1
|
Lai CM, Xiao XS, Chen JY, He WY, Wang SS, Qin Y, He SH. Revolutionizing nanozymes: The synthesis, enzyme-mimicking capabilities of carbon dots, and advancements in catalytic mechanisms. Int J Biol Macromol 2024; 293:139284. [PMID: 39736288 DOI: 10.1016/j.ijbiomac.2024.139284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Nanozymes, a revolutionary category of engineered artificial enzymes based on nanomaterials, have been developed to overcome the inherent limitations of natural enzymes, such as the high cost associated with storage and their fragility. Carbon dots (CDs) have emerged as compelling candidates for various applications due to their versatile properties. Particularly noteworthy are CDs with a range of surface functional groups that exhibit enzyme-like behavior, combining exceptional performance with catalytic capabilities. This review explores the methodologies used for synthesizing CDs with enzyme mimicking capabilities, highlighting potential avenues such as doping and hybrid nanozymes to enhance their catalytic efficacy. Moreover, a comprehensive overview of CDs that mimick the activities of various oxidoreductases-like peroxidase, catalase, oxidase/laccase, and superoxide dismutase-like is provided. The focus is on the in-depth exploration of the mechanisms, advancements and practical applications of each oxidoreductase-like function exhibited by CD nanozymes. Drawing upon these exhaustive summaries and analyses, the review identifies the prevailing challenges that hinder the seamless integration of CDs into real-world applications and offers forward-looking perspectives for future directions.
Collapse
Affiliation(s)
- Chun-Mei Lai
- College of Life Sciences, Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University Fuzhou, Fujian 350002, P. R. China
| | - Xiao-Shan Xiao
- College of Life Sciences, Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University Fuzhou, Fujian 350002, P. R. China
| | - Jing-Yi Chen
- Shengli Clinical Medical College of Fujian Medical University Department of Pediatrics Surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital 134 Dongjie Road, Fuzhou, Fujian 350001, P. R. China
| | - Wen-Yun He
- Shengli Clinical Medical College of Fujian Medical University Department of Pediatrics Surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital 134 Dongjie Road, Fuzhou, Fujian 350001, P. R. China
| | - Si-Si Wang
- Shengli Clinical Medical College of Fujian Medical University Department of Pediatrics Surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital 134 Dongjie Road, Fuzhou, Fujian 350001, P. R. China
| | - Yuan Qin
- College of Life Sciences, Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University Fuzhou, Fujian 350002, P. R. China.
| | - Shao-Hua He
- Shengli Clinical Medical College of Fujian Medical University Department of Pediatrics Surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital 134 Dongjie Road, Fuzhou, Fujian 350001, P. R. China.
| |
Collapse
|
2
|
Wang X, Tarahomi M, Sheibani R, Xia C, Wang W. Progresses in lignin, cellulose, starch, chitosan, chitin, alginate, and gum/carbon nanotube (nano)composites for environmental applications: A review. Int J Biol Macromol 2023; 241:124472. [PMID: 37076069 DOI: 10.1016/j.ijbiomac.2023.124472] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Water sources are becoming increasingly scarce, and they are contaminated by industrial, residential, and agricultural waste-derived organic and inorganic contaminants. These contaminants may pollute the air, water, and soil in addition to invading the ecosystem. Because carbon nanotubes (CNTs) can undergo surface modification, they can combine with other substances to create nanocomposites (NCs), including biopolymers, metal nanoparticles, proteins, and metal oxides. Furthermore, biopolymers are significant classes of organic materials that are widely used for various applications. They have drawn attention due to their benefits such as environmental friendliness, availability, biocompatibility, safety, etc. As a result, the synthesis of a composite made of CNT and biopolymers can be very effective for a variety of applications, especially those involving the environment. In this review, we reported environmental applications (including removal of dyes, nitro compounds, hazardous materialsو toxic ions, etc.) of composites made of CNT and biopolymers such as lignin, cellulose, starch, chitosan, chitin, alginate, and gum. Also, the effect of different factors such as the medium pH, the pollutant concentration, temperature, and contact time on the adsorption capacity (AC) and the catalytic activity of the composite in the reduction or degradation of various pollutants has been systematically explained.
Collapse
Affiliation(s)
- Xuan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Mehrasa Tarahomi
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh San'ati, Mahshahr, Khouzestan, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh San'ati, Mahshahr, Khouzestan, Iran.
