1
|
Gunasegaran J, Teh YY, Lim CK, Ng SF. Review on Prevalence, Risk Factors, and Research Advancements on the Use of Medical Gloves Concerning Hand Dermatitis Among Health Care Workers. Saf Health Work 2024; 15:129-138. [PMID: 39035803 PMCID: PMC11255930 DOI: 10.1016/j.shaw.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 07/23/2024] Open
Abstract
The COVID-19 pandemic has led to a significant surge in glove usage, as recommended by the World Health Organization. Despite efforts to ensure the quality and safety of gloves, glove-associated skin diseases such as hand dermatitis have become ubiquitous, particularly among health care workers. This review discusses the prevalence, causes, and risk factors of hand dermatitis, as well as research efforts in medical gloves in the past decade to overcome glove-related hand dermatitis. Research papers from 2013 to 2022 were reviewed, selecting only 49 relevant papers from the Ovid, PubMed, and Scopus databases. The average prevalence of hand dermatitis among health care workers increased from 21.08% to 37.24% upon the impact of the COVID-19 pandemic. The cases are likely due to allergies to latex proteins, rubber additives, and accelerators commonly found in gloves. Using alternatives to latex gloves, such as accelerator-free and latex-free glove options, can help reduce allergy-induced hand dermatitis. Strict hand hygiene practices, such as frequent hand washing and the use of sanitizers, are also contributing factors in contracting hand dermatitis. Over the past decade, glove research advancements have focused mainly on reducing or immobilizing latex proteins. These include the use of biodegradable dialdehyde, sodium alginate, arctigenin, bromelain, papain, UV-LED, prototype photoreactors, and structure-modified nanosilica with silane A174. Two effective hand dermatitis preventive measures, i.e. an additional layer of glove liners and the use of gentle alcohol-based hand sanitizer, were recommended. These advancements represent promising steps towards mitigating hand dermatitis risks associated with glove usage.
Collapse
Affiliation(s)
- Jeevasunthari Gunasegaran
- Centre for Drug Delivery Technology and Vaccine, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ying-Ying Teh
- Centre for Drug Delivery Technology and Vaccine, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chin-Keong Lim
- Smart Glove Corporation Sdn Bhd., Klang, Selangor Darul Ehsan, Malaysia
| | - Shiow-Fern Ng
- Centre for Drug Delivery Technology and Vaccine, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Pareek A, Kumari L, Pareek A, Chaudhary S, Ratan Y, Janmeda P, Chuturgoon S, Chuturgoon A. Unraveling Atopic Dermatitis: Insights into Pathophysiology, Therapeutic Advances, and Future Perspectives. Cells 2024; 13:425. [PMID: 38474389 PMCID: PMC10931328 DOI: 10.3390/cells13050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Atopic dermatitis (AD) is an inflammatory skin condition that frequently develops before the onset of allergic rhinitis or asthma. More than 10% of children are affected by this serious skin condition, which is painful for the sufferers. Recent research has connected the environment, genetics, the skin barrier, drugs, psychological factors, and the immune system to the onset and severity of AD. The causes and consequences of AD and its cellular and molecular origins are reviewed in this paper. The exploration of interleukins and their influence on the immunological pathway in AD has been facilitated by using relevant biomarkers in clinical trials. This approach enables the identification of novel therapeutic modalities, fostering the potential for targeted translational research within the realm of personalized medicine. This review focuses on AD's pathophysiology and the ever-changing therapeutic landscape. Beyond the plethora of biologic medications in various stages of approval or development, a range of non-biologic targeted therapies, specifically small molecules, have emerged. These include Janus kinase (JAK) inhibitors like Baricitinib, Upadacitinib, and Abrocitinib, thus expanding the spectrum of therapeutic options. This review also addresses the latest clinical efficacy data and elucidates the scientific rationale behind each targeted treatment for atopic dermatitis.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India; (A.P.); (S.C.); (Y.R.)
| | - Lipika Kumari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali 304022, India; (L.K.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India; (A.P.); (S.C.); (Y.R.)
| | - Simran Chaudhary
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India; (A.P.); (S.C.); (Y.R.)
| | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India; (A.P.); (S.C.); (Y.R.)
