1
|
Young J, Shariyate MJ, Misra P, Laiwala S, Nazarian A, Rodriguez EK. Assessment of Bacteriophage Pharmacokinetic Parameters After Intra-Articular Delivery in a Rat Prosthetic Joint Infection Model. Viruses 2024; 16:1800. [PMID: 39599913 PMCID: PMC11598970 DOI: 10.3390/v16111800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Prosthetic joint infections (PJIs) are a serious complication of orthopedic surgery. Bacteriophage (phage) therapy shows promise as an adjunctive treatment but requires further study, particularly in its pharmacokinetics. Consequently, we performed a pharmacokinetic assessment of phage therapy for PJIs using a Staphylococcus epidermidis Kirschner wire-based prosthesis rat model. We used 52 male Sprague-Dawley rats in four groups: negative controls (no phage, sterile implant), PJI controls (bacteria, no phage), sterile phage (phages given, sterile implant), and PJI (bacteria, phages given). The PJI groups were inoculated with ~106 CFU of S. epidermidis. The groups receiving phage were intra-articularly injected with ~108 PFU of vB_SepM_Alex five days post-implantation. The rats were euthanized between 30 min and 48 h post-injection. The measured phage concentrations between the PJI rats and the sterile controls in periarticular tissues were not significantly different. In a noncompartmental pharmacokinetic analysis, the estimated phage half-lives were under 6 h (combined: 3.73 [IQR, 1.45, 10.07]). The maximum phage concentrations were reached within 2 h after administration (combined: 0.75 [0.50, 1.75]). The estimated phage mean residence time was approximately three hours (combined: 3.04 [1.44, 4.19]). Our study provides a preliminary set of pharmacokinetic parameters that can inform future phage dosing studies and animal models of phage therapy for PJIs.
Collapse
Affiliation(s)
- Jason Young
- Harvard Combined Orthopedic Residency Program, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Mohammad Javad Shariyate
- Harvard Medical School, Boston, MA 02115, USA
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Prateek Misra
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Shubham Laiwala
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Ara Nazarian
- Harvard Medical School, Boston, MA 02115, USA
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
- Carl J. Shapiro Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Orthopedic Surgery, Yerevan State Medical University, Yerevan 0025, Armenia
| | - Edward Kenneth Rodriguez
- Harvard Medical School, Boston, MA 02115, USA
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Carl J. Shapiro Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
2
|
Villegas M, Bayat F, Kramer T, Schwarz E, Wilson D, Hosseinidoust Z, Didar TF. Emerging Strategies to Prevent Bacterial Infections on Titanium-Based Implants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404351. [PMID: 39161205 DOI: 10.1002/smll.202404351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Titanium and titanium alloys remain the gold standard for dental and orthopedic implants. These materials are heavily used because of their bioinert nature, robust mechanical properties, and seamless integration with bone. However, implant-associated infections (IAIs) remain one of the leading causes of implant failure. Eradicating an IAI can be difficult since bacteria can form biofilms on the medical implant, protecting the bacterial cells against systemic antibiotics and the host's immune system. If the infection is not treated promptly and aggressively, device failure is inevitable, leading to costly multi-step revision surgeries. To circumvent this dire situation, scientists and engineers continue to develop novel strategies to protect the surface of medical implants from bacteria. In this review, details on emerging strategies to prevent infection in titanium implants are reported. These strategies include anti-adhesion properties provided by polymers, superhydrophobic, superhydrophilic, and liquid-infused surface coatings, as well as strategies and coatings employed to lyse the bacteria. Additionally, commercially available technologies and those under preclinical trials are examined while discussing current and future trends.
Collapse
Affiliation(s)
- Martin Villegas
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Fereshteh Bayat
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Taylor Kramer
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Elise Schwarz
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - David Wilson
- Division of Orthopedic Surgery, Halifax Infirmary, Halifax, NS, B3H3A6, Canada
| | - Zeinab Hosseinidoust
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| |
Collapse
|
3
|
Mohan N, Bosco K, Peter A, Abhitha K, Bhat SG. Bacteriophage entrapment strategies for the treatment of chronic wound infections: a comprehensive review. Arch Microbiol 2024; 206:443. [PMID: 39443305 DOI: 10.1007/s00203-024-04168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
The growing threat of antimicrobial resistance has made the quest for antibiotic alternatives or synergists one of the most pressing priorities of the 21st century. The emergence of multidrug-resistance in most of the common wound pathogens has amplified the risk of antibiotic-resistant wound infections. Bacteriophages, with their self-replicating ability and targeted specificity, can act as suitable antibiotic alternatives. Nevertheless, targeted delivery of phages to infection sites remains a crucial issue, specifically in the case of topical infections. Hence, different phage delivery systems have been studied in recent years. However, there have been no recent reviews of phage delivery systems focusing exclusively on phage application on wounds. This review provides a compendium of all the major delivery systems that have been used to deliver phages to wound infection sites. Special focus has also been awarded to phage-embedded hydrogels with a discussion on the different aspects to be considered during their preparation.
Collapse
Affiliation(s)
- Nivedya Mohan
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
| | - Kiran Bosco
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Center for Infectious Diseases and Microbiology, Westmead, NSW, Australia
| | - Anmiya Peter
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
| | - K Abhitha
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
- Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kerala, 682022, India
| | - Sarita G Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India.
- Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kerala, 682022, India.
| |
Collapse
|
4
|
Decodts M, Cantallops-Vilà C, Hornez JC, Lacroix JM, Bouchart F. Phage-Loaded Biomimetic Apatite Powder With Antibiofilm Activity to Treat Bone-Associated Infections. J Biomed Mater Res A 2024. [PMID: 39376206 DOI: 10.1002/jbm.a.37808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
For decades, calcium phosphate (CaP)-based ceramics have been used for coating of bone and joint substitutes after arthroplasty due to their biocompatible properties. Infections following orthopedic replacement occur in 1%-5% of cases, causing serious complications. Biofilm formation either on the biomaterial's surface or on patient's tissues greatly enhances the resistance against antibiotic treatments and can induce a chronic infection, emphasizing the need for novel antimicrobial delivery systems. In this study, we established a protocol enabling bacteriophage loading during the synthesis of a CaP-based powder. The resulting biomaterial proved to be noncytotoxic against human osteoblastic cells and able to significantly inhibit 24-h matured S. aureus biofilm cultures or even completely eradicate it after 5 days of contact. Additional S. aureus biofilm assays with a freeze-dried material using two different excipients showed that sucrose had a protective role against Remus bacteriophage treatment of S. aureus biofilms, whereas lactose-freeze-dried powder maintained the antibiofilm activity.
Collapse
Affiliation(s)
- Maxime Decodts
- INSA Hauts-de-France, CERAMATHS-Laboratoire de Matériaux Céramiques et de Mathématiques, Univ. Polytechnique Hauts-de-France, Valenciennes, France
| | - Cristina Cantallops-Vilà
- INSA Hauts-de-France, CERAMATHS-Laboratoire de Matériaux Céramiques et de Mathématiques, Univ. Polytechnique Hauts-de-France, Valenciennes, France
| | - Jean-Christophe Hornez
- INSA Hauts-de-France, CERAMATHS-Laboratoire de Matériaux Céramiques et de Mathématiques, Univ. Polytechnique Hauts-de-France, Valenciennes, France
| | - Jean-Marie Lacroix
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, Lille, France
| | - Franck Bouchart
- INSA Hauts-de-France, CERAMATHS-Laboratoire de Matériaux Céramiques et de Mathématiques, Univ. Polytechnique Hauts-de-France, Valenciennes, France
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, Lille, France
| |
Collapse
|
5
|
Mayorga-Ramos A, Carrera-Pacheco SE, Barba-Ostria C, Guamán LP. Bacteriophage-mediated approaches for biofilm control. Front Cell Infect Microbiol 2024; 14:1428637. [PMID: 39435185 PMCID: PMC11491440 DOI: 10.3389/fcimb.2024.1428637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 10/23/2024] Open
Abstract
Biofilms are complex microbial communities in which planktonic and dormant bacteria are enveloped in extracellular polymeric substances (EPS) such as exopolysaccharides, proteins, lipids, and DNA. These multicellular structures present resistance to conventional antimicrobial treatments, including antibiotics. The formation of biofilms raises considerable concern in healthcare settings, biofilms can exacerbate infections in patients and compromise the integrity of medical devices employed during treatment. Similarly, certain bacterial species contribute to bulking, foaming, and biofilm development in water environments such as wastewater treatment plants, water reservoirs, and aquaculture facilities. Additionally, food production facilities provide ideal conditions for establishing bacterial biofilms, which can serve as reservoirs for foodborne pathogens. Efforts to combat antibiotic resistance involve exploring various strategies, including bacteriophage therapy. Research has been conducted on the effects of phages and their individual proteins to assess their potential for biofilm removal. However, challenges persist, prompting the examination of refined approaches such as drug-phage combination therapies, phage cocktails, and genetically modified phages for clinical applications. This review aims to highlight the progress regarding bacteriophage-based approaches for biofilm eradication in different settings.
