1
|
Howlader DR, Das S, Lu T, Mandal RS, Hu G, Varisco DJ, Dietz ZK, Ratnakaram SSK, Ernst RK, Picking WD, Picking WL. A protein subunit vaccine elicits a balanced immune response that protects against Pseudomonas pulmonary infection. NPJ Vaccines 2023; 8:37. [PMID: 36918600 PMCID: PMC10012293 DOI: 10.1038/s41541-023-00618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/02/2023] [Indexed: 03/15/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa (Pa) causes severe nosocomial infections, especially in immunocompromised individuals and the elderly. Increasing drug resistance, the absence of a licensed vaccine and increased hospitalizations due to SARS-CoV-2 have made Pa a major healthcare risk. To address this, we formulated a candidate subunit vaccine against Pa (L-PaF), by fusing the type III secretion system tip and translocator proteins with LTA1 in an oil-in-water emulsion (ME). This was mixed with the TLR4 agonist (BECC438b). Lung mRNA sequencing showed that the formulation activates genes from multiple immunological pathways eliciting a protective Th1-Th17 response following IN immunization. Following infection, however, the immunized mice showed an adaptive response while the PBS-vaccinated mice experienced rapid onset of an inflammatory response. The latter displayed a hypoxic lung environment with high bacterial burden. Finally, the importance of IL-17 and immunoglobulins were demonstrated using knockout mice. These findings suggest a need for a balanced humoral and cellular response to prevent the onset of Pa infection and that our formulation could elicit such a response.
Collapse
Affiliation(s)
- Debaki R Howlader
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Sayan Das
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, 21201, USA
| | - Ti Lu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Rahul Shubhra Mandal
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gang Hu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
| | - David J Varisco
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, 21201, USA
| | - Zackary K Dietz
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | | | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, 21201, USA
| | - William D Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Wendy L Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA.
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
2
|
Synthetic selenium nanoparticles as co-adjuvant improved immune responses against methicillin-resistant Staphylococcus aureus. World J Microbiol Biotechnol 2023; 39:16. [PMID: 36401129 PMCID: PMC9676803 DOI: 10.1007/s11274-022-03455-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of hospital-acquired infections worldwide, which is resistant to many antibiotics, resulting in significant mortality in societies. Vaccination is a well-known approach to preventing disease. Autolysin, a surface-associated protein in S. aureus with multiple functions, is a suitable candidate for vaccine development. As a co-adjuvant, selenium nanoparticles (SeNPs) can increase the immune system, presumably resulting in increased vaccine efficacy. The present study evaluated the immunogenicity and defense of recombinant autolysin formulated in SeNPs and Alum adjuvants against MRSA. r-Autolysin was expressed and purified by the Ni-NTA affinity chromatography. SeNPs were synthetically obtained from sodium dioxide, followed by an assessment of shape and size using SEM and DLS. Balb/c mice were injected subcutaneously with 20 mg of r-autolysin formulated in Alum and SeNps adjuvants three times with the proper control group in 2 weeks intervals. Cytokine profile and isotyping ELISA were conducted to determine the type of induced immunity. Opsonophagocytosis tests assessed the functional activity of the vaccine, and the bacterial burden from the infected tissues was determined. Results showed that mice receiving SeNps and r-Autolysin had higher levels of total IgG and isotypes (IgG1 and IgG2a) and increased cytokine levels (IFN-γ, TNF-α, IL-12, and IL-4) as compared with those only receiving autolysin and PBS as a control. More importantly, mice immunized with SeNps and r-Autolysin exhibited a decrease in mortality and bacterial burden compared to the control group. We concluded that SeNps could stimulate immune responses and can be used as an adjuvant element in vaccine formulation.
Collapse
|
3
|
Ferreira Dantas GDP, Nascimento Martins EMD, Gomides LS, Chequer FMD, Burbano RR, Furtado CA, Santos AP, Tagliati CA. Pyrene-polyethylene glycol-modified multi-walled carbon nanotubes: Genotoxicity in V79-4 fibroblast cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 876-877:503463. [PMID: 35483786 DOI: 10.1016/j.mrgentox.2022.503463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
The genotoxicity of pyrene-polyethylene glycol-modified multi-walled carbon nanotubes (MWCNT-PyPEG), engineered as a nanoplatform for bioapplication, was evaluated. Toxicity was assessed in hamster lung fibroblast cells (V79-4). MTT and Cell Titer Blue methods were used to evaluate cell viability. Genotoxicity was measured by the comet assay and the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay, and fluorescence in situ hybridization (FISH) was used to test induction of structural chromosome aberrations (clastogenic activity) and/or numerical chromosome changes (aneuploidogenic activity). Exogenous metabolic activation enzymes were used in the CBMN-Cyt and FISH tests. Only with metabolic activation, the hybrids caused chromosomal damage, by both clastogenic and aneugenic processes.
