1
|
Tang J, Gao G, Fang J, Yang Y, Hu J, Yang B, Yao Y. Synergistic core-shell boosts P-CoNiMoO@Co 2P-Ni 2P bifunctional catalyst for efficient and robust overall water splitting. J Colloid Interface Sci 2024; 682:971-982. [PMID: 39657418 DOI: 10.1016/j.jcis.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
Optimizing hydrogen adsorption and enhancing water absorption are essential for the design of effective hydrogen evolution reaction (HER) electrocatalysts. Herein, a well-defined core-shell-structured P-CoNiMoO@Co2P-Ni2P catalyst was synthesized on nickel foam via high-temperature phosphidation of heterostructured precursor CoMoO4·xH2O/NiMoO4·xH2O with hydrogen (H2) assistance. This catalyst exhibits good HER performance, requiring only 24 mV of overpotential to achieve a current density of 10 mA cm-2, and long-term stability, maintaining a current density of 100 mA cm-2 for over 100 h. Density functional theory calculations indicate that the molybdenum site is highly favorable for water adsorption in phosphorus-doped cobalt nickel molybdate (P-CoNiMoO), while the trigonal Ni3 site is optimal for hydrogen adsorption. These findings indicate that the cooperative interactions and functional division between the core and shell substantially enhance HER performance. In addition, P-CoNiMoO@Co2P-Ni2P demonstrates high oxygen evolution reaction performance, achieving a current density of 10 mA cm-2 at an overpotential of 243 mV. When functioning as a bifunctional electrocatalyst, it requires only 1.49 V to drive overall water splitting at a current density of 10 mA cm-2, with a durability of over 200 h at current densities of 100 and 300 mA cm-2. This study provides significant insights into the development of HER catalysts with potential applications in other fields.
Collapse
Affiliation(s)
- Jian Tang
- National Engineering Research Center of Vacuum Metallurgy, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Geng Gao
- National Engineering Research Center of Vacuum Metallurgy, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Jun Fang
- National Engineering Research Center of Vacuum Metallurgy, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Yusong Yang
- National Engineering Research Center of Vacuum Metallurgy, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Junxian Hu
- National Engineering Research Center of Vacuum Metallurgy, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Bin Yang
- National Engineering Research Center of Vacuum Metallurgy, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Yaochun Yao
- National Engineering Research Center of Vacuum Metallurgy, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.
| |
Collapse
|
2
|
Li J, Hu W, Sun L, Zhang L, Zhang Q, Ren X, Li Y. Dynamic Self-Reconstruction Heterostructures: Boosting the High-Stability for Hydrogen Evolution of NiMo Alloys in Acidic Environments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403364. [PMID: 39473294 DOI: 10.1002/smll.202403364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/30/2024] [Indexed: 12/20/2024]
Abstract
Electrocatalytic water splitting is considered one of the most promising approaches for large-scale hydrogen production. However, designing transition metal catalysts with high durability under acidic conditions remains a significant challenge. The durability of the catalyst is closely related to the changes of the catalyst during its operation, and constructing effective surface reconstruction strategies can help address the durability issues of transition metals in acidic hydrogen evolution reactions (HER). Herein, the spontaneous formation of surface-reconstructed heterostructures of NiMo alloys is reported during the HER in acidic media. The surface of the catalyst is characterized by the presence of Ni/Mo metal nanoparticles and NixMoyOz nanosheets, which coexist as HER proceeds. Notably, the E-Ni90Mo10/CC After 96 h catalyst demonstrates a significantly reduced overpotential of 56.84 mV at 10 mA cm⁻2 in 0.5 m sulfuric acid, which is better than other E-Ni90Mo10/CC counterparts. Both experimental data and theoretical calculations suggest that these spontaneously formed heterostructures are helpful for optimizing hydrogen adsorption. Furthermore, the downward shift of the d-band center within the heterostructure (Ni90Mo10/NixMoyOz) is found to facilitate the desorption of intermediate products, thereby enhancing the overall HER activity. This work provides a new perspective for designing highly durable transition metal catalysts for acidic HER.