Collapse
Affiliation(s)
- Arianna Mayorga-Ramos
- Universidad UTE, Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Quito, Ecuador
| | - Saskya E. Carrera-Pacheco
- Universidad UTE, Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Quito, Ecuador
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Linda P. Guamán
- Universidad UTE, Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Quito, Ecuador
| |
Collapse
|
6
|
Cui L, Watanabe S, Miyanaga K, Kiga K, Sasahara T, Aiba Y, Tan XE, Veeranarayanan S, Thitiananpakorn K, Nguyen HM, Wannigama DL. A Comprehensive Review on Phage Therapy and Phage-Based Drug Development. Antibiotics (Basel) 2024; 13:870. [PMID: 39335043 PMCID: PMC11428490 DOI: 10.3390/antibiotics13090870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Phage therapy, the use of bacteriophages (phages) to treat bacterial infections, is regaining momentum as a promising weapon against the rising threat of multidrug-resistant (MDR) bacteria. This comprehensive review explores the historical context, the modern resurgence of phage therapy, and phage-facilitated advancements in medical and technological fields. It details the mechanisms of action and applications of phages in treating MDR bacterial infections, particularly those associated with biofilms and intracellular pathogens. The review further highlights innovative uses of phages in vaccine development, cancer therapy, and as gene delivery vectors. Despite its targeted and efficient approach, phage therapy faces challenges related to phage stability, immune response, and regulatory approval. By examining these areas in detail, this review underscores the immense potential and remaining hurdles in integrating phage-based therapies into modern medical practices.
Collapse
Affiliation(s)
- Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kazuhiko Miyanaga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kotaro Kiga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Teppei Sasahara
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Yoshifumi Aiba
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Srivani Veeranarayanan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kanate Thitiananpakorn
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Huong Minh Nguyen
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan
| |
Collapse
|
7
|
Lin YH, Dharmaraj T, Chen Q, Echterhof A, Manasherob R, Zhang LJ, de Leeuw C, Peterson NA, Stannard W, Li Z, Hajfathalian M, Hargil A, Martinez HA, Pourtois J, Chang THW, Blankenberg FG, Amanatullah D, Chaudhuri O, Bollyky PL. Optimized Dosing and Delivery of Bacteriophage Therapy for Wound Infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.593005. [PMID: 38766200 PMCID: PMC11100690 DOI: 10.1101/2024.05.07.593005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Lytic bacteriophages, viruses that lyse (kill) bacteria, hold great promise for treating infections, including wound infections caused by antimicrobial-resistant Pseudomonas aeruginosa. However, the optimal dosing and delivery strategies for phage therapy remain unclear. In a mouse wound infection model, we investigated the impact of dose, frequency, and administration route on the efficacy of phage therapy. We find that topical but not intravenous delivery is effective in this model. High-doses of phage reduces bacterial burden more effectively than low-doses, and repeated dosing achieves the highest eradication rates. Building on these insights, we developed "HydroPhage", a hyaluronan-based hydrogel system that uses dynamic covalent crosslinking to deliver high-titre phages over one week. HydroPhage eradicates infections five times more effectively than intravenous injection. We conclude that hydrogel-based sustained phage delivery enhances the efficacy of phage therapy and offers a practical, well-tolerated option for topical application.
Collapse
Affiliation(s)
- Yung-Hao Lin
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Tejas Dharmaraj
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Arne Echterhof
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
- Institute of Medical Microbiology, University Hospital of Muenster, Muenster, Germany
| | - Robert Manasherob
- Department of Orthopaedic Surgery, Stanford Hospital and Clinics, Redwood City, CA, USA
| | - Lucy J. Zhang
- Department of Material Science and Engineering, Stanford University, Stanford, CA, USA
| | - Cas de Leeuw
- Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
| | - Nana A. Peterson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Whitney Stannard
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Zhiwei Li
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Maryam Hajfathalian
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ
| | - Aviv Hargil
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Hunter A. Martinez
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Julie Pourtois
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Tony H. W. Chang
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Francis G. Blankenberg
- Division of Pediatric Radiology and Nuclear Medicine, Department of Radiology, Lucile Packard Children’s Hospital, Stanford, CA, USA
| | - Derek Amanatullah
- Department of Orthopaedic Surgery, Stanford Hospital and Clinics, Redwood City, CA, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
8
|
Alipour-Khezri E, Skurnik M, Zarrini G. Pseudomonas aeruginosa Bacteriophages and Their Clinical Applications. Viruses 2024; 16:1051. [PMID: 39066214 PMCID: PMC11281547 DOI: 10.3390/v16071051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance poses a serious risk to contemporary healthcare since it reduces the number of bacterial illnesses that may be treated with antibiotics, particularly for patients with long-term conditions like cystic fibrosis (CF). People with a genetic predisposition to CF often have recurrent bacterial infections in their lungs due to a buildup of sticky mucus, necessitating long-term antibiotic treatment. Pseudomonas aeruginosa infections are a major cause of CF lung illness, and P. aeruginosa airway isolates are frequently resistant to many antibiotics. Bacteriophages (also known as phages), viruses that infect bacteria, are a viable substitute for antimicrobials to treat P. aeruginosa infections in individuals with CF. Here, we reviewed the utilization of P. aeruginosa bacteriophages both in vivo and in vitro, as well as in the treatment of illnesses and diseases, and the outcomes of the latter.
Collapse
Affiliation(s)
- Elaheh Alipour-Khezri
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51368, Iran;
| | - Mikael Skurnik
- Human Microbiome Research Program, and Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Gholamreza Zarrini
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51368, Iran;
- Microbial Biotechnology Research Group, University of Tabriz, Tabriz 51368, Iran
| |
Collapse
|
9
|
Khazani Asforooshani M, Elikaei A, Abed S, Shafiei M, Barzi SM, Solgi H, Badmasti F, Sohrabi A. A novel Enterococcus faecium phage EF-M80: unveiling the effects of hydrogel-encapsulated phage on wound infection healing. Front Microbiol 2024; 15:1416971. [PMID: 39006751 PMCID: PMC11239553 DOI: 10.3389/fmicb.2024.1416971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
Background Enterococcus faecium is one of the members of ESKAPE pathogens. Due to its resistance to antimicrobial agents, treating this bacterium has become challenging. The development of innovative approaches to combat antibiotic resistance is necessary. Phage therapy has emerged as a promising method for curing antibiotic-resistant bacteria. Methods In this study, E. faecium phages were isolated from wastewater. Phage properties were characterized through in vitro assays (e.g. morphological studies, and physicochemical properties). In addition, whole genome sequencing was performed. A hydrogel-based encapsulated phage was obtained and its structure characteristics were evaluated. Wound healing activity of the hydrogel-based phage was assessed in a wound mice model. Results The purified phage showed remarkable properties including broad host range, tolerance to high temperature and pH and biofilm degradation feature as a stable and reliable therapeutic agent. Whole genome sequencing revealed that the genome of the EF-M80 phage had a length of 40,434 bp and harbored 65 open reading frames (ORFs) with a GC content of 34.9% (GenBank accession number is OR767211). Hydrogel-based encapsulated phage represented an optimized structure. Phage-loaded hydrogel-treated mice showed that the counting of neutrophils, fibroblasts, blood vessels, hair follicles and percentage of collagen growth were in favor of the wound healing process in the mice model. Conclusion These findings collectively suggest the promising capability of this phage-based therapeutic strategy for the treatment of infections associated with the antibiotic-resistant E. faecium. In the near future, we hope to expect the presence of bacteriophages in the list of antibacterial compounds used in the clinical settings.
Collapse
Affiliation(s)
- Mahshid Khazani Asforooshani
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Ameneh Elikaei
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Sahar Abed
- Department of Microbial Biotechnology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Hamid Solgi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Aria Sohrabi
- Department of Epidemiology and Biostatistics, Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Kim SM, Heo HR, Kim CS, Shin HH. Genetically engineered bacteriophages as novel nanomaterials: applications beyond antimicrobial agents. Front Bioeng Biotechnol 2024; 12:1319830. [PMID: 38725991 PMCID: PMC11079243 DOI: 10.3389/fbioe.2024.1319830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Bacteriophages, also known as phages, are viruses that replicate in bacteria and archaea. Phages were initially discovered as antimicrobial agents, and they have been used as therapeutic agents for bacterial infection in a process known as "phage therapy." Recently, phages have been investigated as functional nanomaterials in a variety of areas, as they can function not only as therapeutic agents but also as biosensors and tissue regenerative materials. Phages are nontoxic to humans, and they possess self-assembled nanostructures and functional properties. Additionally, phages can be easily genetically modified to display specific peptides or to screen for functional peptides via phage display. Here, we demonstrated the application of phage nanomaterials in the context of tissue engineering, sensing, and probing.