Collapse
Affiliation(s)
- Graziela de Paula Ferreira Dantas
- ToxLab, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia - Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| | | | - Lívia Santos Gomides
- Laboratório de Química de Nanoestruturas de Carbono, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG, Brazil
| | - Farah Maria Drumond Chequer
- Laboratório de Análises Toxicológicas, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu (UFSJ-CCO), Divinópolis, MG, Brazil
| | - Rommel Rodríguez Burbano
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, PA, Brazil
| | - Clascídia Aparecida Furtado
- Laboratório de Química de Nanoestruturas de Carbono, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG, Brazil
| | - Adelina Pinheiro Santos
- Laboratório de Química de Nanoestruturas de Carbono, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG, Brazil
| | - Carlos Alberto Tagliati
- ToxLab, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia - Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
4
|
Mitarotonda R, Giorgi E, Eufrasio-da-Silva T, Dolatshahi-Pirouz A, Mishra YK, Khademhosseini A, Desimone MF, De Marzi M, Orive G. Immunotherapeutic nanoparticles: From autoimmune disease control to the development of vaccines. BIOMATERIALS ADVANCES 2022; 135:212726. [PMID: 35475005 PMCID: PMC9023085 DOI: 10.1016/j.bioadv.2022.212726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/01/2022]
Abstract
The development of nanoparticles (NPs) with potential therapeutic uses represents an area of vast interest in the scientific community during the last years. Recently, the pandemic caused by COVID-19 motivated a race for vaccines creation to overcome the crisis generated. This is a good demonstration that nanotechnology will most likely be the basis of future immunotherapy. Moreover, the number of publications based on nanosystems has significantly increased in recent years and it is expected that most of these developments can go on to experimentation in clinical stages soon. The therapeutic use of NPs to combat different diseases such as cancer, allergies or autoimmune diseases will depend on their characteristics, their targets, and the transported molecules. This review presents an in-depth analysis of recent advances that have been developed in order to obtain novel nanoparticulate based tools for the treatment of allergies, autoimmune diseases and for their use in vaccines. Moreover, it is highlighted that by providing targeted delivery an increase in the potential of vaccines to induce an immune response is expected in the future. Definitively, the here gathered analysis is a good demonstration that nanotechnology will be the basis of future immunotherapy.
Collapse
Affiliation(s)
- Romina Mitarotonda
- Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES) CONICET-UNLu, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución (6700) Lujan, Buenos Aires, Argentina
| | - Exequiel Giorgi
- Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES) CONICET-UNLu, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución (6700) Lujan, Buenos Aires, Argentina
| | - Tatiane Eufrasio-da-Silva
- Department of Health Technology, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark; Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Dentistry - Regenerative Biomaterials, Philips van Leydenlaan 25, 6525EX Nijmegen, the Netherlands
| | | | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, 6400 Sønderborg, Denmark
| | - Ali Khademhosseini
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA; Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA; Jonsson Comprehensive Cancer Center, Department of Radiology, University of California, Los Angeles, CA 90095, USA
| | - Martin F Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Mauricio De Marzi
- Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES) CONICET-UNLu, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución (6700) Lujan, Buenos Aires, Argentina.