Collapse
Affiliation(s)
- Jieyao Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Wenhui Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Lingna Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Lei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Xiangzhong Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Yongliang Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
- Guangdong Flexible Wearable Energy and Tools Engineering Technology Research Centre, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
3
|
Wang W, Yang K, Zhu Q, Zhang T, Guo L, Hu F, Zhong R, Wen X, Wang H, Qi J. MOFs-Based Materials with Confined Space: Opportunities and Challenges for Energy and Catalytic Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311449. [PMID: 38738782 DOI: 10.1002/smll.202311449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/15/2024] [Indexed: 05/14/2024]
Abstract
Metal-Organic Frameworks (MOFs) are a very promising material in the fields of energy and catalysis due to their rich active sites, tunable pore size, structural adaptability, and high specific surface area. The concepts of "carbon peak" and "carbon neutrality" have opened up huge development opportunities in the fields of energy storage, energy conversion, and catalysis, and have made significant progress and breakthroughs. In recent years, people have shown great interest in the development of MOFs materials and their applications in the above research fields. This review introduces the design strategies and latest progress of MOFs are included based on their structures such as core-shell, yolk-shell, multi-shelled, sandwich structures, unique crystal surface exposures, and MOF-derived nanomaterials in detail. This work comprehensively and systematically reviews the applications of MOF-based materials in energy and catalysis and reviews the research progress of MOF materials for atmospheric water harvesting, seawater uranium extraction, and triboelectric nanogenerators. Finally, this review looks forward to the challenges and opportunities of controlling the synthesis of MOFs through low-cost, improved conductivity, high-temperature heat resistance, and integration with machine learning. This review provides useful references for promoting the application of MOFs-based materials in the aforementioned fields.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Ke Yang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Qinghan Zhu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Tingting Zhang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Li Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Feiyang Hu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Ruixia Zhong
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Xiaojing Wen
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Haiwang Wang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Shang M, Zhou B, Qiu H, Gong Y, Xin L, Xiao W, Xu G, Dai C, Zhang H, Wu Z, Wang L. Self-supported Ru-Fe-O x nanospheres as efficient electrocatalyst to boost overall water-splitting in acid and alkaline media. J Colloid Interface Sci 2024; 669:856-863. [PMID: 38749224 DOI: 10.1016/j.jcis.2024.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/27/2024]
Abstract
Developing electrocatalysts with high activity and durability for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in both acidic and alkaline electrolytes remains challenging. In this study, we synthesize a self-supported ruthenium-iron oxide on carbon cloth (Ru-Fe-Ox/CC) using solvothermal methods followed by air calcination. The morphology of the nanoparticle exposes numerous active sites vital for electrocatalysis. Additionally, the strong electronic interaction between Ru and Fe enhances electrocatalytic kinetics optimization. The porous structure of the carbon cloth matrix facilitates mass transport, improving electrolyte penetration and bubble release. Consequently, Ru-Fe-Ox/CC demonstrates excellent catalytic performance, achieving low overpotentials of 32 mV and 28 mV for HER and 216 mV and 228 mV for OER in acidic and alkaline electrolytes, respectively. Notably, only 1.48 V and 1.46 V are required to reach 10 mA cm-2 for efficient water-splitting in both mediums, exhibiting remarkable stability. This research offers insights into designing versatile, highly efficient catalysts suitable for varied pH conditions.
Collapse
Affiliation(s)
- Mengfang Shang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, College of Polymer Science and Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China
| | - Bowen Zhou
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, College of Polymer Science and Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China
| | - Huiqian Qiu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, College of Polymer Science and Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China
| | - Yuecheng Gong
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, College of Polymer Science and Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China
| | - Liantao Xin
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, College of Polymer Science and Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China
| | - Weiping Xiao
- College of Science, Nanjing Forestry University, Nanjing 210037, PR China
| | - Guangrui Xu
- College of Materials Science and Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China
| | - Chunlong Dai
- Shandong Long Antai Environmental Protection Technology Co., Ltd., No. 9, Gongye 1st Street, Xiashan High-tech Project Zone, Weifang, PR China
| | - Huadong Zhang
- Shandong Long Antai Environmental Protection Technology Co., Ltd., No. 9, Gongye 1st Street, Xiashan High-tech Project Zone, Weifang, PR China
| | - Zexing Wu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, College of Polymer Science and Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China.