Collapse
Affiliation(s)
- Seong-Min Kim
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Hye Ryoung Heo
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Chang Sup Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Hwa Hui Shin
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| |
Collapse
|
11
|
Samson R, Dharne M, Khairnar K. Bacteriophages: Status quo and emerging trends toward one health approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168461. [PMID: 37967634 DOI: 10.1016/j.scitotenv.2023.168461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
The alarming rise in antimicrobial resistance (AMR) among the drug-resistant pathogens has been attributed to the ESKAPEE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, Enterobacter sp., and Escherichia coli). Recently, these AMR microbes have become difficult to treat, as they have rendered the existing therapeutics ineffective. Thus, there is an urgent need for effective alternatives to lessen or eliminate the current infections and limit the spread of emerging diseases under the "One Health" framework. Bacteriophages (phages) are naturally occurring biological resources with extraordinary potential for biomedical, agriculture/food safety, environmental protection, and energy production. Specific unique properties of phages, such as their bactericidal activity, host specificity, potency, and biocompatibility, make them desirable candidates in therapeutics. The recent biotechnological advancement has broadened the repertoire of phage applications in nanoscience, material science, physical chemistry, and soft-matter research. Herein, we present a comprehensive review, coupling the substantial aspects of phages with their applicability status and emerging opportunities in several interdependent areas under one health concept. Consolidating the recent state-of-the-art studies that integrate human, animal, plant, and environment health, the following points have been highlighted: (i) The biomedical and pharmacological advantages of phages and their antimicrobial derivatives with particular emphasis on in-vivo and clinical studies. (ii) The remarkable potential of phages to be altered, improved, and applied for drug delivery, biosensors, biomedical imaging, tissue engineering, energy, and catalysis. (iii) Resurgence of phages in biocontrol of plant, food, and animal-borne pathogens. (iv) Commercialization of phage-based products, current challenges, and perspectives.
Collapse
Affiliation(s)
- Rachel Samson
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mahesh Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Krishna Khairnar
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Environmental Virology Cell (EVC), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India.
| |
Collapse
|
12
|
Malik DJ, Goncalves-Ribeiro H, GoldSchmitt D, Collin J, Belkhiri A, Fernandes D, Weichert H, Kirpichnikova A. Advanced Manufacturing, Formulation and Microencapsulation of Therapeutic Phages. Clin Infect Dis 2023; 77:S370-S383. [PMID: 37932112 DOI: 10.1093/cid/ciad555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Manufacturing and formulation of stable, high purity, and high dose bacteriophage drug products (DPs) suitable for clinical usage would benefit from improved process monitoring and control of critical process parameters that affect product quality attributes. Chemistry, Manufacturing, and Controls (CMC) for both upstream (USP) and downstream processes (DSP) need mapping of critical process parameters (CPP) and linking these to critical quality attributes (CQA) to ensure quality and consistency of phage drug substance (DS) and DPs development. Single-use technologies are increasingly becoming the go-to manufacturing option with benefits both for phage bioprocess development at the engineering run research stage and for final manufacture of the phage DS. Future phage DPs under clinical development will benefit from implementation of process analytical technologies (PAT) for better process monitoring and control. These are increasingly being used to improve process robustness (to reduce batch-to-batch variability) and productivity (yielding high phage titers). Precise delivery of stable phage DPs that are suitably formulated as liquids, gels, solid-oral dosage forms, and so forth, could significantly enhance efficacy of phage therapy outcomes. Pre-clinical development of phage DPs must include at an early stage of development, considerations for their formulation including their characterization of physiochemical properties (size, charge, etc.), buffer pH and osmolality, compatibility with regulatory approved excipients, storage stability (packaging, temperature, humidity, etc.), ease of application, patient compliance, ease of manufacturability using scalable manufacturing unit operations, cost, and regulatory requirements.
Collapse
Affiliation(s)
- Danish J Malik
- Chemical Engineering Department, Loughborough University, Loughborough, United Kingdom
| | | | - Dirk GoldSchmitt
- Division of Computing Science and Mathematics, University of Stirling, Stirling, United Kingdom
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| | - Joe Collin
- Chemical Engineering Department, Loughborough University, Loughborough, United Kingdom
| | - Aouatif Belkhiri
- Chemical Engineering Department, Loughborough University, Loughborough, United Kingdom
| | - Diogo Fernandes
- Nanomaterials Characterisation, Malvern Panalytical, Malvern, United Kingdom
| | - Henry Weichert
- Process Analytical Technology, Sartorius Stedim Biotech GmbH, Germany
| | - Anya Kirpichnikova
- Division of Computing Science and Mathematics, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
13
|
Mariano LC, Grenho L, Fernandes MH, de Sousa Gomes P. Integrative tissue, cellular and molecular responsiveness of an innovative ex vivo model of the Staphylococcus aureus-mediated bone infection. FASEB J 2023; 37:e23166. [PMID: 37650876 DOI: 10.1096/fj.202300287rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/21/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Osteomyelitis is a pathological condition of the bone, frequently associated with the presence of infectious agents - namely Staphylococcus aureus - that induce inflammation and tissue destruction. Recent advances in the understanding of its pathophysiology and the identification of innovative therapeutic approaches were gathered from experimental in vitro and in vivo systems. However, cell culture models offer limited representativeness of the cellular functionality and the cell-cell and cell-matrix interactions, further failing to mimic the three-dimensional tissue organization; and animal models allow for limited mechanistic assessment given the complex nature of systemic and paracrine regulatory systems and are endorsed with ethical constraints. Accordingly, this study aims at the establishment and assessment of a new ex vivo bone infection model, upon the organotypic culture of embryonic chicken femurs colonized with S. aureus, highlighting the model responsiveness at the molecular, cellular, and tissue levels. Upon infection with distinct bacterial inoculums, data reported an initial exponential bacterial growth, followed by diminished metabolic activity. At the tissue level, evidence of S. aureus-mediated tissue destruction was attained and demonstrated through distinct methodologies, conjoined with decreased osteoblastic/osteogenic and increased osteoclastic/osteoclastogenic functionalities-representative of the osteomyelitis clinical course. Overall, the establishment and characterization of an innovative bone tissue infection model that is simple, reproducible, easily manipulated, cost-effective, and simulates many features of human osteomyelitis, further allowing the maintenance of the bone tissue's three-dimensional morphology and cellular arrangement, was achieved. Model responsiveness was further demonstrated, showcasing the capability to improve the research pipeline in bone tissue infection-related research.
Collapse
Affiliation(s)
- Lorena Castro Mariano
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Liliana Grenho
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Maria Helena Fernandes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Pedro de Sousa Gomes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
| |
Collapse
|
14
|
Choi V, Rohn JL, Stoodley P, Carugo D, Stride E. Drug delivery strategies for antibiofilm therapy. Nat Rev Microbiol 2023; 21:555-572. [PMID: 37258686 DOI: 10.1038/s41579-023-00905-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/02/2023]
Abstract
Although new antibiofilm agents have been developed to prevent and eliminate pathogenic biofilms, their widespread clinical use is hindered by poor biocompatibility and bioavailability, unspecific interactions and insufficient local concentrations. The development of innovative drug delivery strategies can facilitate penetration of antimicrobials through biofilms, promote drug dispersal and synergistic bactericidal effects, and provide novel paradigms for clinical application. In this Review, we discuss the potential benefits of such emerging techniques for improving the clinical efficacy of antibiofilm agents, as well as highlighting the existing limitations and future prospects for these therapies in the clinic.
Collapse
Affiliation(s)
- Victor Choi
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Jennifer L Rohn
- Department of Renal Medicine, Centre for Urological Biology, Division of Medicine, University College London, London, UK
| | - Paul Stoodley
- Departments of Microbial Infection and Immunity, Microbiology and Orthopaedics, The Ohio State University, Columbus, OH, USA
- Department of Mechanical Engineering, National Centre for Advanced Tribology at Southampton (nCATS) and National Biofilm Innovation Centre (NBIC), University of Southampton, Southampton, UK
| | - Dario Carugo
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Eleanor Stride
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK.
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
15
|
Raghav N, Vashisth C, Mor N, Arya P, Sharma MR, Kaur R, Bhatti SP, Kennedy JF. Recent advances in cellulose, pectin, carrageenan and alginate-based oral drug delivery systems. Int J Biol Macromol 2023:125357. [PMID: 37327920 DOI: 10.1016/j.ijbiomac.2023.125357] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
Polymers-based drug delivery systems constitute one of the highly explored thrust areas in the field of the medicinal and pharmaceutical industries. In the past years, the properties of polymers have been modified in context to their solubility, release kinetics, targeted action site, absorption, and therapeutic efficacy. Despite the availability of diverse synthetic polymers for the bioavailability enhancement of drugs, the use of natural polymers is still highly recommended due to their easy availability, accessibility, and non-toxicity. The aim of the review is to provide the available literature of the last five years on oral drug delivery systems based on four natural polymers i.e., cellulose, pectin, carrageenan, and alginate in a concise and tabulated manner. In this review, most of the information is in tabulated form to provide easy accessibility to the reader. The data related to active pharmaceutical ingredients and supported components in different formulations of the mentioned polymers have been made available.
Collapse
Affiliation(s)
- Neera Raghav
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India.
| | - Chanchal Vashisth
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Nitika Mor
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Priyanka Arya
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Manishita R Sharma
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Ravinder Kaur
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | | | - John F Kennedy
- Chembiotech laboratories Ltd, Tenbury Wells, WR15 8FF, United Kingdom.
| |
Collapse
|
16
|
Chen H, Feng R, Xia T, Wen Z, Li Q, Qiu X, Huang B, Li Y. Progress in Surface Modification of Titanium Implants by Hydrogel Coatings. Gels 2023; 9:gels9050423. [PMID: 37233014 DOI: 10.3390/gels9050423] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Although titanium and titanium alloys have become the preferred materials for various medical implants, surface modification technology still needs to be strengthened in order to adapt to the complex physiological environment of the human body. Compared with physical or chemical modification methods, biochemical modification, such as the introduction of functional hydrogel coating on implants, can fix biomolecules such as proteins, peptides, growth factors, polysaccharides, or nucleotides on the surface of the implants, so that they can directly participate in biological processes; regulate cell adhesion, proliferation, migration, and differentiation; and improve the biological activity on the surface of the implants. This review begins with a look at common substrate materials for hydrogel coatings on implant surfaces, including natural polymers such as collagen, gelatin, chitosan, and alginate, and synthetic materials such as polyvinyl alcohol, polyacrylamide, polyethylene glycol, and polyacrylic acid. Then, the common construction methods of hydrogel coating (electrochemical method, sol-gel method and layer-by-layer self-assembly method) are introduced. Finally, five aspects of the enhancement effect of hydrogel coating on the surface bioactivity of titanium and titanium alloy implants are described: osseointegration, angiogenesis, macrophage polarization, antibacterial effects, and drug delivery. In this paper, we also summarize the latest research progress and point out the future research direction. After searching, no previous relevant literature reporting this information was found.