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali 304022, India; (L.K.)
| | - Sanam Chuturgoon
- Northdale Hospital, Department of Health, Pietermaritzburg 3200, South Africa
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
3
|
Varshney M, Bahadur S. Comprehensive Review on Phytoconstituents-based Nanomedicine for the Treatment of Atopic Dermatitis. Curr Pharm Biotechnol 2024; 25:737-756. [PMID: 37888809 DOI: 10.2174/0113892010245092230922180341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 10/28/2023]
Abstract
Atopic dermatitis (AD) is known as a chronic disease characterized by eczematous and pruritus skin lesions. The pathology behind atopic dermatitis etiology is loss of epidermal barrier, which prevents the production of protein filaggrin that can induce T-cell infiltration and inflammation. Treatment of AD is majorly based on limiting skin repair as well as reducing inflammation and itching. There are several remedies available for the treatment of AD, such as Janus kinase and calcineurin inhibitors, topical corticosteroids, and phosphodiesterase-4 inhibitors. The conventional formulations in the market have limited safety and efficacy. Hence, effective treatment of atopic dermatitis requires the development of novel, efficacious, reliable, and specific therapies. Recent research data have revealed that some naturally occurring medicinal plants have potential applications in the management of AD through different mechanisms. The nanotechnology-based therapeutics have gained a lot of attention in the last decade for the improvement in the activity of drugs having low absorption due to poor solubility, thus leading to lesser bioavailability. Therapies based on nanotechnology can be an effective way to overcome these obstacles. Due to their effective propensity to provide better drug diffusion and bioavailability as well as drug targeting potential at the desired site of action, these approaches may have decreased adverse drug effects, better penetration, and enhanced therapeutic efficacy. Hence, this review highlights the potential of phytoconstituents-based novel formulations for the treatment of atopic dermatitis. Furthermore, recent patents on therapeutic approaches to atopic dermatitis have also been briefly described.
Collapse
Affiliation(s)
- Mayuri Varshney
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U.P. India
| | - Shiv Bahadur
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U.P. India
| |
Collapse
|
4
|
Kakkar V, Saini K, Singh KK. Challenges of current treatment and exploring the future prospects of nanoformulations for treatment of atopic dermatitis. Pharmacol Rep 2023; 75:1066-1095. [PMID: 37668937 PMCID: PMC10539427 DOI: 10.1007/s43440-023-00510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 09/06/2023]
Abstract
Atopic dermatitis (AD) is a predominant and deteriorating chronic inflammation of the skin, categorized by a burning sensation and eczematous lesions in diverse portions of the body. The treatment of AD is exclusively focused to limit the itching, reduce inflammation, and repair the breached barrier of the skin. Several therapeutic agents for the treatment and management of AD have been reported and are in use in clinics. However, the topical treatment of AD has been an unswerving challenge for the medical fraternity owing to the impaired skin barrier function in this chronic skin condition. To surmount the problems of conventional drug delivery systems, numerous nanotechnology-based formulations are emerging as alternative new modalities for AD. Latter enhances the bioavailability and delivery to the target disease site, improves drug permeation and therapeutic efficacy with reduced systemic and off-target side effects, and thus improves patient health and promotes compliance. This review aims to describe the various pathophysiological events involved in the occurrence of AD, current challenges in treatment, evidence of molecular markers of AD and its management, combinatorial treatment options, and the intervention of nanotechnology-based formulations for AD therapeutics.
Collapse
Affiliation(s)
- Vandita Kakkar
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| | - Komal Saini
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, Lancashire, UK
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, Lancashire, UK.
- UCLan Research Centre for Smart Materials, University of Central Lancashire, Preston, PR1 2HE, Lancashire, UK.