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, College of Polymer Science and Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, PR China.
| |
Collapse
|
5
|
Chen Z, Ma T, Wei W, Wong WY, Zhao C, Ni BJ. Work Function-Guided Electrocatalyst Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401568. [PMID: 38682861 DOI: 10.1002/adma.202401568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Indexed: 05/01/2024]
Abstract
The development of high-performance electrocatalysts for energy conversion reactions is crucial for advancing global energy sustainability. The design of catalysts based on their electronic properties (e.g., work function) has gained significant attention recently. Although numerous reviews on electrocatalysis have been provided, no such reports on work function-guided electrocatalyst design are available. Herein, a comprehensive summary of the latest advancements in work function-guided electrocatalyst design for diverse electrochemical energy applications is provided. This includes the development of work function-based catalytic activity descriptors, and the design of both monolithic and heterostructural catalysts. The measurement of work function is first discussed and the applications of work function-based catalytic activity descriptors for various reactions are fully analyzed. Subsequently, the work function-regulated material-electrolyte interfacial electron transfer (IET) is employed for monolithic catalyst design, and methods for regulating the work function and optimizing the catalytic performance of catalysts are discussed. In addition, key strategies for tuning the work function-governed material-material IET in heterostructural catalyst design are examined. Finally, perspectives on work function determination, work function-based activity descriptors, and catalyst design are put forward to guide future research. This work paves the way to the work function-guided rational design of efficient electrocatalysts for sustainable energy applications.
Collapse
Affiliation(s)
- Zhijie Chen
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong, P. R. China
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
6
|
Hao X, Yang Q, Zhuo X, Zhou S, Wang D, Zhang Y, Liu G, Liu Y, Gu P. Trifunctional phosphorus-doped cobalt molybdate catalyst in self-driven coupling systems for synchronized sulfur recovery and hydrogen evolution. J Colloid Interface Sci 2024; 674:145-157. [PMID: 38925060 DOI: 10.1016/j.jcis.2024.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
This study introduces a self-driven system that effectively achieves synchronized sulfur recovery and hydrogen production using a Zn-air battery. The system ingeniously integrates the sulfur oxidation reaction (SOR) and the hydrogen evolution reaction (HER) into a single, efficient process. Central to this system is the trifunctional phosphorus-doped cobalt molybdate catalyst (P-CoMoO4/NF), which exhibits superior performance in both HER (ηj = 100 = 0.13 V) and SOR (ηj = 100 = 0.30 V) with remarkable stability (∼360 h), reaching 0.64 V at 100 mA cm-2 for simultaneous sulfur ion degradation and hydrogen production. Through density functional theory simulations and extensive characterizations, it has been shown that phosphorus doping in the cobalt molybdate catalyst facilitates electron redistribution, enhancing the catalyst's conductivity, generating more oxygen vacancies, and promoting improved mass and electron transfer. This modification also lowers the energy barrier for adsorbing reaction intermediates, thus increasing the hydrogen production rate and sulfur oxide conversion in this self-powered system. In summary, this research marks a substantial advancement in the development of trifunctional catalysts and proposes an eco-friendly, cost-effective strategy for integrated reaction systems, paving the way for sustainable energy solutions.
Collapse
Affiliation(s)
- Xiaoqiong Hao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qian Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xiaotong Zhuo
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shiyuan Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ye Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Guangfeng Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Yingjie Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Peiyang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
7
|
Gan M, Li L, Yang X, Rong H, Wang Z, Li Y, Zhang Y, Chen X, Peng X. A Comprehensive Pyrolysis Mechanism of Binuclear Chromium-Based Complexes for Superior OER Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28664-28672. [PMID: 38787643 DOI: 10.1021/acsami.4c04688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Transition metal oxides are widely pursued as potent electrocatalysts for the oxygen evolution reaction (OER). However, single-metal chromium catalysts remain underexplored due to their intrinsic activity limitations. Herein, we successfully synthesize mixed-valence, nitrogen-doped Cr2O3/CrO3/CrN@NC nanoelectrocatalysts via one-step targeted pyrolysis techniques from a binuclear Cr-based complex (Cr2(Salophen)2(CH3OH)2), which is strategically designed as a precursor. Comprehensive pyrolysis mechanisms were thoroughly delineated by using coupled thermogravimetric analysis and mass spectrometry (TG-MS) alongside X-ray diffraction. Below 800 °C, the generation of a reducing atmosphere was noted, while continuous pyrolysis at temperatures exceeding 800 °C promoted highly oxidized CrO3 species with an elevated +6 oxidation state. The optimized catalyst pyrolyzed at 1000 °C (Cr2O3/CrO3/CrN@NCs-1000) demonstrated remarkable OER activity with a low overpotential of 290 mV in 1 M KOH and excellent stability. Further density functional theory (DFT) calculations revealed a much smaller reaction energy barrier of CrO3 than the low oxidation state species for OER reactivity. This work reveals fresh strategies for rationally engineering chromium-based electrocatalysts and overcoming intrinsic roadblocks to enable efficient OER catalysis through a deliberate oxidation state and compositional tuning.