Collapse
Affiliation(s)
- Huangqin Chen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Rui Feng
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Tian Xia
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhehan Wen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Qing Li
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xin Qiu
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Bin Huang
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
17
|
Shafigh Kheljan F, Sheikhzadeh Hesari F, Aminifazl MS, Skurnik M, Goladze S, Zarrini G. Design of Phage-Cocktail-Containing Hydrogel for the Treatment of Pseudomonas aeruginosa-Infected Wounds. Viruses 2023; 15:803. [PMID: 36992511 PMCID: PMC10051971 DOI: 10.3390/v15030803] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Recently, the treatment of infected wounds has become a global problem due to increased antibiotic resistance in bacteria. The Gram-negative opportunistic pathogen Pseudomonas aeruginosa is often present in chronic skin infections, and it has become a threat to public health as it is increasingly multidrug resistant. Due to this, new measures to enable treatment of infections are necessary. Treatment of bacterial infections with bacteriophages, known as phage therapy, has been in use for a century, and has potential with its antimicrobial effect. The main purpose of this study was to create a phage-containing wound dressing with the ability to prevent bacterial infection and rapid wound healing without side effects. Several phages against P. aeruginosa were isolated from wastewater, and two polyvalent phages were used to prepare a phage cocktail. The phage cocktail was loaded in a hydrogel composed of polymers of sodium alginate (SA) and carboxymethyl cellulose (CMC). To compare the antimicrobial effects, hydrogels containing phages, ciprofloxacin, or phages plus ciprofloxacin were produced, and hydrogels without either. The antimicrobial effect of these hydrogels was investigated in vitro and in vivo using an experimental mouse wound infection model. The wound-healing process in different mouse groups showed that phage-containing hydrogels and antibiotic-containing hydrogels have almost the same antimicrobial effect. However, in terms of wound healing and pathological process, the phage-containing hydrogels performed better than the antibiotic alone. The best performance was achieved with the phage-antibiotic hydrogel, indicating a synergistic effect between the phage cocktail and the antibiotic. In conclusion, phage-containing hydrogels eliminate efficiently P. aeruginosa in wounds and may be a proper option for treating infectious wounds.
Collapse
Affiliation(s)
- Fatemeh Shafigh Kheljan
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (F.S.K.); (F.S.H.)
| | - Farzam Sheikhzadeh Hesari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (F.S.K.); (F.S.H.)
| | - Mohammad Sadegh Aminifazl
- Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran;
| | - Mikael Skurnik
- Human Microbiome Research Program, Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00014 HUS Helsinki, Finland; (M.S.); (S.G.)
| | - Sophia Goladze
- Human Microbiome Research Program, Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00014 HUS Helsinki, Finland; (M.S.); (S.G.)
| | - Gholamreza Zarrini
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (F.S.K.); (F.S.H.)
| |
Collapse
|
18
|
Putri AP, Bose RK, Chalid M, Picchioni F. Rheological and Self-Healing Behavior of Hydrogels Synthesized from l-Lysine-Functionalized Alginate Dialdehyde. Polymers (Basel) 2023; 15:polym15041010. [PMID: 36850295 PMCID: PMC9959054 DOI: 10.3390/polym15041010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
Alginate dialdehyde and l-lysine-functionalized alginate dialdehyde were prepared to provide active aldehyde and l-lysine sites along the alginate backbone, respectively. Different concentrations of substrates and the reduction agent were added, and their influence on the degree of l-lysine substitution was evaluated. An amination reduction reaction (with l-lysine) was conducted on alginate dialdehyde with a 31% degree of oxidation. The NMR confirmed the presence of l-lysine functionality with the degree of substitution of 20%. The structural change of the polymer was observed via FTIR spectroscopy, confirming the formation of Schiff base covalent linkage after the crosslinking. The additional l-lysine sites on functionalized alginate dialdehyde provide more crosslinking sites on the hydrogel, which leads to a higher modulus storage rate than in the original alginate dialdehyde. This results in dynamic covalent bonds, which are attributed to the alginate derivative-gelatin hydrogels with shear-thinning and self-healing properties. The results suggested that the concentration and stoichiometric ratio of alginate dialdehyde, l-lysine-functionalized alginate dialdehyde, and gelatin play a fundamental role in the hydrogel's mechanical properties.
Collapse
Affiliation(s)
- Arlina Prima Putri
- Department of Chemical Engineering—Product Technology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Metallurgical and Material Engineering Department, Universitas Indonesia, Depok 16424, Indonesia
| | - Ranjita K. Bose
- Department of Chemical Engineering—Product Technology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Mochamad Chalid
- Metallurgical and Material Engineering Department, Universitas Indonesia, Depok 16424, Indonesia
| | - Francesco Picchioni
- Department of Chemical Engineering—Product Technology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Correspondence:
| |
Collapse
|
19
|
Li J, Sudiwala S, Berthoin L, Mohabbat S, Gaylord EA, Sinada H, Cruz Pacheco N, Chang JC, Jeon O, Lombaert IM, May AJ, Alsberg E, Bahney CS, Knox SM. Long-term functional regeneration of radiation-damaged salivary glands through delivery of a neurogenic hydrogel. SCIENCE ADVANCES 2022; 8:eadc8753. [PMID: 36542703 PMCID: PMC9770982 DOI: 10.1126/sciadv.adc8753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/05/2022] [Indexed: 05/11/2023]
Abstract
Salivary gland acinar cells are severely depleted after radiotherapy for head and neck cancer, leading to loss of saliva and extensive oro-digestive complications. With no regenerative therapies available, organ dysfunction is irreversible. Here, using the adult murine system, we demonstrate that radiation-damaged salivary glands can be functionally regenerated via sustained delivery of the neurogenic muscarinic receptor agonist cevimeline. We show that endogenous gland repair coincides with increased nerve activity and acinar cell division that is limited to the first week after radiation, with extensive acinar cell degeneration, dysfunction, and cholinergic denervation occurring thereafter. However, we found that mimicking cholinergic muscarinic input via sustained local delivery of a cevimeline-alginate hydrogel was sufficient to regenerate innervated acini and retain physiological saliva secretion at nonirradiated levels over the long term (>3 months). Thus, we reveal a previously unknown regenerative approach for restoring epithelial organ structure and function that has extensive implications for human patients.
Collapse
Affiliation(s)
- Jianlong Li
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Sonia Sudiwala
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Lionel Berthoin
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Seayar Mohabbat
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Eliza A. Gaylord
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Hanan Sinada
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Noel Cruz Pacheco
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Jiun Chiun Chang
- Orthopedic Trauma Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Oju Jeon
- Department of Biomedical Engineering, University of Illinois, Chicago, Chicago, IL, USA
| | - Isabelle M.A. Lombaert
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Alison J. May
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, University of Illinois, Chicago, Chicago, IL, USA
- Departments of Orthopedics, Pharmacology and Regenerative Medicine, and Mechanical and Industrial Engineering, University of Illinois, Chicago, Chicago, IL, USA
| | - Chelsea S. Bahney
- Orthopedic Trauma Institute, University of California, San Francisco, San Francisco, CA, USA
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| | - Sarah M. Knox
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
20
|
Stipniece L, Rezevska D, Kroica J, Racenis K. Effect of the Biopolymer Carrier on Staphylococcus aureus Bacteriophage Lytic Activity. Biomolecules 2022; 12:1875. [PMID: 36551303 PMCID: PMC9775117 DOI: 10.3390/biom12121875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
The use of implant materials is always associated with the risk of infection. Moreover, the effectiveness of antibiotics is reduced due to antibiotic-resistant pathogens. Thus, selecting the appropriate alternative antimicrobials for local delivery systems is correlated with successful infection management. We evaluated immobilization of the S. aureus specific bacteriophages in clinically recognized biopolymers, i.e., chitosan and alginate, to control the release profile of the antimicrobials. The high-titre S. aureus specific bacteriophages were prepared from commercial bacteriophage cocktails. The polymer mixtures with the propagated bacteriophages were then prepared. The stability of the S. aureus bacteriophages in the biopolymer solutions was assessed. In the case of chitosan, no plaques indicating the presence of the lytic bacteriophages were observed. The titre reduction of the S. aureus bacteriophages in the Na-alginate was below 1 log unit. Furthermore, the bacteriophages retained their lytic activity in the alginate after crosslinking with Ca2+ ions. The release of the lytic S. aureus bacteriophages from the Ca-alginate matrices in the TRIS-HCl buffer solution (pH 7.4 ± 0.2) was determined. After 72 h-0.292 ± 0.021% of bacteriophages from the Ca-alginate matrices were released. Thus, sustained release of the lytic S. aureus bacteriophages can be ensured.