- UCLan Research Centre for Translational Biosciences and Behaviour, University of Central Lancashire, Preston, PR1 2HE, Lancashire, UK.
| |
Collapse
|
5
|
Palakkal S, Cortial A, Frušić-Zlotkin M, Soroka Y, Tzur T, Nassar T, Benita S. Effect of cyclosporine A - Tempol topical gel for the treatment of alopecia and anti-inflammatory disorders. Int J Pharm 2023:123121. [PMID: 37307961 DOI: 10.1016/j.ijpharm.2023.123121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Over the years, extensive research has been carried out to develop new chemical entities for hair loss treatment. Despite these efforts, the newly developed topical and oral treatments have not proven to be curative. Hair loss can result from underlying mechanisms, such as inflammation and apoptosis around hair follicles. We have developed a nanoemulsion based on Pemulen gel for topical application, tentatively addressing both mechanisms. The novel formulation contains two well-known molecules: Cyclosporin A (CsA), an immunosuppressant calcineurin inhibitor, and Tempol, a potent antioxidant. The in vitro permeation study on human skin revealed that the CsA-Tempol gel formulation effectively delivered CsA into the skin's inner target layer, the dermis. The effects of the CsA-Tempol gel on hair regrowth were further demonstrated in the in vivo well-established androgenetic model induced in female C57BL/6 mice. The beneficial outcome was statistically confirmed by quantitative analysis of hair regrowth, weasured by color density. The results were further supported by histology analysis. Our findings revealed a topical synergy effect, resulting in lower therapeutic concentrations of both actives unlikely to cause systemic side effects. Overall, our research suggests that the CsA-Tempol gel is a highly promising platform for treating alopecia.
Collapse
Affiliation(s)
- Sarin Palakkal
- The Institute of Drug Research of the School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Angèle Cortial
- The Institute of Drug Research of the School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marina Frušić-Zlotkin
- The Institute of Drug Research of the School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yoram Soroka
- The Institute of Drug Research of the School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tomer Tzur
- Department of Plastic and Reconstructive Surgery, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Taher Nassar
- The Institute of Drug Research of the School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Simon Benita
- The Institute of Drug Research of the School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
6
|
Raina N, Rani R, Thakur VK, Gupta M. New Insights in Topical Drug Delivery for Skin Disorders: From a Nanotechnological Perspective. ACS OMEGA 2023; 8:19145-19167. [PMID: 37305231 PMCID: PMC10249123 DOI: 10.1021/acsomega.2c08016] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/28/2023] [Indexed: 06/13/2023]
Abstract
Skin, the largest organ in humans, is an efficient route for the delivery of drugs as it circumvents several disadvantages of the oral and parenteral routes. These advantages of skin have fascinated researchers in recent decades. Drug delivery via a topical route includes moving the drug from a topical product to a locally targeted region with dermal circulation throughout the body and deeper tissues. Still, due to the skin's barrier function, delivery through the skin can be difficult. Drug delivery to the skin using conventional formulations with micronized active components, for instance, lotions, gels, ointments, and creams, results in poor penetration. The use of nanoparticulate carriers is one of the promising strategies, as it provides efficient delivery of drugs through the skin and overcomes the disadvantage of traditional formulations. Nanoformulations with smaller particle sizes contribute to improved permeability of therapeutic agents, targeting, stability, and retention, making nanoformulations ideal for drug delivery through a topical route. Achieving sustained release and preserving a localized effect utilizing nanocarriers can result in the effective treatment of numerous infections or skin disorders. This article aims to evaluate and discuss the most recent developments of nanocarriers as therapeutic agent vehicles for skin conditions with patent technology and a market overview that will give future directions for research. As topical drug delivery systems have shown great preclinical results for skin problems, for future research directions, we anticipate including in-depth studies of nanocarrier behavior in various customized treatments to take into account the phenotypic variability of the disease.
Collapse
Affiliation(s)
- Neha Raina
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Radha Rani
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, SRUC (Scotland’s Rural College), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.