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| |
Collapse
|
5
|
Celis-Giraldo CT, López-Abán J, Muro A, Patarroyo MA, Manzano-Román R. Nanovaccines against Animal Pathogens: The Latest Findings. Vaccines (Basel) 2021; 9:vaccines9090988. [PMID: 34579225 PMCID: PMC8472905 DOI: 10.3390/vaccines9090988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Nowadays, safe and efficacious vaccines represent powerful and cost-effective tools for global health and economic growth. In the veterinary field, these are undoubtedly key tools for improving productivity and fighting zoonoses. However, cases of persistent infections, rapidly evolving pathogens having high variability or emerging/re-emerging pathogens for which no effective vaccines have been developed point out the continuing need for new vaccine alternatives to control outbreaks. Most licensed vaccines have been successfully used for many years now; however, they have intrinsic limitations, such as variable efficacy, adverse effects, and some shortcomings. More effective adjuvants and novel delivery systems may foster real vaccine effectiveness and timely implementation. Emerging vaccine technologies involving nanoparticles such as self-assembling proteins, virus-like particles, liposomes, virosomes, and polymeric nanoparticles offer novel, safe, and high-potential approaches to address many vaccine development-related challenges. Nanotechnology is accelerating the evolution of vaccines because nanomaterials having encapsulation ability and very advantageous properties due to their size and surface area serve as effective vehicles for antigen delivery and immunostimulatory agents. This review discusses the requirements for an effective, broad-coverage-elicited immune response, the main nanoplatforms for producing it, and the latest nanovaccine applications for fighting animal pathogens.
Collapse
Affiliation(s)
- Carmen Teresa Celis-Giraldo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia
| | - Julio López-Abán
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Bogotá 110231, Colombia
- Correspondence: (M.A.P.); (R.M.-R.)
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
- Correspondence: (M.A.P.); (R.M.-R.)
| |
Collapse
|
6
|
Maina TW, Grego EA, Boggiatto PM, Sacco RE, Narasimhan B, McGill JL. Applications of Nanovaccines for Disease Prevention in Cattle. Front Bioeng Biotechnol 2020; 8:608050. [PMID: 33363134 PMCID: PMC7759628 DOI: 10.3389/fbioe.2020.608050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Vaccines are one of the most important tools available to prevent and reduce the incidence of infectious diseases in cattle. Despite their availability and widespread use to combat many important pathogens impacting cattle, several of these products demonstrate variable efficacy and safety in the field, require multiple doses, or are unstable under field conditions. Recently, nanoparticle-based vaccine platforms (nanovaccines) have emerged as promising alternatives to more traditional vaccine platforms. In particular, polymer-based nanovaccines provide sustained release of antigen payloads, stabilize such payloads, and induce enhanced antibod- and cell-mediated immune responses, both systemically and locally. To improve vaccine administrative strategies and efficacy, they can be formulated to contain multiple antigenic payloads and have the ability to protect fragile proteins from degradation. Nanovaccines are also stable at room temperature, minimizing the need for cold chain storage. Nanoparticle platforms can be synthesized for targeted delivery through intranasal, aerosol, or oral administration to induce desired mucosal immunity. In recent years, several nanovaccine platforms have emerged, based on biodegradable and biocompatible polymers, liposomes, and virus-like particles. While most nanovaccine candidates have not yet advanced beyond testing in rodent models, a growing number have shown promise for use against cattle infectious diseases. This review will highlight recent advancements in polymeric nanovaccine development and the mechanisms by which nanovaccines may interact with the bovine immune system. We will also discuss the positive implications of nanovaccines use for combating several important viral and bacterial disease syndromes and consider important future directions for nanovaccine development in beef and dairy cattle.
Collapse
Affiliation(s)
- Teresia W. Maina
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Elizabeth A. Grego
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Paola M. Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Randy E. Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
7
|
Torina A, Blanda V, Villari S, Piazza A, La Russa F, Grippi F, La Manna MP, Di Liberto D, de la Fuente J, Sireci G. Immune Response to Tick-Borne Hemoparasites: Host Adaptive Immune Response Mechanisms as Potential Targets for Therapies and Vaccines. Int J Mol Sci 2020; 21:ijms21228813. [PMID: 33233869 PMCID: PMC7699928 DOI: 10.3390/ijms21228813] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Tick-transmitted pathogens cause infectious diseases in both humans and animals. Different types of adaptive immune mechanisms could be induced in hosts by these microorganisms, triggered either directly by pathogen antigens or indirectly through soluble factors, such as cytokines and/or chemokines, secreted by host cells as response. Adaptive immunity effectors, such as antibody secretion and cytotoxic and/or T helper cell responses, are mainly involved in the late and long-lasting protective immune response. Proteins and/or epitopes derived from pathogens and tick vectors have been isolated and characterized for the immune response induced in different hosts. This review was focused on the interactions between tick-borne pathogenic hemoparasites and different host effector mechanisms of T- and/or B cell-mediated adaptive immunity, describing the efforts to define immunodominant proteins or epitopes for vaccine development and/or immunotherapeutic purposes. A better understanding of these mechanisms of host immunity could lead to the assessment of possible new immunotherapies for these pathogens as well as to the prediction of possible new candidate vaccine antigens.