Collapse
Affiliation(s)
- Liga Stipniece
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre, Riga Technical University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1048 Riga, Latvia
| | - Dace Rezevska
- Department of Biology and Microbiology, Riga Stradins University, LV-1048 Riga, Latvia
- Joint Laboratory, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
| | - Juta Kroica
- Department of Biology and Microbiology, Riga Stradins University, LV-1048 Riga, Latvia
| | - Karlis Racenis
- Department of Biology and Microbiology, Riga Stradins University, LV-1048 Riga, Latvia
- Centre of Nephrology, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
| |
Collapse
|
21
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for drug delivery and wound management: a review. Expert Opin Drug Deliv 2022; 19:1664-1695. [PMID: 36440488 DOI: 10.1080/17425247.2022.2152791] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Polysaccharide-based hydrogels (PBHs) offer several advantages over their synthetic counterparts. Their natural origin contributes to their nontoxicity, high biocompatibility, and in vivo biodegradability. Their properties can be tuned finely to obtain hydrogels with desired mechanical, structural, and chemical properties. AREAS COVERED Such versatile characteristics have potentiated the use of PBHs for the delivery of drugs, vaccines, protein and peptide therapeutics, genes, cells, probiotics, bacteriophages, and other therapeutic agents. Recent advances in hydrogel-based formulations such as nanogels, microgels, microneedles, hydrogel beads, nanocarrier-loaded hydrogels, and complexation hydrogels have enabled the precise delivery of a wide range of therapeutics. This review aims to give a holistic overview of hydrogels in the delivery of a variety of therapeutics through different routes. EXPERT OPINION PBHs have been used to enable the oral delivery of vaccines and other biologicals, thereby allowing self-administration of life-saving vaccines during public health emergencies. There is a lack of commercialized wound dressings for the treatment of chronic wounds. PBH-based wound dressings, especially those based on chitosan and loaded with actives and growth factors, have the potential to help in the long-term treatment of such wounds. Recent developments in the 3D printing of hydrogels can enable the quick and large-scale production of drug-loaded hydrogels.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai School of Pharmacy and Technology Management, Mumbai, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Vinita Kale
- Department of Pharmaceutics, Guru Nanak College of Pharmacy, Nagpur, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| |
Collapse
|
22
|
Bioengineering Approaches to Fight against Orthopedic Biomaterials Related-Infections. Int J Mol Sci 2022; 23:ijms231911658. [PMID: 36232956 PMCID: PMC9569980 DOI: 10.3390/ijms231911658] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
One of the most serious complications following the implantation of orthopedic biomaterials is the development of infection. Orthopedic implant-related infections do not only entail clinical problems and patient suffering, but also cause a burden on healthcare care systems. Additionally, the ageing of the world population, in particular in developed countries, has led to an increase in the population above 60 years. This is a significantly vulnerable population segment insofar as biomaterials use is concerned. Implanted materials are highly susceptible to bacterial and fungal colonization and the consequent infection. These microorganisms are often opportunistic, taking advantage of the weakening of the body defenses at the implant surface–tissue interface to attach to tissues or implant surfaces, instigating biofilm formation and subsequent development of infection. The establishment of biofilm leads to tissue destruction, systemic dissemination of the pathogen, and dysfunction of the implant/bone joint, leading to implant failure. Moreover, the contaminated implant can be a reservoir for infection of the surrounding tissue where microorganisms are protected. Therefore, the biofilm increases the pathogenesis of infection since that structure offers protection against host defenses and antimicrobial therapies. Additionally, the rapid emergence of bacterial strains resistant to antibiotics prompted the development of new alternative approaches to prevent and control implant-related infections. Several concepts and approaches have been developed to obtain biomaterials endowed with anti-infective properties. In this review, several anti-infective strategies based on biomaterial engineering are described and discussed in terms of design and fabrication, mechanisms of action, benefits, and drawbacks for preventing and treating orthopaedic biomaterials-related infections.
Collapse
|
23
|
Dardouri M, Bettencourt A, Martin V, Carvalho FA, Colaço B, Gama A, Ramstedt M, Santos NC, Fernandes MH, Gomes PS, Ribeiro IAC. Assuring the Biofunctionalization of Silicone Covalently Bonded to Rhamnolipids: Antibiofilm Activity and Biocompatibility. Pharmaceutics 2022; 14:pharmaceutics14091836. [PMID: 36145584 PMCID: PMC9501004 DOI: 10.3390/pharmaceutics14091836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 12/05/2022] Open
Abstract
Silicone-based medical devices composed of polydimethylsiloxane (PDMS) are widely used all over the human body (e.g., urinary stents and catheters, central venous catheters stents) with extreme clinical success. Nevertheless, their abiotic surfaces, being prone to microorganism colonization, are often involved in infection occurrence. Improving PDMS antimicrobial properties by surface functionalization with biosurfactants to prevent related infections has been the goal of different works, but studies that mimic the clinical use of these novel surfaces are missing. This work aims at the biofunctional assessment of PDMS functionalized with rhamnolipids (RLs), using translational tests that more closely mimic the clinical microenvironment. Rhamnolipids were covalently bonded to PDMS, and the obtained surfaces were characterized by contact angle modification assessment, ATR-FTIR analysis and atomic force microscopy imaging. Moreover, a parallel flow chamber was used to assess the Staphylococcus aureus antibiofilm activity of the obtained surfaces under dynamic conditions, and an in vitro characterization with human dermal fibroblast cells in both direct and indirect characterization assays, along with an in vivo subcutaneous implantation assay in the translational rabbit model, was performed. A 1.2 log reduction in S. aureus biofilm was observed after 24 h under flow dynamic conditions. Additionally, functionalized PDMS lessened cell adhesion upon direct contact, while supporting a cytocompatible profile, within an indirect assay. The adequacy of the biological response was further validated upon in vivo subcutaneous tissue implantation. An important step was taken towards biofunctional assessment of RLs-functionalized PDMS, reinforcing their suitability for medical device usage and infection prevention.
Collapse
Affiliation(s)
- Maïssa Dardouri
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ana Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Victor Martin
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Praça Coronel Pacheco, 4050-453 Porto, Portugal
| | - Filomena A. Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Bruno Colaço
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Science–AL4AnimalS, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Adelina Gama
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Science–AL4AnimalS, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | | | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Maria H. Fernandes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Praça Coronel Pacheco, 4050-453 Porto, Portugal
| | - Pedro S. Gomes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Praça Coronel Pacheco, 4050-453 Porto, Portugal
- Correspondence: (P.S.G.); (I.A.C.R.); Tel.: +351-220-910-100 (P.S.G.); +351-217-946-400 (I.A.C.R.); Fax: +351-220-910-101 (P.S.G.); +351-217-946-470 (I.A.C.R.)
| | - Isabel A. C. Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (P.S.G.); (I.A.C.R.); Tel.: +351-220-910-100 (P.S.G.); +351-217-946-400 (I.A.C.R.); Fax: +351-220-910-101 (P.S.G.); +351-217-946-470 (I.A.C.R.)
| |
Collapse
|
24
|
Tian L, Jackson K, Zhang A, Wan Z, Saif A, Hosseinidoust Z. Bacteriophage‐Built Gels as Platforms for Biomedical Applications. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lei Tian
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| | - Kyle Jackson
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| | - Amy Zhang
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| | - Zeqi Wan
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| | - Ahmed Saif
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| | - Zeinab Hosseinidoust
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
- School of Biomedical Engineering McMaster University Hamilton Ontario Canada
- Michael DeGroote Institute for Infectious Disease Research McMaster University Hamilton Ontario Canada
| |
Collapse
|
25
|
Abstract
Ophthalmology is the branch of medicine that deals with diseases of the eye, the organ responsible for vision, and its attachments. Biomaterials can be made with different types of materials and can replace or improve a function or an organ, specifically the eye in the case of ophthalmic biomaterials. Biomaterials are substances that interact with biological systems for a medical purpose, either as a therapeutic (treat, augment, repair, or replace a tissue function of the body) or a diagnostic agent, and have continued to improve over the years, leading to the creation of new biomaterials. With the arrival of new generations, biomaterials have succeeded in reducing complications and toxicity and improving biocompatibilities associated with older generations. With the aging population, eye problems are becoming more prevalent, and biomaterials have helped in recent years to improve or restore vision, improving the quality of life of many patients. This review focuses on the most clinically used ophthalmic biomaterials, including contact lenses, intraocular lenses, artificial tears, inlays and vitreous replacements. Tissue engineering is presented as a new tool that is able to be treat several ophthalmologic disorders.
