, and the signal would be amplified again. Using software ImageJ, the gray value of the reaction solution can be analyzed, detecting the target timely under the practical conditions of lack of equipment. By selecting aptamers with strong binding affinity, we applied this strategy to detect creatine kinase isoenzymes (CK-MB), showing a limit of detection of 0.8 pM, which performed well in actual detection and can meet the needs for real-time detection of CK-MB. Therefore, a universal detection platform was developed, which has broad application prospects in biosensing, clinical diagnosis, food detection, and other fields.
Collapse
Affiliation(s)
- Jingyang Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Xudong Zhao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Mengmeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Kang Qin
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Sen Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Tie Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China
| |
Collapse
|
14
|
Multifunctional polyethyleneimine for synthesis of core-shell nanostructures and electrochemiluminescent detection of three AMI biomarkers. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Du X, Su X, Zhang W, Yi S, Zhang G, Jiang S, Li H, Li S, Xia F. Progress, Opportunities, and Challenges of Troponin Analysis in the Early Diagnosis of Cardiovascular Diseases. Anal Chem 2021; 94:442-463. [PMID: 34843218 DOI: 10.1021/acs.analchem.1c04476] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuewei Du
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xujie Su
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wanxue Zhang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Suyan Yi
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Ge Zhang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shan Jiang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shaoguang Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
16
|
Giarola JDF, Souto DEP, Kubota LT. Evaluation of PAMAM Dendrimers (G3, G4, and G5) in the Construction of a SPR-based Immunosensor for Cardiac Troponin T. ANAL SCI 2021; 37:1007-1013. [PMID: 33431736 DOI: 10.2116/analsci.20p394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An immunosensor was developed using a SAM of an alkanethiol associated with PAMAM(G4) dendrimers based on surface plasmon resonance (SPR) to enhance the sensitivity for troponin T detection in blood samples. The feasibility of using three-dimensional platforms based on dendrimers for the development of immunosensors was demonstrated by evaluating three different generations of these dendrimers (G3, G4, and G5) to detect troponin T. The results showed the efficiency of these 3D platforms in anchoring biomolecules, amplifying the detection of troponin T. The sandwich assay showed good performance for troponin T detection, using secondary monoclonal antibodies, in the concentration range of 5 - 300 ng mL-1 (0.14 - 8.67 nmol L-1), R2 = 0.991, with the LOD of 3.6 ng mL-1. The sandwich assay's applicability was demonstrated by evaluating a secondary polyclonal antibody's performance in the concentration range of 3 - 30 ng mL-1, R2 = 0.998, with the LOD of 0.98 ng mL-1. The immunosensor was applied to determine troponin T in blood plasma samples from healthy patients, with an average recovery of 88 to 104%. The performance of the SPR-based immunosensor indicates reliable results and is expected to contribute to the rapid diagnosis of heart attack, with reduced costs.
Collapse
Affiliation(s)
- Juliana de F Giarola
- Institute of Chemistry, University of Campinas (UNICAMP).,National Institute of Science & Technology of Bioanalytics (INCTBio)
| | - Dênio E P Souto
- Department of Chemistry, Federal University of Paraná (UFPR)
| | - Lauro T Kubota
- Institute of Chemistry, University of Campinas (UNICAMP).,National Institute of Science & Technology of Bioanalytics (INCTBio)
| |
Collapse
|
17
|
Yang G, Cheng K, Chu Z, Ren C, Fu Y, Guo J. A miniaturized giant magnetic resistance system for quantitative detection of methamphetamine. Analyst 2021; 146:2718-2725. [PMID: 33690736 DOI: 10.1039/d0an02418j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Point-of-care testing (POCT) systems have been greatly developed in recent years. Among them, lateral flow immunoassay (LFIA) based on magnetic nanoparticles (MNPs) is widely used in various fields due to the advantages of small background noise and good biocompatibility. This paper designed an ultra-sensitive giant magnetic resistance (GMR) system for the quantitative detection of methamphetamine (MET). The system uses GMRs to detect the distribution of the magnetic field intensity of MNPs captured by the test (T) and control (C) lines on LFIA. A special external interference cancellation (EIC) method and a weak-signal waveform reconstruction method were used to improve the accuracy of the detection. Finally, the T/C ratio was calculated to realize the quantitative detection of MET. The result showed good linear performance with a detection limit of 0.1 ng mL-1. The system can also be used in other fields such as disease detection, food analysis, and environmental testing.
