1
|
Carney CP, Pandey N, Kapur A, Saadi H, Ong HL, Chen C, Winkles JA, Woodworth GF, Kim AJ. Impact of Targeting Moiety Type and Protein Corona Formation on the Uptake of Fn14-Targeted Nanoparticles by Cancer Cells. ACS NANO 2023; 17:19667-19684. [PMID: 37812740 DOI: 10.1021/acsnano.3c02575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The TWEAK receptor, Fn14, is a promising candidate for active targeting of cancer nanotherapeutics to many solid tumor types, including metastatic breast and primary brain cancers. Targeting of therapeutic nanoparticles (NPs) has been accomplished using a range of targeting moieties including monoclonal antibodies and related fragments, peptides, and small molecules. Here, we investigated a full-length Fn14-specific monoclonal antibody, ITEM4, or an ITEM4-Fab fragment as a targeting moiety to guide the development of a clinical formulation. We formulated NPs with varying densities of the targeting moieties while maintaining the decreased nonspecific adhesivity with receptor targeting (DART) characteristics. To model the conditions that NPs experience following intravenous infusion, we investigated the impact of serum exposure in relation to the targeting moiety type and surface density. To further evaluate performance at the cancer cell level, we performed experiments to assess differences in cellular uptake and trafficking in several cancer cell lines using confocal microscopy, imaging flow cytometry, and total internal reflection fluorescence microscopy. We observed that Fn14-targeted NPs exhibit enhanced cellular uptake in Fn14-high compared to Fn14-low cancer cells and that in both cell lines uptake levels were greater than observed with control, nontargeted NPs. We found that serum exposure increased Fn14-targeted NP specificity while simultaneously reducing the total NP uptake. Importantly, serum exposure caused a larger reduction in cancer cell uptake over time when the targeting moiety was an antibody fragment (Fab region of the monoclonal antibody) compared with the full-length monoclonal antibody targeting moiety. Lastly, we uncovered that full monoclonal antibody-targeted NPs enter cancer cells via clathrin-mediated endocytosis and traffic through the endolysosomal pathway. Taken together, these results support a pathway for developing a clinical formulation using a full-length Fn14 monoclonal antibody as the targeting moiety for a DART cancer nanotherapeutic agent.
Collapse
Affiliation(s)
- Christine P Carney
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Anshika Kapur
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Hassan Saadi
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Hwei Ling Ong
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Chixiang Chen
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, Maryland 20742, United States
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
2
|
Wang S, Zhang J, Zhou H, Lu YC, Jin X, Luo L, You J. The role of protein corona on nanodrugs for organ-targeting and its prospects of application. J Control Release 2023; 360:15-43. [PMID: 37328008 DOI: 10.1016/j.jconrel.2023.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Nowadays, nanodrugs become a hotspot in the high-end medical field. They have the ability to deliver drugs to reach their destination more effectively due to their unique properties and flexible functionalization. However, the fate of nanodrugs in vivo is not the same as those presented in vitro, which indeed influenced their therapeutic efficacy in vivo. When entering the biological organism, nanodrugs will first come into contact with biological fluids and then be covered by some biomacromolecules, especially proteins. The proteins adsorbed on the surface of nanodrugs are known as protein corona (PC), which causes the loss of prospective organ-targeting abilities. Fortunately, the reasonable utilization of PC may determine the organ-targeting efficiency of systemically administered nanodrugs based on the diverse expression of receptors on cells in different organs. In addition, the nanodrugs for local administration targeting diverse lesion sites will also form unique PC, which plays an important role in the therapeutic effect of nanodrugs. This article introduced the formation of PC on the surface of nanodrugs and summarized the recent studies about the roles of diversified proteins adsorbed on nanodrugs and relevant protein for organ-targeting receptor through different administration pathways, which may deepen our understanding of the role that PC played on organ-targeting and improve the therapeutic efficacy of nanodrugs to promote their clinical translation.