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Weidong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
3
|
Xia C, Jin X, Parandoust A, Sheibani R, Khorsandi Z, Montazeri N, Wu Y, Van Le Q. Chitosan-supported metal nanocatalysts for the reduction of nitroaromatics. Int J Biol Macromol 2023; 239:124135. [PMID: 36965557 DOI: 10.1016/j.ijbiomac.2023.124135] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
The second most abundant natural polymer in the earth's crust is chitosan (CS). The unique physical, chemical, structural, and mechanical features of this natural polymer have led to its increased application in a variety of fields such as medicine, catalysis, removal of pollutants, etc. To eliminate various pollutants, it is preferable to employ natural compounds as their use aids the removal of contaminants from the environment. Consequently, employing CS to eliminate contaminants is a viable choice. For this aim, CS can be applied as a template and support for metal nanoparticles (MNPs) and prevent the accumulation of MNPs as well as a reducing and stabilizing agent for the fabrication of MNPs. Among the pollutants present in nature, nitro compounds are an important and wide category of biological pollutants. 4-Nitrophenol (4-NP) is one of the nitro pollutants. There are different ways for the removal of 4-NP, but the best and most effective method for this purpose is the application of a metallic catalyst and a reducing agent. In this review, we report the recent developments regarding CS-supported metallic (nano)catalysts for the reduction of nitroaromatics such as nitrophenols, nitroaniline compounds, nitrobenzene, etc. in the presence of reducing agents. The metals investigated in this study include Ag, Au, Ni, Cu, Ru, Pt, Pd, etc.
Collapse
Affiliation(s)
- Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ahmad Parandoust
- Farabi Educational Institute, Moghadas Ardebili St., Mahmoodiye St., No 13, 1986743413 Tehran, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran.
| | - Zahra Khorsandi
- Department of Chemistry, Isfahan University of Technology, Isfahan 415683111, Iran
| | - Narjes Montazeri
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
4
|
Mahar AM, Alveroglu E, Balouch A, Talpur FN, Jagirani MS. Fabrication of Fe/Bi bimetallic magnetic nano-oxides (IBBMNOs) as efficient remediator for hexavalent chromium from aqueous environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65161-65175. [PMID: 35482238 DOI: 10.1007/s11356-022-20239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
In this study, highly efficient Fe/Bi bimetallic magnetic nanooxides (IBBMNOs) were used as adsorbent for the removal of Cr(VI) from an aqueous environment. The IBBMNOs were synthesized by a simple and facile chemical reduction method. After that, different analytical techniques were used to characterize the resultant nanomaterial. According to characterization results, the IBBMNOs are highly porous look like cotton beads with an average size of 60-69 nm. BET results show that IBBMNOs are highly porous with a high surface area. After optimizing different parameters such as pH, adsorbent dose, and time study, an excellent adsorption capacity was achieved up to 185 mg/g in 10 min. The calculated data of the adsorption process was well fitted with Langmuir and pseudo-first-order kinetic model. The prepared materials have good usability as compared to reported adsorbent materials can be used for five different cycles with good removal efficiency of chromium ion from aqueous samples. Schematic illustration of adsorption of Cr(VI) from aqueous solution by IBBMNOs.
Collapse
Affiliation(s)
- Ali Muhammad Mahar
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro,, 76080, Sindh, Pakistan
| | - Esra Alveroglu
- Department of Physics Engineering, Faculty of Science and Letters, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Aamna Balouch
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro,, 76080, Sindh, Pakistan.
| | - Farah Naz Talpur
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro,, 76080, Sindh, Pakistan
| | - Muhammad Saqaf Jagirani
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro,, 76080, Sindh, Pakistan
| |
Collapse
|
5
|
Liu M, Zhang G. Amorphous Goethite as a Catalyst of Chemoselectivity Epoxidation of Alkenes by Hydrogen Peroxide. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222080230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Xie N, Zhang X, Guo Y, Guo R, Wang Y, Sun Z, Li H, Jia H, Jiang T, Gao J, Wang J, Niu D, Sun HB. Hollow Mn/Co-LDH produced by in-situ etching-growth of MOF: Nanoreactant for steady chemical immobilization of antimony. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Polydopamine assisted synthesis of ultrafine silver nanoparticles for heterogeneous catalysis and water remediation. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100489] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Ai Y, Xie R, Xiong J, Liang Q. Microfluidics for Biosynthesizing: from Droplets and Vesicles to Artificial Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903940. [PMID: 31603270 DOI: 10.1002/smll.201903940] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/20/2019] [Indexed: 05/18/2023]
Abstract
Fabrication of artificial biomimetic materials has attracted abundant attention. As one of the subcategories of biomimetic materials, artificial cells are highly significant for multiple disciplines and their synthesis has been intensively pursued. In order to manufacture robust "alive" artificial cells with high throughput, easy operation, and precise control, flexible microfluidic techniques are widely utilized. Herein, recent advances in microfluidic-based methods for the synthesis of droplets, vesicles, and artificial cells are summarized. First, the advances of droplet fabrication and manipulation on the T-junction, flow-focusing, and coflowing microfluidic devices are discussed. Then, the formation of unicompartmental and multicompartmental vesicles based on microfluidics are summarized. Furthermore, the engineering of droplet-based and vesicle-based artificial cells by microfluidics is also reviewed. Moreover, the artificial cells applied for imitating cell behavior and acting as bioreactors for synthetic biology are highlighted. Finally, the current challenges and future trends in microfluidic-based artificial cells are discussed. This review should be helpful for researchers in the fields of microfluidics, biomaterial fabrication, and synthetic biology.