- School
of Engineering, University of Petroleum
& Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Madhu Gupta
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| |
Collapse
|
7
|
Gallo G, Mastorino L, Barilà D, Cattel F, Panzone M, Quaglino P, Ribero S, Dapavo P. Topical cyclosporine hydrogel preparation: A new therapeutic option in the treatment of nail psoriasis. Dermatol Ther 2022; 35:e15917. [PMID: 36214268 DOI: 10.1111/dth.15917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022]
Abstract
Nail psoriasis is a chronic nail disorder that commonly affects psoriatic patients causing severe distress despite the limited body surface area. Treatments for nail psoriasis are limited, as nails are often difficult to treat with topical therapies, and among different systemic agents responses are unpredictable. We carried out a prospective study in order to analyze the effectiveness and tolerability of topical cyclosporine hydrogel ointment in nail psoriasis. Three patients, for a total of 44 nails, were treated with topical cyclosporine hydrogel ointment. All nails were evaluated, before starting the treatment, every 28 days and after 12 weeks of therapy, by the same dermatologists, through clinical and onychoscopic evaluations. The patients were also asked to assess on the compliance with product use. Complete response (CR) was observed in 2 of 3 patients; a partial response (PR) was observed in the other patient. Overall, 24 of 44 nails had CR and 20 had a PR. Cyclosporine hydrogel ointment has shown efficacy and safety in the treatment of nail psoriasis. The product has also been shown to be stable in composition, easy to apply and not discomfortable for the patient.
Collapse
Affiliation(s)
- Giuseppe Gallo
- Dermatology Clinic, Department of medical sciences, University of Turin, Turin, Italy
| | - Luca Mastorino
- Dermatology Clinic, Department of medical sciences, University of Turin, Turin, Italy
| | - Diego Barilà
- Department of Pharmaceutical Science and Technology, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Francesco Cattel
- Department of Pharmaceutical Science and Technology, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Michele Panzone
- Dermatology Clinic, Department of medical sciences, University of Turin, Turin, Italy
| | - Pietro Quaglino
- Dermatology Clinic, Department of medical sciences, University of Turin, Turin, Italy
| | - Simone Ribero
- Dermatology Clinic, Department of medical sciences, University of Turin, Turin, Italy
| | - Paolo Dapavo
- Dermatology Clinic, Department of medical sciences, University of Turin, Turin, Italy
| |
Collapse
|
8
|
Gehrcke M, Martins CC, de Bastos Brum T, da Rosa LS, Luchese C, Wilhelm EA, Soares FZM, Cruz L. Novel Pullulan/Gellan Gum Bilayer Film as a Vehicle for Silibinin-Loaded Nanocapsules in the Topical Treatment of Atopic Dermatitis. Pharmaceutics 2022; 14:2352. [PMID: 36365170 PMCID: PMC9699506 DOI: 10.3390/pharmaceutics14112352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
In this study a novel gellan gum/pullulan bilayer film containing silibinin-loaded nanocapsules was developed for topical treatment of atopic dermatitis (AD). The bilayer films were produced by applying a pullulan layer on a gellan gum layer incorporated with silibinin nanocapsules by two-step solvent casting method. The bilayer formation was confirmed by microscopic analysis. In vitro studies showed that pullulan imparts bioadhesitvity for the films and the presence of nanocapsules increased their occlusion factor almost 2-fold. Besides, the nano-based film presented a slow silibinin release and high affinity for cutaneous tissue. Moreover, this film presented high scavenger capacity and non-hemolytic property. In the in vivo study, interestingly, the treatments with vehicle film attenuated the scratching behavior and the ear edema in mice induced by 2,4-dinitrochlorobenzene (DNCB). However, the nano-based film containing silibinin modulated the inflammatory and oxidative parameters in a similar or more pronounced way than silibinin solution and vehicle film, as well as than hydrocortisone, a classical treatment of AD. In conclusion, these data suggest that itself gellan gum/pullulan bilayer film might attenuate the effects induced by DNCB, acting together with silibinin-loaded nanocapsules, which protected the skin from oxidative damage, improving the therapeutic effect in this AD-model.