Collapse
Affiliation(s)
- Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yi Chao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xizhi Jin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.
| |
Collapse
|
3
|
Carney CP, Kapur A, Anastasiadis P, Ritzel RM, Chen C, Woodworth GF, Winkles JA, Kim AJ. Fn14-Directed DART Nanoparticles Selectively Target Neoplastic Cells in Preclinical Models of Triple-Negative Breast Cancer Brain Metastasis. Mol Pharm 2023; 20:314-330. [PMID: 36374573 PMCID: PMC11056964 DOI: 10.1021/acs.molpharmaceut.2c00663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) patients with brain metastasis (BM) face dismal prognosis due to the limited therapeutic efficacy of the currently available treatment options. We previously demonstrated that paclitaxel-loaded PLGA-PEG nanoparticles (NPs) directed to the Fn14 receptor, termed "DARTs", are more efficacious than Abraxane─an FDA-approved paclitaxel nanoformulation─following intravenous delivery in a mouse model of TNBC BM. However, the precise basis for this difference was not investigated. Here, we further examine the utility of the DART drug delivery platform in complementary xenograft and syngeneic TNBC BM models. First, we demonstrated that, in comparison to nontargeted NPs, DART NPs exhibit preferential association with Fn14-positive human and murine TNBC cell lines cultured in vitro. We next identified tumor cells as the predominant source of Fn14 expression in the TNBC BM-immune microenvironment with minimal expression by microglia, infiltrating macrophages, monocytes, or lymphocytes. We then show that despite similar accumulation in brains harboring TNBC tumors, Fn14-targeted DARTs exhibit significant and specific association with Fn14-positive TNBC cells compared to nontargeted NPs or Abraxane. Together, these results indicate that Fn14 expression primarily by tumor cells in TNBC BMs enables selective DART NP delivery to these cells, likely driving the significantly improved therapeutic efficacy observed in our prior work.
Collapse
Affiliation(s)
- Christine P Carney
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Anshika Kapur
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Chixiang Chen
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, Maryland 20742, United States
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
4
|
Mondarte EAQ, Zamarripa EMM, Chang R, Wang F, Song S, Tahara H, Hayashi T. Interphase Protein Layers Formed on Self-Assembled Monolayers in Crowded Biological Environments: Analysis by Surface Force and Quartz Crystal Microbalance Measurements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1324-1333. [PMID: 35029393 DOI: 10.1021/acs.langmuir.1c02312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We investigated a viscous protein layer formed on self-assembled monolayers (SAMs) in crowded biological environments. The results were obtained through force spectroscopic measurements using colloidal probes and substantiated by exhaustive analysis using a quartz crystal microbalance with an energy dissipation technique. A hydrophobic SAM of n-octanethiol (C8 SAM) in bovine serum albumin (BSA) solution is buried under an adlayer of denatured BSA molecules and an additional viscous interphase layer that is five times more viscous than the bulk solution. C8 SAMs in fetal bovine serum induced a formation of a thicker adsorbed protein layer but with no observable viscous interphase layer. These findings show that a fouling surface is essentially inaccessible to any approaching molecules and thus has a new biological and physical identity arising from its surrounding protein layers. In contrast, the SAMs composed of sulfobetaine-terminated alkanethiol proved to be sufficiently protein-resistant and bio-inert even under crowded conditions due to a protective barrier of its interfacial water, which has implications in the accurate targeting of artificial particles for drug delivery and similar applications by screening any non-specific interactions. Finally, our strategies provide a platform for the straightforward yet effectual in vitro characterization of diverse types of surfaces in the context of targeted interactions in crowded biological environments.