Collapse
Affiliation(s)
- Guopan Yang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
| | - Kunxue Cheng
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
| | - Zhengkang Chu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
| | - Chunhui Ren
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
| | - Yusheng Fu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
| | - Jinhong Guo
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
| |
Collapse
|
18
|
Kang J, Tahir A, Wang H, Chang J. Applications of nanotechnology in virus detection, tracking, and infection mechanisms. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1700. [PMID: 33511770 PMCID: PMC7995016 DOI: 10.1002/wnan.1700] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/24/2022]
Abstract
Viruses are among the most infectious pathogens, responsible for the highest death toll around the world. Lack of effective clinical drug for most of the viruses emphasizes the rapid and accurate diagnosis at early stages of infection to prevent rapid spread of the pathogens. Nanotechnology is an emerging field with applications in various domains, where nano‐biomedical science has many significant contributions such as effective delivery of drugs/therapeutic molecules to specific organs, imaging, sensitive detection of virus, and their accurate tracking in host cells. The nanomaterials reported for virus detection and tracking mainly include magnetic and gold NPs, ZnO/Pt‐Pd, graphene, and quantum dots (QDs). In addition, the single virus tracking technology (SVT) allowed to track the life cycle stages of an individual virus for better understanding of their dynamics within the living cells. Inorganic as well as non‐metallic fluorescent materials share the advantages of high photochemical stability, a wide range of light absorption curves and polychromatic emission. Hence, are considered as potential fluorescent nano‐probes for SVT. However, there are still some challenges: (i) clinical false positive rate of some detection methods is still high; (ii) in the virus tracking process, less adaptability of QDs owing to larger size, flicker, and possible interference with virus function; and (iii) in vivo tracking of a single virus, in real time needs further refinement. In the future, smaller, non‐toxic, and chemically stable nanomaterials are needed to improve the efficiency and accuracy of detection, and monitoring of virus infections to curb the mortalities. This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology‐Inspired Nanomaterials > Protein and Virus‐Based Structures
Collapse
Affiliation(s)
- Jun Kang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Ayesha Tahir
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Hanjie Wang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
19
|
Khan S, Hasan A, Attar F, Sharifi M, Siddique R, Mraiche F, Falahati M. Gold Nanoparticle-Based Platforms for Diagnosis and Treatment of Myocardial Infarction. ACS Biomater Sci Eng 2020; 6:6460-6477. [PMID: 33320615 DOI: 10.1021/acsbiomaterials.0c00955] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years, an increasing rate of mortality due to myocardial infarction (MI) has led to the development of nanobased platforms, especially gold nanoparticles (AuNPs), as promising nanomaterials for diagnosis and treatment of MI. These promising NPs have been used to develop different nanobiosensors, mainly optical sensors for early detection of biomarkers as well as biomimetic/bioinspired platforms for cardiac tissue engineering (CTE). Therefore, in this Review, we presented an overview on the potential application of AuNPs as optical (surface plasmon resonance, colorimetric, fluorescence, and chemiluminescence) nanobiosensors for early diagnosis and prognosis of MI. On the other hand, we discussed the potential application of AuNPs either alone or with other NPs/polymers as promising three-dimensional (3D) scaffolds to regulate the microenvironment and mimic the morphological and electrical features of cardiac cells for potential application in CTE. Furthermore, we presented the challenges and ongoing efforts associated with the application of AuNPs in the diagnosis and treatment of MI. In conclusion, this Review may provide outstanding information regarding the development of AuNP-based technology as a promising platform for current MI treatment approaches.