Collapse
Affiliation(s)
- Meixing Gan
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry & Chemical Engineering, Research Institute of Qianjiang Industry Technology, Hubei University, No. 368 Youyi Avenue, Wuhan 430062, P. R. China
| | - Li Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry & Chemical Engineering, Research Institute of Qianjiang Industry Technology, Hubei University, No. 368 Youyi Avenue, Wuhan 430062, P. R. China
| | - Xixian Yang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry & Chemical Engineering, Research Institute of Qianjiang Industry Technology, Hubei University, No. 368 Youyi Avenue, Wuhan 430062, P. R. China
| | - Hongwei Rong
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry & Chemical Engineering, Research Institute of Qianjiang Industry Technology, Hubei University, No. 368 Youyi Avenue, Wuhan 430062, P. R. China
| | - Zheng Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry & Chemical Engineering, Research Institute of Qianjiang Industry Technology, Hubei University, No. 368 Youyi Avenue, Wuhan 430062, P. R. China
| | - Yuebin Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry & Chemical Engineering, Research Institute of Qianjiang Industry Technology, Hubei University, No. 368 Youyi Avenue, Wuhan 430062, P. R. China
| | - Yuexing Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Xueli Chen
- Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xu Peng
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry & Chemical Engineering, Research Institute of Qianjiang Industry Technology, Hubei University, No. 368 Youyi Avenue, Wuhan 430062, P. R. China
| |
Collapse
|
8
|
Duan D, Huo J, Chen J, Chi B, Chen Z, Sun S, Zhao Y, Zhao H, Cui Z, Liao S. Hf and Co Dual Single Atoms Co-Doped Carbon Catalyst Enhance the Oxygen Reduction Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310491. [PMID: 38189624 DOI: 10.1002/smll.202310491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Indexed: 01/09/2024]
Abstract
Single-atom metal-doped M-N-C (M═Fe, Co, Mn, or Ni) catalysts exhibit excellent catalytic activity toward oxygen reduction reactions (ORR). However, their performance still has a large gap considering the demand for their practical applications. This study reports a high-performance dual single-atom doped carbon catalyst (HfCo-N-C), which is prepared by pyrolyzing Co and Hf co-doped ZIF-8 . Co and Hf are atomically dispersed in the carbon framework and coordinated with N to form Co-N4 and Hf-N4 active moieties. The synergetic effect between Co-N4 and Hf-N4 significantly enhance the catalytic activity and durability of the catalyst. In an acidic medium, the ORR half-wave potential (E1/2) of the catalyst is up to 0.82 V , which is much higher than that of the Co-N-C catalyst without Hf co-doping (0.80 V). The kinetic current density of the catalyst is up to 2.49 A cm-2 at 0.85 V , which is 1.74 times that of the Co-N-C catalyst without Hf co-doping. Moreover, the catalyst exhibits excellent cathodic performance in single proton exchange membrane fuel cells and Zn-air batteries. Furthermore, Hf co-doping can effectively suppress the formation of H2O2, resulting in significantly improved stability and durability.