Collapse
Affiliation(s)
- Mailine Gehrcke
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Carolina Cristóvão Martins
- Laboratório de Pesquisa em Farmacologia Bioquímica—Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil
| | - Taíne de Bastos Brum
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Lucas Saldanha da Rosa
- Laboratório de Biomateriais, Centro de Ciências da Saúde, Departamento de Odontologia Restauradora, Universidade Federal de Santa Maria, Santa Maria 97015-372, RS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica—Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil
| | - Ethel Antunes Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica—Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil
| | - Fabio Zovico Maxnuck Soares
- Laboratório de Biomateriais, Centro de Ciências da Saúde, Departamento de Odontologia Restauradora, Universidade Federal de Santa Maria, Santa Maria 97015-372, RS, Brazil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| |
Collapse
|
9
|
Javia A, Misra A, Thakkar H. Liposomes encapsulating novel antimicrobial peptide Omiganan: Characterization and its pharmacodynamic evaluation in atopic dermatitis and psoriasis mice model. Int J Pharm 2022; 624:122045. [PMID: 35878872 DOI: 10.1016/j.ijpharm.2022.122045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/18/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
Omiganan is a novel 12 amino acid synthetic cationic peptide from the cathelicidin family. Omiganan possesses antimicrobial action against a wide range of microbes, including gram-positive and gram-negative bacteria and fungi. Omiganan mainly acts by depolarizing the cytoplasmic membrane, resulting in cellular disruption and death. Apart from its antimicrobial effect, Omiganan also has anti-inflammatory activity. The present investigation aimed to evaluate and compare the efficacy of Omiganan liposomal gel with conventional formulations (Omiganan gel and lotion) in atopic dermatitis (AD) and psoriasis mice animal models. Liposomes encapsulating Omiganan were prepared using the reverse-phase evaporation technique and incorporated into Carbopol 934P gel. The optimized Omiganan liposomes were then characterized for various physicochemical parameters such as vesicle size, shape and surface morphology, zeta-potential, rheological parameters, in-vitro drug release, ex-vivo skin permeation/deposition, in-vitro antimicrobial activity, proteolytic stability, and cellular toxicity and uptake studies. Liposomes exhibited 72 % encapsulation with 7.8 % loading efficacy, a vesicle size, and zeta potential of 120 nm and - 17.2 mv, respectively. Moreover, Omiganan liposomal gel demonstrated controlled release and a better permeation profile than conventional formulations. A substantial reduction in levels of pro-inflammatory cytokines and improvement in AD and psoriatic lesions were achieved by Omiganan liposomal gel compared to Omiganan gel and lotion-based formulations. The present study confirms that Omiganan liposomal formulation can be an effective, safe, and novel alternative treatment approach in atopic dermatitis and psoriasis.
Collapse
Affiliation(s)
- Ankit Javia
- Pharmacy Department, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Ambikanandan Misra
- Pharmacy Department, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Hetal Thakkar
- Pharmacy Department, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India.
| |
Collapse
|
10
|
Javia A, Misra LA, Thakkar H. Design and pharmacodynamic evaluation of DPK-060 loaded Nanostructured lipid carrier embedded gel for dermal delivery: A novel Approach in the treatment of atopic dermatitis. Colloids Surf B Biointerfaces 2022; 217:112658. [DOI: 10.1016/j.colsurfb.2022.112658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
|
11
|
Sadeghi S, Kalantari Y, Seirafianpour F, Goodarzi A. The Efficacy and Safety of Topical Cyclosporine-A in Dermatology: A Systematic Review. Dermatol Ther 2022; 35:e15490. [PMID: 35384191 DOI: 10.1111/dth.15490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/29/2022]
Abstract
Cyclosporine-A (Cyc-A) was initially prescribed as systemic therapy for patients receiving solid organ transplants or in patients with graft versus host disease (GVHD). Topical Cyc-A is an ideal form of Cyclosporine in the treatment of mucocutaneous disorders as it causes fewer systemic side effects and has more stable results than steroids; however, poor absorption through the skin makes the development of new formulations necessary to improve skin permeability. To evaluate the efficacy and safety of topical Cyc-A in different dermatological conditions. A thorough systematic review was performed on PubMed/Medline, Embase, Scopus, and Web of Science databases as well as Google Scholar, and relevant studies from 2000 until January 3rd, 2022, were selected. The study was conducted according to the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA). Topical Cyc-A was observed to be an effective medication in the treatment of oral lichen planus, psoriasis, burning mouth syndrome, Pyoderma Gangrenosum, and Zoon's balanitis. Adverse side effects such as dysphagia, burning sensation, lips swealing, and gastrointestinal upset were reported following Cyc-A mouthwash use, whereas mild erythema, dryness, and fissuring of the skin were observed following the Cyc-A lipogel application. Topical Cyc-A was found to be a good alternative to traditional treatment regimens for immune-mediated mucocutaneous conditions. Cyc-A can be considered as a safe and efficient option in cases of long-term treatment as it does not have the same adverse effects of long-term steroids. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sara Sadeghi
- Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), Iran University of Medical Sciences, Tehran, Iran
| | - Yasamin Kalantari
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnoosh Seirafianpour
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Goodarzi
- Department of Dermatology, Faculty of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Iran Jordan Dermatology and Hair Transplantation Center, Tehran, Iran
| |
Collapse
|
12
|
Cláudia Paiva-Santos A, Gama M, Peixoto D, Sousa-Oliveira I, Ferreira-Faria I, Zeinali M, Abbaspour-Ravasjani S, Mascarenhas-Melo F, Hamishehkar H, Veiga F. Nanocarrier-based dermopharmaceutical formulations for the topical management of atopic dermatitis. Int J Pharm 2022; 618:121656. [DOI: 10.1016/j.ijpharm.2022.121656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 01/23/2023]
|
13
|
Almawash S, Quadir SS, Al Saqr A, Sharma G, Raza K. Dual Delivery of Fluticasone Propionate and Levocetirizine Dihydrochloride for the Management of Atopic Dermatitis Using a Microemulsion-Based Topical Gel. ACS OMEGA 2022; 7:7696-7705. [PMID: 35284709 PMCID: PMC8908482 DOI: 10.1021/acsomega.1c06393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/26/2022] [Indexed: 06/13/2023]
Abstract
The current study investigates the potential for topical delivery of a fluticasone propionate (FP) and levocetirizine dihydrochloride (CTZ)-loaded microemulsion (ME) for the management of atopic dermatitis. Various microemulsion components were chosen based on their solubility and emulsification capabilities, and the ternary phase diagram was constructed. A total of 12 microemulsion formulations were screened for various attributes like vesicle size, polydispersity index, ζ-potential, percent transmittance, density, and pH. The average globule size and ζ-potential of FP and levocetirizine-containing ME were 52.12 nm and -2.98 ζ-potential, respectively. Transmission electron microscopy confirmed the spherical nature of the globules. The developed system not only controlled the release of both drugs but also enhanced the efficacy of the drugs on a rodent model. Histopathological studies confirmed the safety of the developed system. The present findings provide evidence for a scalable and simpler approach for the management of atopic dermatitis.
Collapse
Affiliation(s)
- Saud Almawash
- Department
of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Sheikh Shahnawaz Quadir
- Department
of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer 305817, Rajasthan, India
| | - Ahmed Al Saqr
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Gajanand Sharma
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
| | - Kaisar Raza
- Department
of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer 305817, Rajasthan, India
| |
Collapse
|
14
|
Alberti LR, Vasconcellos LDS, Petroianu A. Cyclosporine reduces the spleen dimensions in rabbits. Acta Cir Bras 2021; 36:e360402. [PMID: 33978094 PMCID: PMC8112103 DOI: 10.1590/acb360402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/18/2021] [Indexed: 11/29/2022] Open
Abstract
Purpose To assess the influence of prolonged cyclosporine use on the macro- and
microscopic morphology of the spleen. Methods 16 adult rabbits were divided into two groups (n = 8): group 1 – a placebo
group, which was followed-up over a period of nine months; group 2 – which
had taken an oral dose of cyclosporine (10
mg·kg–1·day–1) over nine months. At the end of
this period, the splenic histoarchitecture of all animals was evaluated and
the splenic corpuscles were measured. Results The spleens of the first group presented normal characteristics and
dimensions. The second group, however, had a reduction in all dimensions and
its tissue texture had become soft. The white pulp and the perivascular
sheath had become reduced in size and the number of lymphoid follicles had
also fallen (p = 0.002), manifesting less splenic corpuscles (p = 0.0012)
and lymphocyte nuclear pigments (p = 0.03). Conclusions Prolonged use of cyclosporine reduces the spleen size, transforming it into a
soft organ associated with a decrease in white pulp, perivascular sheath,
lymphoid follicles and nuclear pigments in rabbits.