Collapse
Affiliation(s)
- Suliman Khan
- Department of Cerebrovascular Diseases, the Second Affiliated Hospital of Zhengzhou University, Jingba Road, NO.2, 450014 Zhengzhou, China
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.,Biomedical Research Centre (BRC), Qatar University, Doha 2713, Qatar
| | - Farnoosh Attar
- Department of Food Toxicology, Research Center of Food Technology and Agricultural Products, Standard Research Institute (SRI), Karaj 14155-6139, Iran
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rabeea Siddique
- Department of Cerebrovascular Diseases, the Second Affiliated Hospital of Zhengzhou University, Jingba Road, NO.2, 450014 Zhengzhou, China
| | | | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
20
|
Mahmoudi T, de la Guardia M, Shirdel B, Mokhtarzadeh A, Baradaran B. Recent advancements in structural improvements of lateral flow assays towards point-of-care testing. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Guo X, Zong L, Jiao Y, Han Y, Zhang X, Xu J, Li L, Zhang CW, Liu Z, Ju Q, Liu J, Xu Z, Yu HD, Huang W. Signal-Enhanced Detection of Multiplexed Cardiac Biomarkers by a Paper-Based Fluorogenic Immunodevice Integrated with Zinc Oxide Nanowires. Anal Chem 2019; 91:9300-9307. [PMID: 31241314 DOI: 10.1021/acs.analchem.9b02557] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Using a single test to comprehensively evaluate multiple cardiac biomarkers for early diagnosis and prevention of acute myocardial infarction (AMI) has faced enormous challenges. Here, we have developed paper-based fluorogenic immunodevices for multiplexed detection of three cardiac biomarkers, namely, human heart-type fatty acid binding protein (FABP), cardiac troponin I (cTnI), and myoglobin, simultaneously. The detection is based on a strategy using zinc oxide nanowires (ZnO NWs) to enhance fluorescence signals (∼5-fold compared to that on pure paper). The immunodevices showed high sensitivity and selectivity for FABP, cTnI, and myoglobin with detection limits of 1.36 ng/mL, 1.00 ng/mL, and 2.38 ng/mL, respectively. Additionally, the paper-based immunoassay was rapid (∼5 min to complete the test) and portable (using a homemade chamber with a smartphone and an ultraviolet lamp). The developed devices integrated with ZnO NWs enable quantitative, sensitive, and simultaneous detection of multiple cardiac biomarkers in point-of-care settings, which provides a useful approach for monitoring AMI diseases and may be extended to other medical diagnostics and environmental assessments.
Collapse
Affiliation(s)
- Xueying Guo
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P.R. China
| | - Lijun Zong
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P.R. China
| | - Yucui Jiao
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P.R. China
| | - Yufeng Han
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P.R. China
| | - Xiaopan Zhang
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P.R. China
| | - Jia Xu
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P.R. China
| | - Lin Li
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P.R. China
| | - Cheng-Wu Zhang
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P.R. China
| | - Zhipeng Liu
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P.R. China
| | - Qiang Ju
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P.R. China
| | - Jinhua Liu
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P.R. China
| | - Zhihui Xu
- Department of Cardiology , The First Affiliated Hospital of Nanjing Medical University , 300 Guangzhou Road , Nanjing 210029 , P.R. China
| | - Hai-Dong Yu
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P.R. China.,Xi'an Institute of Flexible Electronics , Northwestern Polytechnical University , 127 West Youyi Road , Xi'an 710072 , P.R. China
| | - Wei Huang
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P.R. China.,Xi'an Institute of Flexible Electronics , Northwestern Polytechnical University , 127 West Youyi Road , Xi'an 710072 , P.R. China
| |
Collapse
|
22
|
Huang Z, Xiong Z, Chen Y, Hu S, Lai W. Sensitive and Matrix-Tolerant Lateral Flow Immunoassay Based on Fluorescent Magnetic Nanobeads for the Detection of Clenbuterol in Swine Urine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3028-3036. [PMID: 30793901 DOI: 10.1021/acs.jafc.8b06449] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The lack of sensitivity and poor matrix tolerance are the main bottlenecks of the lateral flow immunoassay (LFIA). Here, a sensitive and matrix-tolerant method that integrated immunomagnetic separation and fluorescent lateral flow immunoassay (IMS-FLFIA) based on fluorescent magnetic nanobeads was developed to detect the clenbuterol (CLE) residue in swine urine. The limit of detection (LOD) of IMS-FLFIA is 4 times lower than that of traditional colloidal gold LFIA. This method, which exhibits similar LOD and linearity range in both phosphate-buffered saline and urine swine, is highly correlated with liquid chromatography-tandem mass spectrometry for the detection of real swine urine samples. The result indicated that IMS-FLFIA has a universal resistance to the swine urine matrix. The merits of this assay, high sensitivity, matrix tolerance, accuracy, and specificity, ensure a promising future in detection of veterinary drug residues.