Collapse
Affiliation(s)
- Diancheng Duan
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Junlang Huo
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jiaxiang Chen
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Bin Chi
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhangsen Chen
- Centre Énergie, Matériaux et Télécommunications, Institute National de la Recherche Scientifique, Varennes, Québec, J3X 1P7, Canada
| | - Shuhui Sun
- Centre Énergie, Matériaux et Télécommunications, Institute National de la Recherche Scientifique, Varennes, Québec, J3X 1P7, Canada
| | - Yang Zhao
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - He Zhao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
- School of Chemistry and Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhiming Cui
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Shijun Liao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
9
|
Yao Y, Liu Y, Shin J, Cai S, Zhang X, Guo Z, Blackman CS. In-situ fabrication of self-supported cobalt molybdenum sulphide on carbon paper for bifunctional water electrocatalysis. Heliyon 2024; 10:e31108. [PMID: 38826749 PMCID: PMC11141360 DOI: 10.1016/j.heliyon.2024.e31108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
The fabrication of highly efficient yet stable noble-metal-free bifunctional electrocatalysts that can simultaneously catalyse both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) remains challenging. Herein, we employ the heterostructure coupling strategy, showcasing an aerosol-assisted chemical vapour deposition (AACVD) aided synthetic approach for the in-situ growth of cobalt molybdenum sulphide nanocomposites on carbon paper (CoMoS@CP) as a bifunctional electrocatalyst. The AACVD allows the rational incorporation of Co in the Mo-S binary structure, which modulates the morphology of CoMoS@CP, resulting in enhanced HER activity (ŋ10 = 171 mV in acidic and ŋ10 = 177 mV in alkaline conditions). Furthermore, the CoS2 species in the CoMoS@CP ternary structure extends the OER capability, yielding an ŋ100 of 455 mV in 1 M KOH. Lastly, we found that the synergistic effect of the Co-Mo-S interface elevates the bifunctional performance beyond binary counterparts, achieving a low cell voltage (1.70 V at 10 mA cm-2) in overall water splitting test and outstanding catalytic stability (∼90 % performance retention after 50-/30-h continuous operation at 10 and 100 mA cm-2, respectively). This work has opened up a new methodology for the controllable synthesis of self-supported transition metal-based electrocatalysts for applications in overall water splitting.
Collapse
Affiliation(s)
- Yuting Yao
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Yuhan Liu
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Juhun Shin
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Shenglin Cai
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Xinyue Zhang
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Zhengxiao Guo
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong SAR, 999077, China
- HKU Zhejiang Institute of Research and Innovation, Hangzhou, 311305, China
| | | |
Collapse
|
10
|
Zhou C, Shi S, Zhang X, Sun Y, Peng G, Yuan W. Mechanism insight into the N-C polar bond and Pd-Co heterojunction for improved hydrogen evolution activity. iScience 2024; 27:109620. [PMID: 38628965 PMCID: PMC11019276 DOI: 10.1016/j.isci.2024.109620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/04/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Constructing platinum-like materials with excellent catalytic activity and low cost has great significance for hydrogen evolution reaction (HER) during electrolysis of water. Herein, palladium nanoparticles (NPs) deposition on the surface of Co NPs using nitrogen-doped carbon (NC) as substrate, denoted as N-ZIFC/CoPd-30, are manufactured and served as HER electrocatalysts. Characterization results and density functional theory calculations validate that Pd-Co heterojunctions with NC acting as "electron donators" promote the Pd species transiting to the electron-rich state based on an efficient electron transfer mechanism, namely the N-C polar bonds induced strong metal-support interaction effect. The electron-rich Pd sites are beneficial to HER. Satisfactorily, N-ZIFC/CoPd-30 have only low overpotentials of 16, 162, and 13 mV@-10 mA cm-2 with the small Tafel slopes of 98 mV/decade, 126 mV/decade, and 72 mV/decade in pH of 13, 7, and 0, respectively. The success in fabricating N-ZIFC/CoPd opens a promising path to constructing other platinum-like electrocatalysts with high HER activity.