Collapse
|
15
|
Bhat M, Pukale S, Singh S, Mittal A, Chitkara D. Nano-enabled topical delivery of anti-psoriatic small molecules. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Recent Advances in Nanomaterials for Dermal and Transdermal Applications. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5010018] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The stratum corneum, the most superficial layer of the skin, protects the body against environmental hazards and presents a highly selective barrier for the passage of drugs and cosmetic products deeper into the skin and across the skin. Nanomaterials can effectively increase the permeation of active molecules across the stratum corneum and enable their penetration into deeper skin layers, often by interacting with the skin and creating the distinct sites with elevated local concentration, acting as reservoirs. The flux of the molecules from these reservoirs can be either limited to the underlying skin layers (for topical drug and cosmeceutical delivery) or extended across all the sublayers of the epidermis to the blood vessels of the dermis (for transdermal delivery). The type of the nanocarrier and the physicochemical nature of the active substance are among the factors that determine the final skin permeation pattern and the stability of the penetrant in the cutaneous environment. The most widely employed types of nanomaterials for dermal and transdermal applications include solid lipid nanoparticles, nanovesicular carriers, microemulsions, nanoemulsions, and polymeric nanoparticles. The recent advances in the area of nanomaterial-assisted dermal and transdermal delivery are highlighted in this review.
Collapse
|
17
|
Gendron A, Lan Linh Tran N, Laloy J, Brusini R, Rachet A, Gobeaux F, Nicolas V, Chaminade P, Abreu S, Desmaële D, Varna M. New Nanoparticle Formulation for Cyclosporin A: In Vitro Assessment. Pharmaceutics 2021; 13:pharmaceutics13010091. [PMID: 33445646 PMCID: PMC7828155 DOI: 10.3390/pharmaceutics13010091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/02/2023] Open
Abstract
Cyclosporin A (CsA) is a molecule with well-known immunosuppressive properties. As it also acts on the opening of mitochondrial permeability transition pore (mPTP), CsA has been evaluated for ischemic heart diseases (IHD). However, its distribution throughout the body and its physicochemical characteristics strongly limit the use of CsA for intravenous administration. In this context, nanoparticles (NPs) have emerged as an opportunity to circumvent the above-mentioned limitations. We have developed in our laboratory an innovative nanoformulation based on the covalent bond between squalene (Sq) and cyclosporin A to avoid burst release phenomena and increase drug loading. After a thorough characterization of the bioconjugate, we proceeded with a nanoprecipitation in aqueous medium in order to obtain SqCsA NPs of well-defined size. The SqCsA NPs were further characterized using dynamic light scattering (DLS), cryogenic transmission electron microscopy (cryoTEM), and high-performance liquid chromatography (HPLC), and their cytotoxicity was evaluated. As the goal is to employ them for IHD, we evaluated the cardioprotective capacity on two cardiac cell lines. A strong cardioprotective effect was observed on cardiomyoblasts subjected to experimental hypoxia/reoxygenation. Further research is needed in order to understand the mechanisms of action of SqCsA NPs in cells. This new formulation of CsA could pave the way for possible medical application.
Collapse
Affiliation(s)
- Amandine Gendron
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France; (A.G.); (N.L.L.T.); (R.B.); (A.R.); (D.D.)
| | - Natalie Lan Linh Tran
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France; (A.G.); (N.L.L.T.); (R.B.); (A.R.); (D.D.)
- Namur Nanosafety Centre, Department of Pharmacy, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium;
| | - Julie Laloy
- Namur Nanosafety Centre, Department of Pharmacy, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium;
| | - Romain Brusini
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France; (A.G.); (N.L.L.T.); (R.B.); (A.R.); (D.D.)
| | - Aurélie Rachet
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France; (A.G.); (N.L.L.T.); (R.B.); (A.R.); (D.D.)
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Frédéric Gobeaux
- CEA, CNRS, NIMBE, Université Paris-Saclay, CEA-Saclay, 91191 Gif sur Yvette, France;
| | - Valérie Nicolas
- Ingénierie et Plateformes au Service de l’Innovation (IPSIT), UMS IPSIT Université Paris-Saclay—US 31 INSERM—UMS 3679 CNRS, Plate-forme d’imagerie cellulaire MIPSIT, 92290 Châtenay-Malabry, France;
| | - Pierre Chaminade
- Lipides: Systèmes Analytiques et Biologiques, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (P.C.); (S.A.)
| | - Sonia Abreu
- Lipides: Systèmes Analytiques et Biologiques, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (P.C.); (S.A.)
| | - Didier Desmaële
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France; (A.G.); (N.L.L.T.); (R.B.); (A.R.); (D.D.)
| | - Mariana Varna
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France; (A.G.); (N.L.L.T.); (R.B.); (A.R.); (D.D.)