Collapse
Affiliation(s)
- Zhen Huang
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Zhijuan Xiong
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Yuan Chen
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Song Hu
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| |
Collapse
|
23
|
Rapid detection method and portable device based on the photothermal effect of gold nanoparticles. Biosens Bioelectron 2019; 123:19-24. [DOI: 10.1016/j.bios.2018.09.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022]
|
24
|
Regan B, O'Kennedy R, Collins D. Point-of-Care Compatibility of Ultra-Sensitive Detection Techniques for the Cardiac Biomarker Troponin I-Challenges and Potential Value. BIOSENSORS 2018; 8:E114. [PMID: 30469415 PMCID: PMC6316850 DOI: 10.3390/bios8040114] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022]
Abstract
Cardiac biomarkers are frequently measured to provide guidance on the well-being of a patient in relation to cardiac health with many assays having been developed and widely utilised in clinical assessment. Effectively treating and managing cardiovascular disease (CVD) relies on swiftly responding to signs of cardiac symptoms, thus providing a basis for enhanced patient management and an overall better health outcome. Ultra-sensitive cardiac biomarker detection techniques play a pivotal role in improving the diagnostic capacity of an assay and thus enabling a better-informed decision. However, currently, the typical approach taken within healthcare depends on centralised laboratories performing analysis of cardiac biomarkers, thus restricting the roll-out of rapid diagnostics. Point-of-care testing (POCT) involves conducting the diagnostic test in the presence of the patient, with a short turnaround time, requiring small sample volumes without compromising the sensitivity of the assay. This technology is ideal for combatting CVD, thus the formulation of ultra-sensitive assays and the design of biosensors will be critically evaluated, focusing on the feasibility of these techniques for point-of-care (POC) integration. Moreover, there are several key factors, which in combination, contribute to the development of ultra-sensitive techniques, namely the incorporation of nanomaterials for sensitivity enhancement and manipulation of labelling methods. This review will explore the latest developments in cardiac biomarker detection, primarily focusing on the detection of cardiac troponin I (cTnI). Highly sensitive detection of cTnI is of paramount importance regarding the rapid rule-in/rule-out of acute myocardial infarction (AMI). Thus the challenges encountered during cTnI measurements are outlined in detail to assist in demonstrating the drawbacks of current commercial assays and the obstructions to standardisation. Furthermore, the added benefits of introducing multi-biomarker panels are reviewed, several key biomarkers are evaluated and the analytical benefits provided by multimarkers-based methods are highlighted.
Collapse
Affiliation(s)
- Brian Regan
- School of Biotechnology, Dublin City University, 9 Dublin, Ireland.
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, 9 Dublin, Ireland.
- Research Complex, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110 Doha, Qatar.
| | - David Collins
- School of Biotechnology, Dublin City University, 9 Dublin, Ireland.
| |
Collapse
|