Collapse
Affiliation(s)
- Chenliang Zhou
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People’s Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Shaoyuan Shi
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People’s Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, People’s Republic of China
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Xingyu Zhang
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People’s Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Yuting Sun
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People’s Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Guan Peng
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People’s Republic of China
| | - Wenjing Yuan
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People’s Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, People’s Republic of China
| |
Collapse
|
11
|
Wang J, Li Y, Xu T, Zheng J, Xiao K, Sun B, Ge M, Yuan X, Zhou C, Cai Z. Nanoporous Nickel Cathode with an Electrostatic Chlorine-Resistant Surface for Industrial Seawater Electrolysis Hydrogen Production. Inorg Chem 2024; 63:5773-5778. [PMID: 38498977 DOI: 10.1021/acs.inorgchem.4c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Seawater electrolysis presents a promising avenue for green hydrogen production toward a carbon-free society. However, the electrode materials face significant challenges including severe chlorine-induced corrosion and high reaction overpotential, resulting in low energy conversion efficiency and low current density operation. Herein, we put forward a nanoporous nickel (npNi) cathode with high chlorine corrosion resistance for energy-efficient seawater electrolysis at industrial current densities (0.4-1 A cm-2). With the merits of an electrostatic chlorine-resistant surface, modulated Ni active sites, and a robust three-dimensional open structure, the npNi electrode showed a low hydrogen evolution reaction overpotential of 310 mV and a high electricity-hydrogen conversion efficiency of 59.7% at 400 mA cm-2 in real seawater and outperformed most Ni-based seawater electrolysis cathodes in recent publications and the commercial Ni foam electrode (459 mV, 46.4%) under the same test condition. In situ electrochemical impedance spectroscopy, high-frame-rate optical microscopy, and first-principles calculation revealed that the improved corrosion resistance, enhanced intrinsic activity, and mass transfer were responsible for the lowered electrocatalytic overpotential and enhanced energy efficiency.
Collapse
Affiliation(s)
- Jing Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yanqi Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Tian Xu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jie Zheng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Kaiwen Xiao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Bingbing Sun
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Ming Ge
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Chenggang Zhou
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhao Cai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
12
|
Wan Z, Wang L, Zhou Y, Xu S, Zhang J, Chen X, Li S, Ou C, Kong X. A frogspawn inspired twin Mo 2C/Ni composite with a conductive fibrous network as a robust bifunctional catalyst for advanced anion exchange membrane electrolyzers. NANOSCALE 2024. [PMID: 38439677 DOI: 10.1039/d3nr06242b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Anion exchange membrane water electrolysis (AEMWE) is considered one of the most cost-effective methods for producing green hydrogen. However, the performance of AEMWE is still restrained by the slow reaction kinetics and poor ion/electron transport of catalysts. Herein, inspired by frogspawn, Mo2C nanoparticles coupled with Ni were in situ embedded into a N-doped porous carbon nanofiber network (Mo2C/NCNTs@Ni) by chemical crosslinking electrospinning combined with carbonization. The unique bionic structure can guarantee favorable overall structural flexibility and fast ion/electron transport kinetics. As a result of the robust hydrogen binding energy of Mo2C, as well as the synergistic impact between Ni and Mo2C nanoparticles and the conductive network resembling frogspawn, the catalyst developed demonstrates excellent performance in both the HER and OER. When employed as a bifunctional catalyst in water electrolysis, Mo2C/NCNTs@Ni delivers overpotentials of 155 mV and 320 mV at 10 mA cm-2 for the HER and OER, respectively. In addition, the Mo2C/NCNTs@Ni also displays excellent long-term durability during a continuous operation test under different currents for 50 h. The assembled AEMWE electrolyzers with Mo2C/NCNTs@Ni as both the anode and cathode can achieve a current density of 82.5 mA cm-2 at 1.99 V, indicating great potential for industrial water splitting. These results give an insight for the development of advanced bifunctional electrocatalysts for the next generation of green and efficient H2 production by water electrolysis.
Collapse
Affiliation(s)
- Zhongmin Wan
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Linqing Wang
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Yuheng Zhou
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Siyuan Xu
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Jing Zhang
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Xi Chen
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Shi Li
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Changjie Ou
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Xiangzhong Kong
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| |
Collapse
|
13
|
Wang M, Li L, Li Y, Shi X, Ren H, Sun Y, Liu K, Song W, Li H, Wang H, Han M, Wang X, Momo CD, Chen S, Liu L, Liang H. Entropy engineering of La-based perovskite for simultaneous photocatalytic CO 2 reduction and biomass oxidation. Chem Commun (Camb) 2023. [PMID: 37994160 DOI: 10.1039/d3cc04393b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Herein, the high-entropy perovskite, i.e. La(FeCoNiCrMn)O3, was prepared for simultaneous CO2 reduction and biomass upgrading. Based on the synergistic effect between the elements in the high-entropy material, an excellent CO evolution rate of 131.8 μmol g-1 h-1 and a xylonic acid yield of 63.9% were gained.