- Correspondence: ; Tel.: +33-0146835721
| |
Collapse
|
18
|
Ramos Campos EV, Proença PLDF, Doretto-Silva L, Andrade-Oliveira V, Fraceto LF, de Araujo DR. Trends in nanoformulations for atopic dermatitis treatment. Expert Opin Drug Deliv 2020; 17:1615-1630. [PMID: 32816566 DOI: 10.1080/17425247.2020.1813107] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Immunological skin dysfunctions trigger the synthesis and release of inflammatory cytokines, which induce recurrent skin inflammation associated with chronic itching, inefficient barrier behavior, and reduced skin hydration. These features characterize a multifactorial chronic inflammatory disease atopic dermatitis (AD). AD therapy includes anti-inflammatory drugs and immunosuppressors as well as non-pharmacological alternatives such as emollients, moisturizers, and lipids (ceramides, phospholipids) for modulating the skin hydration and the barrier repair. However, these treatments are inconvenient with low drug skin penetration and insufficient maintenance on the application site. AREAS COVERED Nanotechnology-based therapies can be a great strategy to overcome these limitations. Considering the particular skin morphological organization, SC lipid matrix composition, and immunological functions/features related to nanocarriers, this review focuses on recent developments of nanoparticulate systems (polymeric, lipid-based, inorganic) as parent or hybrid systems including their chemical composition, physico-chemical and biopharmaceutical properties, and differential characteristics that evaluate them as new effective drug-delivery systems for AD treatment. EXPERT OPINION Despite the several innovative formulations, research in nanotechnology-based carriers should address specific aspects such as the use of moisturizers associated to pharmacological therapies, toxicity studies, scale-up production processes and the nanocarrier influence on immunological response. These approaches will help researchers choose the most appropriate nanocarrier system and widen nanomedicine applications and commercialization.
Collapse
Affiliation(s)
| | - Patrícia Luiza De Freitas Proença
- Department of Environmental Engineering, São Paulo State University - UNESP, Institute of Science and Technology , Sorocaba, SP, Brazil
| | - Lorena Doretto-Silva
- Human and Natural Sciences Center, Federal University of ABC , Santo André, SP, Brazil
| | | | - Leonardo Fernandes Fraceto
- Department of Environmental Engineering, São Paulo State University - UNESP, Institute of Science and Technology , Sorocaba, SP, Brazil
| | | |
Collapse
|
19
|
Freeze-Dried Softisan ® 649-Based Lipid Nanoparticles for Enhanced Skin Delivery of Cyclosporine A. NANOMATERIALS 2020; 10:nano10050986. [PMID: 32455668 PMCID: PMC7279451 DOI: 10.3390/nano10050986] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022]
Abstract
Inflammatory skin diseases, including psoriasis and atopic dermatitis, affect around one quarter to one third of the world population. Systemic cyclosporine A, an immunosuppressant agent, is included in the current therapeutic armamentarium of these diseases. Despite being highly effective, it is associated with several side effects, and its topical administration is limited by its high molecular weight and poor water solubility. To overcome these limitations, cyclosporine A was incorporated into solid lipid nanoparticles obtained from Softisan® 649, a commonly used cosmetic ingredient, aiming to develop a vehicle for application to the skin. The nanoparticles presented sizes of around 200 nm, low polydispersity, negative surface charge, and stability when stored for 8 weeks at room temperature or 4 °C. An effective incorporation of 88% of cyclosporine A within the nanoparticles was observed, without affecting its morphology. After the freeze-drying process, the Softisan® 649-based nanoparticles formed an oleogel. Skin permeation studies using pig ear as a model revealed low permeation of the applied cyclosporine A in the freeze-dried form of the nanoparticles in relation to free drug and the freshly prepared nanoparticles. About 1.0 mg of cyclosporine A was delivered to the skin with reduced transdermal permeation. These results confirm local delivery of cyclosporine A, indicating its promising topical administration.
Collapse
|