Collapse
|
26
|
Kowalski J, Górska R, Cieślik M, Górski A, Jończyk-Matysiak E. What Are the Potential Benefits of Using Bacteriophages in Periodontal Therapy? Antibiotics (Basel) 2022; 11:antibiotics11040446. [PMID: 35453197 PMCID: PMC9027636 DOI: 10.3390/antibiotics11040446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 01/16/2023] Open
Abstract
Periodontitis, which may result in tooth loss, constitutes both a serious medical and social problem. This pathology, if not treated, can contribute to the development of, among others, pancreatic cancer, cardiovascular diseases or Alzheimer’s disease. The available treatment methods are expensive but not always fully effective. For this reason, the search for and isolation of bacteriophages specific to bacterial strains causing periodontitis seems to be a great opportunity to target persistent colonization by bacterial pathogens and lower the use of antibiotics consequently limiting further development of antibiotic resistance. Furthermore, antimicrobial resistance (AMR) constitutes a growing challenge in periodontal therapy as resistant pathogens may be isolated from more than 70% of patients with periodontitis. The aim of this review is to present the perspective of phage application in the prevention and/or treatment of periodontitis alongside its complicated multifactorial aetiology and emphasize the challenges connecting composition and application of effective phage preparation.
Collapse
Affiliation(s)
- Jan Kowalski
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.K.); (R.G.)
| | - Renata Górska
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.K.); (R.G.)
| | - Martyna Cieślik
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (A.G.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (A.G.)
- Correspondence:
| |
Collapse
|
27
|
Antimicrobial and Antibiofilm Coating of Dental Implants—Past and New Perspectives. Antibiotics (Basel) 2022; 11:antibiotics11020235. [PMID: 35203837 PMCID: PMC8868456 DOI: 10.3390/antibiotics11020235] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Regarded as one of the best solutions to replace missing teeth in the oral cavity, dental implants have been the focus of plenty of studies and research in the past few years. Antimicrobial coatings are a promising solution to control and prevent bacterial infections that compromise the success of dental implants. In the last few years, new materials that prevent biofilm adhesion to the surface of titanium implants have been reported, ranging from improved methods to already established coating surfaces. The purpose of this review is to present the developed antimicrobial and antibiofilm coatings that may have the potential to reduce bacterial infections and improve the success rate of titanium dental implants. All referred coating surfaces showed high antimicrobial properties with effectiveness in biofilm control, while maintaining implant biocompatibility. We expect that by combining the use of oligonucleotide probes as a covering material with novel peri-implant adjuvant therapies, we will be able to avoid the downsides of other covering materials (such as antibiotic resistance), prevent bacterial infections, and raise the success rate of dental implants. The existing knowledge on the optimal coating material for dental implants is limited, and further research is needed before more definitive conclusions can be drawn.
Collapse
|
28
|
Sun W, Xu J, Liu B, Zhao YD, Yu L, Chen W. Controlled release of metal phenolic network protected phage for treating bacterial infection. NANOTECHNOLOGY 2022; 33:165102. [PMID: 35021157 DOI: 10.1088/1361-6528/ac4aa7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Phage is a promising therapeutic agent for treating antibiotic resistant bacteria. However, in the process of treatment, phage may be cleared by the immune system and cleaved by protease, which could affect the efficacy of phage. In order to solve the above problems, phage encapsulation is usually adopted. In this study, we employed metal phenolic network (MPN) for efficient phage encapsulation which could protect phage from the cleavage of protease, and keep cytotoxicity weak. In the model of skin wound infection, the encapsulated phage could be released in response to pH change to achieve good antibacterial effect. Furthermore, the MPN encapsulation could prolong the T4 phage residence time at the wound. Our findings suggest that MPN can be a promising material for phage encapsulation.
Collapse
Affiliation(s)
- Weilun Sun
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Jingjing Xu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Bo Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Yuan-Di Zhao
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Ling Yu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Southwest University, Chongqing 400715, People's Republic of China
| | - Wei Chen
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
29
|
Kalelkar PP, Riddick M, García AJ. Biomaterial-based delivery of antimicrobial therapies for the treatment of bacterial infections. NATURE REVIEWS. MATERIALS 2022; 7:39-54. [PMID: 35330939 PMCID: PMC8938918 DOI: 10.1038/s41578-021-00362-4] [Citation(s) in RCA: 174] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
UNLABELLED The rise in antibiotic-resistant bacteria, including strains that are resistant to last-resort antibiotics, and the limited ability of antibiotics to eradicate biofilms, have necessitated the development of alternative antibacterial therapeutics. Antibacterial biomaterials, such as polycationic polymers, and biomaterial-assisted delivery of non-antibiotic therapeutics, such as bacteriophages, antimicrobial peptides and antimicrobial enzymes, have improved our ability to treat antibiotic-resistant and recurring infections. Biomaterials not only allow targeted delivery of multiple agents, but also sustained release at the infection site, thereby reducing potential systemic adverse effects. In this Review, we discuss biomaterial-based non-antibiotic antibacterial therapies for the treatment of community- and hospital-acquired infectious diseases, with a focus in in vivo results. We highlight the translational potential of different biomaterial-based strategies, and provide a perspective on the challenges associated with their clinical translation. Finally, we discuss the future scope of biomaterial-assisted antibacterial therapies. WEB SUMMARY The development of antibiotic tolerance and resistance has demanded the search for alternative antibacterial therapies. This Review discusses antibacterial biomaterials and biomaterial-assisted delivery of non-antibiotic therapeutics for the treatment of bacterial infectious diseases, with a focus on clinical translation.
Collapse
Affiliation(s)
- Pranav P. Kalelkar
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Milan Riddick
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Andrés J. García
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- author to whom correspondence should be addressed:
| |
Collapse
|
30
|
From Blood to Bone-The Osteogenic Activity of L-PRF Membranes on the Ex Vivo Embryonic Chick Femur Development Model. MATERIALS 2021; 14:ma14247830. [PMID: 34947427 PMCID: PMC8707053 DOI: 10.3390/ma14247830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022]
Abstract
(1) Background: To evaluate the effects of the direct and indirect contact of leukocyte and platelet-rich fibrin (L-PRF) on bone development, in an ex vivo embryonic chick femur model. (2) Methods: Both sections of L-PRF membranes (red and yellow portions) were evaluated with scanning electron microscopy and histochemical staining. The in vivo angiogenic activity was evaluated using a chorioallantoic membrane model. The osteogenic activity was assessed with an organotypic culture of embryonic chick femora through direct and indirect contact, and assessment was conducted by microtomographic and histological analysis. Descriptive statistics, One-Way ANOVA and Tukey’s multiple comparisons tests were performed for datasets that presented a normal distribution, and Kruskal-Wallis tests were performed for non-parametric datasets. A significance level of 0.05 was considered. (3) Results: The L-PRF induced angiogenesis reflected by a higher number and a larger and more complex gauge in the vessels that invaded the membrane. The physical presence of the membrane over the bone (direct contact) unleashes the full potential of the L-PRF effects on bone growth enhancement. The greatest increase in mineral content was observed in the diaphysis region. (4) Conclusion: The L-PRF direct contact group presented higher values on mineral content for bone volume, bone surface and bone mineral density than the indirect contact and control groups.
Collapse
|
31
|
Bacteriophage Delivery Systems Based on Composite PolyHIPE/Nanocellulose Hydrogel Particles. Polymers (Basel) 2021; 13:polym13162648. [PMID: 34451188 PMCID: PMC8401677 DOI: 10.3390/polym13162648] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/27/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
The role of bacteriophage therapy in medicine has recently regained an important place. Oral phage delivery for gastrointestinal treatment, transport through the stomach, and fast release in the duodenum is one of such applications. In this work, an efficient polyHIPE/hydrogel system for targeted delivery of bacteriophages with rapid release at the target site is presented. T7 bacteriophages were encapsulated in low crosslinked anionic nanocellulose-based hydrogels, which successfully protected phages at pH < 3.9 (stomach) and completely lost the hydrogel network at a pH above 3.9 (duodenum), allowing their release. Hydrogels with entrapped phages were crosslinked within highly porous spherical polyHIPE particles with an average diameter of 24 μm. PolyHIPE scaffold protects the hydrogels from mechanical stimuli during transport, preventing the collapse of the hydrogel structure and the unwanted phage release. On the other hand, small particle size, due to the large surface-to-volume ratio, enables rapid release at the target site. As a consequence, a fast zero-order release was achieved, providing improved patient compliance and reduced frequency of drug administration. The proposed system therefore exhibits significant potential for a targeted drug delivery in medicine and pharmacy.
Collapse
|
32
|
Gomes PS, Pinheiro B, Colaço B, Fernandes MH. The Osteogenic Assessment of Mineral Trioxide Aggregate-based Endodontic Sealers in an Organotypic Ex Vivo Bone Development Model. J Endod 2021; 47:1461-1466. [PMID: 34126159 DOI: 10.1016/j.joen.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/27/2021] [Accepted: 06/05/2021] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Mineral trioxide aggregate (MTA)-based sealers are endodontic materials with widespread success in distinct clinical applications, potentially embracing direct contact with the bone tissue. Bone response to these materials has been traditionally addressed in vitro. Nonetheless, translational data are limited by the absence of native cell-to-cell and cell-to-matrix interactions that hinder the representativeness of the analysis. Ex vivo organotypic systems, relying on the culture of explanted biological tissues, preserve the cell/tissue composition, reproducing the spatial and organizational in situ complexity. This study was grounded on an innovative research approach, relying on the assessment of an ex vivo organotypic bone tissue culture system to address the osteogenic response to 3 distinct MTA-based sealers. METHODS Embryonic chick femurs were isolated and grown ex vivo for 11 days in the presence of MTA Plus (Avalon Biomed Inc, Bradenton, FL), ProRoot MTA (Dentsply Tulsa Dental, Hohnson City, Germany), Biodentine (Septodont, Saint Maurdes Fosses, France), or AH Plus (Dentsply Sirona, Konstanz, Germany); the latter was used as a control material. Femurs were characterized by histologic, histochemical, and histomorphometric analysis. Gene expression assessment of relevant osteogenic markers was conducted by quantitative polymerase chain reaction. RESULTS All MTA-based sealers presented an enhanced osteogenic performance compared with AH Plus. Histochemical and histomorphometric analyses support the increased activation of the osteogenic program by MTA-based sealers, with enhanced collagenous matrix deposition and tissue mineralization. Gene expression analysis supported the enhanced activation of the osteogenic program. Comparatively, ProRoot MTA induced the highest osteogenic functionality on the characterized femurs. CONCLUSIONS MTA-based sealers enhanced the osteogenic activity within the assayed organotypic bone model, which was found to be a sensitive system for the assessment of osteogenic modulation mediated by endodontic sealers.