Collapse
Affiliation(s)
- Evan Angelo Quimada Mondarte
- Tokyo Institute of Technology, Department of Materials Science and Engineering, School of Materials and Chemical Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Elisa Margarita Mendoza Zamarripa
- Tokyo Institute of Technology, Department of Materials Science and Engineering, School of Materials and Chemical Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Ryongsok Chang
- Tokyo Institute of Technology, Department of Materials Science and Engineering, School of Materials and Chemical Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Fan Wang
- Tokyo Institute of Technology, Department of Materials Science and Engineering, School of Materials and Chemical Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Subin Song
- Tokyo Institute of Technology, Department of Materials Science and Engineering, School of Materials and Chemical Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Hiroyuki Tahara
- Tokyo Institute of Technology, Department of Materials Science and Engineering, School of Materials and Chemical Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Tomohiro Hayashi
- Tokyo Institute of Technology, Department of Materials Science and Engineering, School of Materials and Chemical Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| |
Collapse
|
5
|
Hirose M, Ueno T, Nagumo H, Sato Y, Sakai-Kato K. Enhancing the Endocytosis of Phosphatidylserine-Containing Liposomes through Tim4 by Modulation of Membrane Fluidity. Mol Pharm 2022; 19:91-99. [PMID: 34913345 DOI: 10.1021/acs.molpharmaceut.1c00645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phosphatidylserine (PS) is a unique lipid that is recognized by the endogenetic receptor, T-cell immunoglobulin mucin protein 4 (Tim4), and PS-containing liposomes have potential use in therapeutic applications. We prepared PS-containing liposomes of various lipid compositions and examined how lipid membrane fluidity affects PS recognition by Tim4 and the resulting endocytosis efficiency into Hela cells. Surface plasmon resonance and laurdan studies showed that increasing lipid membrane fluidity increased the stability of the PS-Tim4 interaction but hampered the entry of liposomes into cells. These results show that endocytosis efficiency is determined by balancing opposing forces induced by membrane fluidity. We found that inclusion of the zwitterionic helper lipid, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, into liposomes ensured efficient cellular internalization because the presence of this lipid provides an ideal balance of lipid fluidity and Tim4 affinity. The results showed that PS recognition by Tim4 and the resulting endocytosis efficiency can be maximized by modulating the membrane fluidity of liposomes by selecting a zwitterionic helper lipid. This study improves our understanding of how to rationally optimize nanotechnology for targeted drug delivery.
Collapse
Affiliation(s)
- Mio Hirose
- School of Pharmacy, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan
| | - Takayo Ueno
- School of Pharmacy, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroki Nagumo
- School of Pharmacy, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan
| | - Yusui Sato
- Scientific/Semiconductor Product R&D Center, HORIBA, Ltd., Kanda Awaji-cho 2-6, Chiyoda-ku, Tokyo 101-0063, Japan
| | - Kumiko Sakai-Kato
- School of Pharmacy, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
6
|
Yoo J, Viswanath D, Won YY. Strategy for Synthesis of Statistically Sequence-Controlled Uniform PLGA and Effects of Sequence Distribution on Interaction and Drug Release Properties. ACS Macro Lett 2021; 10:1510-1516. [PMID: 35549141 DOI: 10.1021/acsmacrolett.1c00637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Extensive studies have been conducted to elucidate the effects of such parameters as molecular weight, polydispersity, and composition on the controlled release properties of poly(d,l-lactic-co-glycolic acid) (PLGA). However, studies dealing with the effect of monomer sequence distribution have been sparse mainly because of the difficulty of precisely controlling the monomer sequence in PLGA. Herein, we present a semibatch copolymerization strategy that enables the production of statistically sequence-controlled "uniform PLGA" polymers through control of the rate of comonomer addition. Using this method, a series of PEG-PLGA samples having a comparable molecular weight and composition but different sequence distributions (uniform vs gradient) were prepared. The properties of these materials (PEG crystallization/melting, hygroscopicity, aqueous sol-gel transition, drug release kinetics) were found to significantly vary, demonstrating that sequence control only at the statistical level still significantly influences the properties of PLGA. Most notably, uniform PLGA exhibited the more sustained drug release behavior compared to gradient PLGA.
Collapse
Affiliation(s)
- Jin Yoo
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States of America
| | - Dhushyanth Viswanath
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States of America
| | - You-Yeon Won
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States of America
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47906, United States of America
| |
Collapse
|
7
|
Wang L, Yin Q, Liu C, Tang Y, Sun C, Zhuang J. Nanoformulations of Ursolic Acid: A Modern Natural Anticancer Molecule. Front Pharmacol 2021; 12:706121. [PMID: 34295253 PMCID: PMC8289884 DOI: 10.3389/fphar.2021.706121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Ursolic acid (UA) is a natural pentacyclic triterpene derived from fruit, herb, and other plants. UA can act on molecular targets of various signaling pathways, inhibit the growth of cancer cells, promote cycle stagnation, and induce apoptosis, thereby exerting anticancer activity. However, its poor water-solubility, low intestinal mucosal absorption, and low bioavailability restrict its clinical application. In order to overcome these deficiencies, nanotechnology, has been applied to the pharmacological study of UA. Objective: In this review, we focused on the absorption, distribution, and elimination pharmacokinetics of UA in vivo, as well as on the research progress in various UA nanoformulations, in the hope of providing reference information for the research on the anticancer activity of UA. Methods: Relevant research articles on Pubmed and Web of Science in recent years were searched selectively by using the keywords and subheadings, and were summarized systematically. Key finding: The improvement of the antitumor ability of the UA nanoformulations is mainly due to the improvement of the bioavailability and the enhancement of the targeting ability of the UA molecules. UA nanoformulations can even be combined with computational imaging technology for monitoring or diagnosis. Conclusion: Currently, a variety of UA nanoformulations, such as micelles, liposomes, and nanoparticles, which can increase the solubility and bioactivity of UA, while promoting the accumulation of UA in tumor tissues, have been prepared. Although the research of UA in the nanofield has made great progress, there is still a long way to go before the clinical application of UA nanoformulations.