Collapse
Affiliation(s)
- Mengchen Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Liming Li
- Purification equipment research institute of CSSC, Handan 056027, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yong Li
- CETC Deqing Huaying Electronics Co., Ltd., China
| | - Xuxia Shi
- CETC Deqing Huaying Electronics Co., Ltd., China
| | - Hangxing Ren
- Purification equipment research institute of CSSC, Handan 056027, China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuetao Sun
- Purification equipment research institute of CSSC, Handan 056027, China
| | - Kangning Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Wei Song
- CETC Deqing Huaying Electronics Co., Ltd., China
| | - Huamin Li
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Haibin Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Mei Han
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Xi Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Christopher Dorma Momo
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Songhua Chen
- College of Chemistry and Material Science, Longyan University, Longyan 364012, China.
| | - Lihua Liu
- College of Innovation & Entrepreneurship, Shanghai Jianqiao University, Shanghai, P. R. China.
| | - Hongyan Liang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| |
Collapse
|
14
|
Abdi J, Mazloom G. Machine learning approaches for predicting arsenic adsorption from water using porous metal-organic frameworks. Sci Rep 2022; 12:16458. [PMID: 36180503 PMCID: PMC9525301 DOI: 10.1038/s41598-022-20762-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
Arsenic in drinking water is a serious threat for human health due to its toxic nature and therefore, its eliminating is highly necessary. In this study, the ability of different novel and robust machine learning (ML) approaches, including Light Gradient Boosting Machine (LightGBM), Extreme Gradient Boosting, Gradient Boosting Decision Tree, and Random Forest was implemented to predict the adsorptive removal of arsenate [As(V)] from wastewater over 13 different metal–organic frameworks (MOFs). A large experimental dataset was collected under various conditions. The adsorbent dosage, contact time, initial arsenic concentration, adsorbent surface area, temperature, solution pH, and the presence of anions were considered as input variables, and adsorptive removal of As(V) was selected as the output of the models. The developed models were evaluated using various statistical criteria. The obtained results indicated that the LightGBM model provided the most accurate and reliable response to predict As(V) adsorption by MOFs and possesses R2, RMSE, STD, and AAPRE (%) of 0.9958, 2.0688, 0.0628, and 2.88, respectively. The expected trends of As(V) removal with increasing initial concentration, solution pH, temperature, and coexistence of anions were predicted reasonably by the LightGBM model. Sensitivity analysis revealed that the adsorption process adversely relates to the initial As(V) concentration and directly depends on the MOFs surface area and dosage. This study proves that ML approaches are capable to manage complicated problems with large datasets and can be affordable alternatives for expensive and time-consuming experimental wastewater treatment processes.
Collapse
Affiliation(s)
- Jafar Abdi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| | - Golshan Mazloom
- Department of Chemical Engineering, Faculty of Engineering, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
15
|
Rationalizing Structural Hierarchy in the Design of Fuel Cell Electrode and Electrolyte Materials Derived from Metal-Organic Frameworks. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Metal-organic frameworks (MOFs) are arguably a class of highly tuneable polymer-based materials with wide applicability. The arrangement of chemical components and the bonds they form through specific chemical bond associations are critical determining factors in their functionality. In particular, crystalline porous materials continue to inspire their development and advancement towards sustainable and renewable materials for clean energy conversion and storage. An important area of development is the application of MOFs in proton-exchange membrane fuel cells (PEMFCs) and are attractive for efficient low-temperature energy conversion. The practical implementation of fuel cells, however, is faced by performance challenges. To address some of the technical issues, a more critical consideration of key problems is now driving a conceptualised approach to advance the application of PEMFCs. Central to this idea is the emerging field MOF-based systems, which are currently being adopted and proving to be a more efficient and durable means of creating electrodes and electrolytes for proton−exchange membrane fuel cells. This review proposes to discuss some of the key advancements in the modification of PEMs and electrodes, which primarily use functionally important MOFs. Further, we propose to correlate MOF-based PEMFC design and the deeper correlation with performance by comparing proton conductivities and catalytic activities for selected works.
Collapse
|