Collapse
Affiliation(s)
- Pedro S Gomes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal; Associated Laboratory for Green Chemistry/Network of Chemistry and Technology (LAQV/REQUIMTE), University of Porto, Porto, Portugal.
| | - Bruna Pinheiro
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
| | - Bruno Colaço
- Department of Zootechnics, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Maria H Fernandes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal; Associated Laboratory for Green Chemistry/Network of Chemistry and Technology (LAQV/REQUIMTE), University of Porto, Porto, Portugal
| |
Collapse
|
33
|
Effect of Precursor Deficiency Induced Ca/P Ratio on Antibacterial and Osteoblast Adhesion Properties of Ag-Incorporated Hydroxyapatite: Reducing Ag Toxicity. MATERIALS 2021; 14:ma14123158. [PMID: 34201287 PMCID: PMC8227255 DOI: 10.3390/ma14123158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022]
Abstract
Ag-containing hydroxyapatite (HA) can reduce risks associated with bacterial infections which may eventually require additional surgical operations to retrieve a failed implant. The biological properties of HA in such applications are strongly affected by its composition in terms of dopants as well as Ca/P stoichiometry, which can be easily controlled by altering processing parameters, such as precursor concentrations. The objective of this in vitro study was to understand the effect of variations in HA precursor solutions on antibacterial properties against Escherichia coli (E. coli) and for promoting osteoblast (bone-forming cell) adhesion on Ag incorporated HA (AgHA) which has not yet been investigated. For this, two groups of AgHAs were synthesized via a precipitation method by adjusting precursor reactants with a stoichiometric value of 1.67, being either (Ca + Ag)/P (Ca-deficient) or Ca/(P + Ag) (P-deficient), and were characterized by XRD, FTIR, and SEM-EDS. Results showed that Ag+ incorporated into the Ca2+ sites was associated with a corresponding OH− vacancy. Additional incorporation of CO32− into PO43− sites occurred specifically for the P-deficient AgHAs. While antibacterial properties increased, osteoblast adhesion decreased with increasing Ag content for the Ca-deficient AgHAs, as anticipated. In contrast, significant antibacterial properties with good osteoblast behavior were observed on the P-deficient AgHAs even with a lower Ag content, owing to carbonated HA. Thus, this showed that by synthesizing AgHA using P-deficient precursors with carbonate substitution, one can keep the antibacterial properties of Ag in HA while reducing its toxic effect on osteoblasts.
Collapse
|
34
|
Garg D, Matai I, Sachdev A. Toward Designing of Anti-infective Hydrogels for Orthopedic Implants: From Lab to Clinic. ACS Biomater Sci Eng 2021; 7:1933-1961. [PMID: 33826312 DOI: 10.1021/acsbiomaterials.0c01408] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An alarming increase in implant failure incidence due to microbial colonization on the administered orthopedic implants has become a horrifying threat to replacement surgeries and related health concerns. In essence, microbial adhesion and its subsequent biofilm formation, antibiotic resistance, and the host immune system's deficiency are the main culprits. An advanced class of biomaterials termed anti-infective hydrogel implant coatings are evolving to subdue these complications. On this account, this review provides an insight into the significance of anti-infective hydrogels for preventing orthopedic implant associated infections to improve the bone healing process. We briefly discuss the clinical course of implant failure, with a prime focus on orthopedic implants. We identify the different anti-infective coating strategies and hence several anti-infective agents which could be incorporated in the hydrogel matrix. The fundamental design criteria to be considered while fabricating anti-infective hydrogels for orthopedic implants will be discussed. We highlight the different hydrogel coatings based on the origin of the polymers involved in light of their antimicrobial efficacy. We summarize the relevant patents reported in the prevention of implant infections, including orthopedics. Finally, the challenges concerning the clinical translation of the aforesaid hydrogels are described, and considerable solutions for improved clinical practice and better future prospects are proposed.
Collapse
Affiliation(s)
- Deepa Garg
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Ishita Matai
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Abhay Sachdev
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| |
Collapse
|
35
|
Self-Healing, Stretchable, Biocompatible, and Conductive Alginate Hydrogels through Dynamic Covalent Bonds for Implantable Electronics. Polymers (Basel) 2021; 13:polym13071133. [PMID: 33918277 PMCID: PMC8038184 DOI: 10.3390/polym13071133] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 12/20/2022] Open
Abstract
Implantable electronics have recently been attracting attention because of the promising advances in personalized healthcare. They can be used to diagnose and treat chronic diseases by monitoring and applying bioelectrical signals to various organs. However, there are challenges regarding the rigidity and hardness of typical electronic devices that can trigger inflammatory reactions in tissues. In an effort to improve the physicochemical properties of conventional implantable electronics, soft hydrogel-based platforms have emerged as components of implantable electronics. It is important that they meet functional criteria, such as stretchability, biocompatibility, and self-healing. Herein, plant-inspired conductive alginate hydrogels composed of “boronic acid modified alginate” and “oligomerized epigallocatechin gallate,” which are extracted from plant compounds, are proposed. The conductive hydrogels show great stretchability up to 500% and self-healing properties because of the boronic acid-cis-diol dynamic covalent bonds. In addition, as a simple strategy to increase the electrical conductivity of the hydrogels, ionically crosslinked shells with cations (e.g., sodium) were generated on the hydrogel under physiological salt conditions. This decreased the resistance of the conductive hydrogel down to 900 ohm without trading off the original properties of stretchability and self-healing. The hydrogels were used for “electrophysiological bridging” to transfer electromyographic signals in an ex vivo muscle defect model, showing a great bridging effect comparable to that of a muscle-to-muscle contact model. The use of plant-inspired ionically conductive hydrogels is a promising strategy for designing implantable and self-healable bioelectronics.
Collapse
|
36
|
Grabska-Zielińska S, Sionkowska A, Carvalho Â, Monteiro FJ. Biomaterials with Potential Use in Bone Tissue Regeneration-Collagen/Chitosan/Silk Fibroin Scaffolds Cross-Linked by EDC/NHS. MATERIALS 2021; 14:ma14051105. [PMID: 33652959 PMCID: PMC7956200 DOI: 10.3390/ma14051105] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 02/08/2023]
Abstract
Blending of different biopolymers, e.g., collagen, chitosan, silk fibroin and cross-linking modifications of these mixtures can lead to new materials with improved physico-chemical properties, compared to single-component scaffolds. Three-dimensional scaffolds based on three-component mixtures of silk fibroin, collagen and chitosan, chemically cross-linked, were prepared and their physico-chemical and biological properties were evaluated. A mixture of EDC (N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride) and NHS (N-hydroxysuccinimide) was used as a cross-linking agent. FTIR was used to observe the position of the peaks characteristic for collagen, chitosan and silk fibroin. The following properties depending on the scaffold structure were studied: swelling behavior, liquid uptake, moisture content, porosity, density, and mechanical parameters. Scanning Electron Microscopy imaging was performed. Additionally, the biological properties of these materials were assessed, by metabolic activity assay. The results showed that the three-component mixtures, cross-linked by EDC/NHS and prepared by lyophilization method, presented porous structures. They were characterized by a high swelling degree. The composition of scaffolds has an influence on mechanical properties. All of the studied materials were cytocompatible with MG-63 osteoblast-like cells.
Collapse
Affiliation(s)
- Sylwia Grabska-Zielińska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Correspondence:
| | - Alina Sionkowska
- Department of Chemistry of Biomaterials and Cosmetics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| | - Ângela Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; (Â.C.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Fernando J. Monteiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; (Â.C.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| |
Collapse
|
37
|
Bacteriophage-Delivering Hydrogels: Current Progress in Combating Antibiotic Resistant Bacterial Infection. Antibiotics (Basel) 2021; 10:antibiotics10020130. [PMID: 33572929 PMCID: PMC7911734 DOI: 10.3390/antibiotics10020130] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance remains as an unresolved global challenge in the health care system, posing serious threats to global health. As an alternative to antibiotics, bacteriophage (phage) therapy is rising as a key to combating antibiotic-resistant bacterial infections. In order to deliver a phage to the site of infection, hydrogels have been formulated to incorporate phages, owing to its favorable characteristics in delivering biological molecules. This paper reviews the formulation of phage-delivering hydrogels for orthopedic implant-associated bone infection, catheter-associated urinary tract infection and trauma-associated wound infection, with a focus on the preparation methods, stability, efficacy and safety of hydrogels as phage carriers.