Collapse
Affiliation(s)
- Longyun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qianqian Yin
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Tang
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
8
|
Chain CY, Daza Millone MA, Cisneros JS, Ramirez EA, Vela ME. Surface Plasmon Resonance as a Characterization Tool for Lipid Nanoparticles Used in Drug Delivery. Front Chem 2021; 8:605307. [PMID: 33490037 PMCID: PMC7817952 DOI: 10.3389/fchem.2020.605307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022] Open
Abstract
The development of drug carriers based in lipid nanoparticles (LNPs) aims toward the synthesis of non-toxic multifunctional nanovehicles that can bypass the immune system and allow specific site targeting, controlled release and complete degradation of the carrier components. Among label free techniques, Surface Plasmon Resonance (SPR) biosensing is a versatile tool to study LNPs in the field of nanotherapeutics research. SPR, widely used for the analysis of molecular interactions, is based on the immobilization of one of the interacting partners to the sensor surface, which can be easily achieved in the case of LNPs by hydrophobic attachment onto commercial lipid- capture sensor chips. In the last years SPR technology has emerged as an interesting strategy for studying molecular aspects of drug delivery that determines the efficacy of the nanotherapeutical such as LNPs' interactions with biological targets, with serum proteins and with tumor extracelullar matrix. Moreover, SPR has contributed to the obtention and characterization of LNPs, gathering information about the interplay between components of the formulations, their response to organic molecules and, more recently, the quantification and molecular characterization of exosomes. By the combination of available sensor platforms, assay quickness and straight forward platform adaptation for new carrier systems, SPR is becoming a high throughput technique for LNPs' characterization and analysis.
Collapse
Affiliation(s)
- Cecilia Yamil Chain
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA- Universidad Nacional de La Plata (UNLP)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| | - María Antonieta Daza Millone
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA- Universidad Nacional de La Plata (UNLP)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| | - José Sebastián Cisneros
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA- Universidad Nacional de La Plata (UNLP)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| | - Eduardo Alejandro Ramirez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA- Universidad Nacional de La Plata (UNLP)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| | - María Elena Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA- Universidad Nacional de La Plata (UNLP)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| |
Collapse
|
9
|
Morey J, Llinás P, Bueno-Costa A, León AJ, Piña MN. Raltitrexed-Modified Gold and Silver Nanoparticles for Targeted Cancer Therapy: Cytotoxicity Behavior In Vitro on A549 and HCT-116 Human Cancer Cells. MATERIALS 2021; 14:ma14030534. [PMID: 33499297 PMCID: PMC7866044 DOI: 10.3390/ma14030534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
Two different raltitrexed gold and silver nanoparticles for the delivery of an antitumoral drug into cancer cells were synthesized and characterized. A cysteine linker was used for the covalent bonding of raltitrexed to the surface of nanoparticles. To evaluate the efficacy of the antifolate-derivative nanoparticles, their cytotoxicity was assayed in vitro with A549 human lung adenocarcinoma and HCT-116 colorectal carcinoma human cells. Modified nanoparticles are a biocompatible material, and administration of silver raltitrexed nanoparticles strongly inhibited the viability of the cancer cells; gold raltitrexed nanoparticles do not show any type of cytotoxic effect. The results suggest that silver raltitrexed nanoparticles could be a potential delivery system for certain cancer cells.