Collapse
Affiliation(s)
- Alessandra Torina
- Area Diagnostica Sierologica, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy; (A.T.); (F.G.)
- Laboratorio di Riferimento OIE Theileriosi, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Valeria Blanda
- Laboratorio di Riferimento OIE Theileriosi, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy
- Laboratorio di Entomologia e Controllo Vettori Ambientali, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (S.V.); (A.P.); (F.L.R.)
- Correspondence:
| | - Sara Villari
- Laboratorio di Entomologia e Controllo Vettori Ambientali, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (S.V.); (A.P.); (F.L.R.)
| | - Antonio Piazza
- Laboratorio di Entomologia e Controllo Vettori Ambientali, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (S.V.); (A.P.); (F.L.R.)
| | - Francesco La Russa
- Laboratorio di Entomologia e Controllo Vettori Ambientali, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (S.V.); (A.P.); (F.L.R.)
| | - Francesca Grippi
- Area Diagnostica Sierologica, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy; (A.T.); (F.G.)
| | - Marco Pio La Manna
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), BIND, University Hospital “Paolo Giaccone”, Università degli studi di Palermo, Via del Vespro 129, 90100 Palermo, Italy; (M.P.L.M.); (D.D.L.); (G.S.)
| | - Diana Di Liberto
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), BIND, University Hospital “Paolo Giaccone”, Università degli studi di Palermo, Via del Vespro 129, 90100 Palermo, Italy; (M.P.L.M.); (D.D.L.); (G.S.)
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain;
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Guido Sireci
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), BIND, University Hospital “Paolo Giaccone”, Università degli studi di Palermo, Via del Vespro 129, 90100 Palermo, Italy; (M.P.L.M.); (D.D.L.); (G.S.)
| |
Collapse
|
8
|
Li S, Yang Y, Lin X, Li Z, Ma G, Su Z, Zhang S. A Novel Particulate Delivery System Based on Antigen-Zn 2+ Coordination Interactions Enhances Stability and Cellular Immune Response of Inactivated Foot and Mouth Disease Virus. Mol Pharm 2020; 17:2952-2963. [PMID: 32539415 DOI: 10.1021/acs.molpharmaceut.0c00365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The interactions between antigen and adjuvant were among the most significant factors influencing the immunogenicity of vaccines, especially for unstable antigens like inactivated foot and mouth disease virus (iFMDV). Here we propose a novel antigen delivery pattern based on the coordination interaction between transition metal ions Zn2+ chelated to chitosan nanoparticles and iFMDV, which is known to be rich in histidine. The zinc chelated chitosan particles (CP-PEI-Zn) were prepared by cross-linking chitosan particles (CP) with sodium tripolyphosphate (TPP), modifying with metal chelator polyethylenimine (PEI), and subsequent chelating of Zn2+. The coordination interaction was confirmed by analyzing the adsorption and desorption behavior of iFMDV on CP-PEI-Zn by high-performance size exclusion chromatography (HPSEC), while the CP-PEI without chelating Zn2+ loads iFMDV mainly through electrostatic interactions. The iFMDV loaded on CP-PEI-Zn showed better thermal stability than that on CP-PEI, as revealed by a slightly higher transition temperature (Tm) related to iFMDV dissociation. After subcutaneous immunization in female Balb/C mice, antigens loaded on CP-PEI and CP-PEI-Zn all induced higher specific antibody titers, better activation of B lymphocytes, and more effector-memory T cells proliferation than the free antigen and iFMDV adjuvanted with ISA 206 emulsion did. Moreover, CP-PEI-Zn showed superior efficacy to CP-PEI in promoting the proliferation of effector-memory T cells and secretion of cytokines, indicating a more potent cellular immune response. In summary, the CP-PEI-Zn stabilized the iFMDV after loading and promoted both humoral and cellular immune responses, thus reflecting its potential to be a promising adjuvant for the iFMDV vaccine and other unstable viral antigens.
Collapse
Affiliation(s)
- Shuai Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuan Lin
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|