Collapse
|
38
|
Oliveira VC, Bim FL, Monteiro RM, Macedo AP, Santos ES, Silva-Lovato CH, Paranhos HFO, Melo LDR, Santos SB, Watanabe E. Identification and Characterization of New Bacteriophages to Control Multidrug-Resistant Pseudomonas aeruginosa Biofilm on Endotracheal Tubes. Front Microbiol 2020; 11:580779. [PMID: 33123112 PMCID: PMC7573221 DOI: 10.3389/fmicb.2020.580779] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/08/2020] [Indexed: 12/28/2022] Open
Abstract
Studies involving antimicrobial-coated endotracheal tubes are scarce, and new approaches to control multidrug-resistant Pseudomonas aeruginosa biofilm on these devices should be investigated. In this study, five new P. aeruginosa bacteriophages from domestic sewage were isolated. All of them belong to the order Caudovirales, Myoviridae family. They are pH and heat stable and produce 27 to 46 particles after a latent period of 30 min at 37°C. Their dsDNA genome (ranging from ∼62 to ∼65 kb) encodes 65 to 89 different putative proteins. They exhibit a broad lytic spectrum and infect 69.7% of the P. aeruginosa strains tested. All the bacteriophages were able to reduce the growth of P. aeruginosa strains in planktonic form. The bacteriophages were also able to reduce the biofilm viability rates and the metabolic activity of P. aeruginosa strains in a model of biofilms associated with endotracheal tubes. In addition, scanning electron microscopy micrographs showed disrupted biofilms and cell debris after treatment of bacteriophages, revealing remarkable biofilm reduction. The lytic activity on multidrug-resistant P. aeruginosa biofilm indicates that the isolated bacteriophages might be considered as good candidates for therapeutic studies and for the application of bacteriophage-encoded products.
Collapse
Affiliation(s)
- Viviane C Oliveira
- Human Exposome and Infectious Diseases Network, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Dental Materials and Prostheses, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe L Bim
- Human Exposome and Infectious Diseases Network, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Rachel M Monteiro
- Human Exposome and Infectious Diseases Network, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Paula Macedo
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Emerson S Santos
- Department of Clinical Toxicological and Bromatologic Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Cláudia H Silva-Lovato
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Helena F O Paranhos
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Luís D R Melo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Sílvio B Santos
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Evandro Watanabe
- Human Exposome and Infectious Diseases Network, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
39
|
Rotman SG, Sumrall E, Ziadlou R, Grijpma DW, Richards RG, Eglin D, Moriarty TF. Local Bacteriophage Delivery for Treatment and Prevention of Bacterial Infections. Front Microbiol 2020; 11:538060. [PMID: 33072008 PMCID: PMC7531225 DOI: 10.3389/fmicb.2020.538060] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
As viruses with high specificity for their bacterial hosts, bacteriophages (phages) are an attractive means to eradicate bacteria, and their potential has been recognized by a broad range of industries. Against a background of increasing rates of antibiotic resistance in pathogenic bacteria, bacteriophages have received much attention as a possible "last-resort" strategy to treat infections. The use of bacteriophages in human patients is limited by their sensitivity to acidic pH, enzymatic attack and short serum half-life. Loading phage within a biomaterial can shield the incorporated phage against many of these harmful environmental factors, and in addition, provide controlled release for prolonged therapeutic activity. In this review, we assess the different classes of biomaterials (i.e., biopolymers, synthetic polymers, and ceramics) that have been used for phage delivery and describe the processing methodologies that are compatible with phage embedding or encapsulation. We also elaborate on the clinical or pre-clinical data generated using these materials. While a primary focus is placed on the application of phage-loaded materials for treatment of infection, we also include studies from other translatable fields such as food preservation and animal husbandry. Finally, we summarize trends in the literature and identify current barriers that currently prevent clinical application of phage-loaded biomaterials.
Collapse
Affiliation(s)
- Stijn Gerard Rotman
- AO Research Institute Davos, AO Foundation, Davos, Switzerland.,MIRA Institute for Biomedical Engineering and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente, Enschede, Netherlands
| | - Eric Sumrall
- AO Research Institute Davos, AO Foundation, Davos, Switzerland
| | - Reihane Ziadlou
- AO Research Institute Davos, AO Foundation, Davos, Switzerland.,Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Dirk W Grijpma
- MIRA Institute for Biomedical Engineering and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente, Enschede, Netherlands
| | | | - David Eglin
- AO Research Institute Davos, AO Foundation, Davos, Switzerland.,MIRA Institute for Biomedical Engineering and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente, Enschede, Netherlands
| | | |
Collapse
|
40
|
Ismail R, Dorighello Carareto ND, Hornez JC, Bouchart F. A Localized Phage-Based Antimicrobial System: Effect of Alginate on Phage Desorption from β-TCP Ceramic Bone Substitutes. Antibiotics (Basel) 2020; 9:E560. [PMID: 32878156 PMCID: PMC7558949 DOI: 10.3390/antibiotics9090560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 11/17/2022] Open
Abstract
Tricalcium phosphate (TCP) is a prosthetic material commonly used as a bone substitute to repair osteoarticular diseases and injuries. In this type of bone reconstruction surgery, antibiotics remain the common preventive and therapeutic treatment for bacterial infection. Nevertheless, the emergence of multi-resistant strains requires complimentary or alternative treatments. Today, one of the promising alternative approaches is phage therapy. Phages are bacterial viruses that have several advantages over chemotherapy, such as the specificity of bacterial strain, the absence of side effects, and a rapid response. In this work, we studied the impact of alginate hydrogels for overlaying λvir-phage-loaded β-TCP ceramic bone substitutes, delaying the phage desorption. The results show that the use of a 1% alginate-CaCl2 hydrogel overlapping the β-TCP ceramic pellets leads to higher initial phage concentration on the material and extends the released time of phages to two weeks when compared with control pellets. These alginate-coated biomaterials also generate faster bacterial lysis kinetics and could therefore be a good practical prosthetic device for bone and joint surgeries by allowing local treatment of bacterial infections with phage therapy for a longer period of time.
Collapse
Affiliation(s)
| | | | | | - Franck Bouchart
- LMCPA—Laboratoire des Matériaux Céramiques et Procédés Associés, EA 2443, Université Polytechnique Hauts-de-France, F-59313 Valenciennes, France; (R.I.); (N.D.D.C.); (J.-C.H.)
| |
Collapse
|
41
|
Hariyadi DM, Islam N. Current Status of Alginate in Drug Delivery. Adv Pharmacol Pharm Sci 2020; 2020:8886095. [PMID: 32832902 PMCID: PMC7428837 DOI: 10.1155/2020/8886095] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Alginate is one of the natural polymers that are often used in drug- and protein-delivery systems. The use of alginate can provide several advantages including ease of preparation, biocompatibility, biodegradability, and nontoxicity. It can be applied to various routes of drug administration including targeted or localized drug-delivery systems. The development of alginates as a selected polymer in various delivery systems can be adjusted depending on the challenges that must be overcome by drug or proteins or the system itself. The increased effectiveness and safety of sodium alginate in the drug- or protein-delivery system are evidenced by changing the physicochemical characteristics of the drug or proteins. In this review, various routes of alginate-based drug or protein delivery, the effectivity of alginate in the stem cells, and cell encapsulation have been discussed. The recent advances in the in vivo alginate-based drug-delivery systems as well as their toxicities have also been reviewed.
Collapse
Affiliation(s)
- Dewi Melani Hariyadi
- Pharmaceutics Department, Faculty of Pharmacy, Airlangga University, Nanizar Zaman Joenoes Building, Jl. Mulyorejo Campus C, Surabaya 60115, Indonesia
| | - Nazrul Islam
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
42
|
Sobczak-Kupiec A, Drabczyk A, Kudłacik-Kramarczyk S, Tyliszczak B. Hydroxyapatite powders prepared using two different methods as modifying agents of PVP/collagen composites designed for biomedical applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1785458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Agnieszka Sobczak-Kupiec
- Cracow university of Technology, Faculty of Materials Engineering and Physics, Institute of Materials Science, Krakow, Poland
| | - Anna Drabczyk
- Cracow university of Technology, Faculty of Materials Engineering and Physics, Institute of Materials Science, Krakow, Poland
| | - Sonia Kudłacik-Kramarczyk
- Cracow university of Technology, Faculty of Materials Engineering and Physics, Institute of Materials Science, Krakow, Poland
| | - Bozena Tyliszczak
- Cracow university of Technology, Faculty of Materials Engineering and Physics, Institute of Materials Science, Krakow, Poland
| |
Collapse
|
43
|
Abstract
With the rapidly development of clinical treatments, precision medicine has come to people eyes with the requirement according to different people and different disease situation. So precision medicine is called personalized medicine which is a new frontier of healthcare. Bone tissue engineering developed from traditional bone graft to precise medicine era. So scientists seek approaches to harness stem cells, scaffolds, growth factors, and extracellular matrix to promise enhanced and more reliable bone formation. This review provides an overview of novel developments on precision medicine in tissue engineering of bone hoping it can open new perspectives of strategies on bone treatment.
Collapse
Affiliation(s)
| | | | - Rong Zhou
- Department of Stomatology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haixia Liu
- Department of Stomatology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shengcai Qi
- Department of Stomatology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Raorao Wang
- Department of Stomatology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|