Collapse
Affiliation(s)
- Jeroni Morey
- Department of Chemistry, University of the Balearic Islands, Crta. de Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Balearic Islands, Spain; (J.M.); (A.J.L.)
| | - Pere Llinás
- Department of Biochemistry, University of the Balearic Islands, Crta. de Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Balearic Islands, Spain; (P.L.); (A.B.-C.)
| | - Alberto Bueno-Costa
- Department of Biochemistry, University of the Balearic Islands, Crta. de Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Balearic Islands, Spain; (P.L.); (A.B.-C.)
| | - Alberto J. León
- Department of Chemistry, University of the Balearic Islands, Crta. de Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Balearic Islands, Spain; (J.M.); (A.J.L.)
| | - M. Nieves Piña
- Department of Chemistry, University of the Balearic Islands, Crta. de Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Balearic Islands, Spain; (J.M.); (A.J.L.)
- Correspondence: ; Tel.: +34-971-172847
| |
Collapse
|
10
|
Bhargav AG, Mondal SK, Garcia CA, Green JJ, Quiñones‐Hinojosa A. Nanomedicine Revisited: Next Generation Therapies for Brain Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Adip G. Bhargav
- Mayo Clinic College of Medicine and Science Mayo Clinic 200 First Street SW Rochester MN 55905 USA
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| | - Sujan K. Mondal
- Department of Pathology University of Pittsburgh School of Medicine 200 Lothrop Street Pittsburgh PA 15213 USA
| | - Cesar A. Garcia
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| | - Jordan J. Green
- Departments of Biomedical Engineering, Neurosurgery, Oncology, Ophthalmology, Materials Science and Engineering, and Chemical and Biomolecular Engineering, Translational Tissue Engineering Center, Bloomberg‐Kimmel Institute for Cancer Immunotherapy, Institute for Nanobiotechnology Johns Hopkins University School of Medicine 400 N. Broadway, Smith 5017 Baltimore MD 21231 USA
| | - Alfredo Quiñones‐Hinojosa
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
- Departments of Otolaryngology‐Head and Neck Surgery/Audiology Neuroscience, Cancer Biology, and Anatomy Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| |
Collapse
|
11
|
Dancy JG, Wadajkar AS, Connolly NP, Galisteo R, Ames HM, Peng S, Tran NL, Goloubeva OG, Woodworth GF, Winkles JA, Kim AJ. Decreased nonspecific adhesivity, receptor-targeted therapeutic nanoparticles for primary and metastatic breast cancer. SCIENCE ADVANCES 2020; 6:eaax3931. [PMID: 31998833 PMCID: PMC6962043 DOI: 10.1126/sciadv.aax3931] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 11/19/2019] [Indexed: 05/13/2023]
Abstract
Development of effective tumor cell-targeted nanodrug formulations has been quite challenging, as many nanocarriers and targeting moieties exhibit nonspecific binding to cellular, extracellular, and intravascular components. We have developed a therapeutic nanoparticle formulation approach that balances cell surface receptor-specific binding affinity while maintaining minimal interactions with blood and tumor tissue components (termed "DART" nanoparticles), thereby improving blood circulation time, biodistribution, and tumor cell-specific uptake. Here, we report that paclitaxel (PTX)-DART nanoparticles directed to the cell surface receptor fibroblast growth factor-inducible 14 (Fn14) outperformed both the corresponding PTX-loaded, nontargeted nanoparticles and Abraxane, an FDA-approved PTX nanoformulation, in both a primary triple-negative breast cancer (TNBC) model and an intracranial model reflecting TNBC growth following metastatic dissemination to the brain. These results provide new insights into methods for effective development of therapeutic nanoparticles as well as support the continued development of the DART platform for primary and metastatic tumors.
Collapse
Affiliation(s)
- Jimena G. Dancy
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Aniket S. Wadajkar
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nina P. Connolly
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rebeca Galisteo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Heather M. Ames
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sen Peng
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Nhan L. Tran
- Departments of Cancer Biology and Neurosurgery, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Olga G. Goloubeva
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Graeme F. Woodworth
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jeffrey A. Winkles
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Corresponding author. (J.A.W.); (A.J.K.)
| | - Anthony J. Kim
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
- Corresponding author. (J.A.W.); (A.J.K.)
| |
Collapse
|