1
|
Ellepola K, Bhatt L, Chen L, Han C, Jahanbazi F, Klie RF, Lagunas Vargas F, Mao Y, Novakovsky K, Sapkota B, Pesavento RP. Nanoceria Aggregate Formulation Promotes Buffer Stability, Cell Clustering, and Reduction of Adherent Biofilm in Streptococcus mutans. ACS Biomater Sci Eng 2023; 9:4686-4697. [PMID: 37450411 DOI: 10.1021/acsbiomaterials.3c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Streptococcus mutans is one of the key etiological factors in tooth-borne biofilm development that leads to dental caries in the presence of fermentable sugars. We previously reported on the ability of acid-stabilized nanoceria (CeO2-NP) produced by the hydrolysis of ceric salts to limit biofilm adherence of S. mutans via non-bactericidal mechanism(s). Herein, we report a chondroitin sulfate A (CSA) formulation (CeO2-NP-CSA) comprising nanoceria aggregates that promotes resistance to bulk precipitation under a range of conditions with retention of the biofilm-inhibiting activity, allowing for a more thorough mechanistic study of its bioactivity. The principal mechanism of reduced in vitro biofilm adherence of S. mutans by CeO2-NP-CSA is the production of nonadherent cell clusters. Additionally, dose-dependent in vitro human cell toxicity studies demonstrated no additional toxicity beyond that of equimolar doses of sodium fluoride, currently utilized in many oral health products. This study represents a unique approach and use of a nanoceria aggregate formulation with implications for promoting oral health and dental caries prevention as an adjunctive treatment.
Collapse
Affiliation(s)
- Kassapa Ellepola
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
- The Center for Biomolecular Sciences and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| | - Lopa Bhatt
- Department of Physics, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| | - Chen Han
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| | - Forough Jahanbazi
- Department of Chemistry, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Robert F Klie
- Department of Physics, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| | - Francisco Lagunas Vargas
- Department of Physics, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| | - Yuanbing Mao
- Department of Chemistry, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Kirill Novakovsky
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
- The Center for Biomolecular Sciences and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| | - Bibash Sapkota
- Department of Physics, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| | - Russell P Pesavento
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
- The Center for Biomolecular Sciences and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| |
Collapse
|
2
|
Sezer C, Zırh S, Gokten M, Sezer A, Acıkalın R, Bilgin E, Zırh EB. Neuroprotective Effects of Milrinone on Acute Traumatic Brain Injury. World Neurosurg 2023; 170:e558-e567. [PMID: 36403936 DOI: 10.1016/j.wneu.2022.11.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Traumatic brain injury is still an important health problem worldwide. Traumatic brain injury not only causes direct mechanical damage to the brain but also induces biochemical changes that lead to secondary nerve cell loss. In this study, we investigated the neuroprotective effect of milrinone after traumatic brain injury (TBI) in a rat model. METHODS Forty male Wistar albino rats, were used. Rats were divided into 4 groups: 1) sham, 2) TBI, 3) TBI + Ringers, and 4) TBI + Milrinone. In group 1 (sham), only craniotomy was performed. In group 2 (TBI), TBI was performed after craniotomy. In group 3 (TBI + Ringer), TBI was performed after craniotomy and intraperitoneal Ringers solution was given immediately afterward. Group 4 (TBI + Milrinone), TBI was performed after craniotomy, and milrinone was given 1.0 mg/kg milrinone intraperitoneally directly (0.5 mg/kg milrinone intraperitoneally again 24 hours, 48 hours, and 72 hours after trauma). Tests were performed for neurological and neurobehavioral functions. Immunohistochemistry and histopathology studies were performed. RESULTS In group 4 compared with group 2 and group 3 groups, tests for neurological functions and neurobehavioral functions were significantly better. In the milrinone treatment used in group 4, plasma and brain tissue tumor necrosis factor, 8-OH 2-deoxyguanosine , and interleukin 6 levels were significantly decreased, and increased plasma and tissue IL-10 levels were detected. Histopathological spinal cord injury and apoptotic index increased in groups 2 and 3, while significantly decreasing in group 4. CONCLUSIONS This study shows for the first time that the anti-inflammatory, antioxidant and antiapoptotic properties of milrinone may be neuroprotective after TBI.
Collapse
Affiliation(s)
- Can Sezer
- Department of Neurosurgery, University of Health Sciences, Adana City Training and Research Hospital, Adana, Turkey.
| | - Selim Zırh
- Department of Histology, Binali Yıldırım University, Erzincan, Turkey
| | - Murat Gokten
- Department of Neurosurgery, Corlu State Hospital, Tekirdag, Turkey
| | - Aykut Sezer
- Department of Neurosurgery, Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| | - Rıdvan Acıkalın
- Department of Neurosurgery, Medical Park Mersin Hospital, Mersin, Turkey
| | - Emre Bilgin
- Department of Neurosurgery, University of Health Sciences, Adana City Training and Research Hospital, Adana, Turkey
| | - Elham Bahador Zırh
- Department of Histology, TOBB University of Economics and Technology, Ankara, Turkey
| |
Collapse
|
3
|
Girigoswami A, Adhikesavan H, Mudenkattil S, Devi S, Girigoswami K. Role of Cerium Oxide Nanoparticles and Doxorubicin in Improving Cancer Management: A Mini Review. Curr Pharm Des 2023; 29:2640-2654. [PMID: 37957864 DOI: 10.2174/0113816128270290231029161741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 11/15/2023]
Abstract
Cancer is one of the significant issues with public health and the second leading cause of death worldwide. The three most lethal cancers in the general population are stomach, lung, and liver cancers, in which lung and breast cancers cause the majority of cancer-associated deaths among men and women, respectively. CeO2 nanoparticles have a cytoprotectant effect in normal cells and a cytotoxic effect in cancer cells that enables them to induce the reactive oxygen species (ROS) production within cancer cells, which in turn develops reactive nitrogen species (RNS) that interfere with intracellular activities, and this property makes them an excellent anticancer agent. Because of its biofilm suppression, free radical scavenging ability, redox activity, and other unique properties, attention has been bestowed on cerium oxide nanoparticles as a potential alternative to solve many biomedical issues in the future. This review mainly focuses on the combinatorial effect of cerium dioxide nanoparticles and Doxorubicin in cancer management.
Collapse
Affiliation(s)
- Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, 603103, Tamilnadu, India
| | - Harini Adhikesavan
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, 603103, Tamilnadu, India
| | - Shurfa Mudenkattil
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, 603103, Tamilnadu, India
| | - Sobita Devi
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, 603103, Tamilnadu, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, 603103, Tamilnadu, India
| |
Collapse
|