Collapse
Affiliation(s)
- Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Ruoxiao Xie
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jialiang Xiong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
9
|
Ai Y, Zhang F, Wang C, Xie R, Liang Q. Recent progress in lab-on-a-chip for pharmaceutical analysis and pharmacological/toxicological test. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Formenti D, Ferretti F, Scharnagl FK, Beller M. Reduction of Nitro Compounds Using 3d-Non-Noble Metal Catalysts. Chem Rev 2018; 119:2611-2680. [PMID: 30516963 DOI: 10.1021/acs.chemrev.8b00547] [Citation(s) in RCA: 369] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The reduction of nitro compounds to the corresponding amines is one of the most utilized catalytic processes in the fine and bulk chemical industry. The latest development of catalysts with cheap metals like Fe, Co, Ni, and Cu has led to their tremendous achievements over the last years prompting their greater application as "standard" catalysts. In this review, we will comprehensively discuss the use of homogeneous and heterogeneous catalysts based on non-noble 3d-metals for the reduction of nitro compounds using various reductants. The different systems will be revised considering both the catalytic performances and synthetic aspects highlighting also their advantages and disadvantages.
Collapse
Affiliation(s)
- Dario Formenti
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany
| | - Francesco Ferretti
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany
| | - Florian Korbinian Scharnagl
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany
| |
Collapse
|
11
|
Two dimensional Rh/Fe3O4/g-C3N4-N enabled hydrazine mediated catalytic transfer hydrogenation of nitroaromatics: A predictable catalyst model with adjoining Rh. J Catal 2018. [DOI: 10.1016/j.jcat.2018.09.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Kumar R, Sahoo B. One-step pyrolytic synthesis and growth mechanism of core–shell type Fe/Fe3C-graphite nanoparticles-embedded carbon globules. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.nanoso.2018.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Ai Y, Liu L, Zhang C, Qi L, He M, Liang Z, Sun HB, Luo G, Liang Q. Amorphous Flowerlike Goethite FeOOH Hierarchical Supraparticles: Superior Capability for Catalytic Hydrogenation of Nitroaromatics in Water. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32180-32191. [PMID: 30179446 DOI: 10.1021/acsami.8b10711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fabrication of anilines from the corresponding nitroaromatics is a hot topic both for academia and for industry; however, conducting this protocol in water over a noble-metal-free catalytic system is still a great challenge. Continuous efforts are being made on exploiting novel catalysts for this transformation. In this work, we developed a scalable method for synthesizing the uniform flowerlike amorphous α-FeOOH hierarchical supraparticles. The well-defined amorphous α-FeOOH was prepared through an environmentally benign method, which is hydrolysis of the self-assembled iron glycolate at room temperature. Compared with other iron-only catalysts, this flowerlike amorphous α-FeOOH hierarchical supraparticle catalyst exhibits the best performance in the catalytic reduction of nitroaromatics to corresponding anilines by using water as the reaction solvent (turn over frequency is 106 h-1 for 4-nitrophenol in water). The further results indicated that the amorphous structure, special nanostructures, and adsorption-desorption synergy offered excellent activity. The kinetics study shows that the reduction of 4-nitrophenol is first order for α-FeOOH, and the apparent active energy Ea is 75.9 kJ mol-1. Furthermore, this catalyst can be used for eight times without obvious catalytic activity loss. We believe that this novel flowerlike amorphous α-FeOOH hierarchical supraparticle catalyst is a milestone in the reduction of nitro compounds.
Collapse
Affiliation(s)
- Yongjian Ai
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
- Department of Chemistry , Northeastern University , Shenyang 110819 , P. R. China
| | - Lei Liu
- Department of Chemistry , Northeastern University , Shenyang 110819 , P. R. China
| | - Cheng Zhang
- Department of Chemistry , Northeastern University , Shenyang 110819 , P. R. China
| | - Li Qi
- Department of Chemistry , Northeastern University , Shenyang 110819 , P. R. China
| | - Mengqi He
- Department of Chemistry , Northeastern University , Shenyang 110819 , P. R. China
| | - Zhe Liang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Hong-Bin Sun
- Department of Chemistry , Northeastern University , Shenyang 110819 , P. R. China
| | - Guoan Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health , Macau University of Science and Technology , Macau 999078 , P. R. China
| | - Qionglin Liang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| |
Collapse
|
14
|
Kumar R, Sahoo B. Carbon nanotubes or carbon globules: Optimization of the pyrolytic synthesis parameters and study of the magnetic properties. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.nanoso.2018.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Ai Y, He M, Lv Q, Liu L, Sun HB, Ding M, Liang Q. 3D Porous Carbon Framework Stabilized Ultra-Uniform Nano γ-Fe2
O3
: A Useful Catalyst System. Chem Asian J 2017; 13:89-98. [DOI: 10.1002/asia.201701457] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Yongjian Ai
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education); Beijing Key Lab of Microanalytical Methods & Instrumentation; Department of Chemistry; Tsinghua University; Beijing 100084 P. R. China
- Department of Chemistry; Northeastern University; Shenyang 110819 P. R. China
| | - Mengqi He
- Department of Chemistry; Northeastern University; Shenyang 110819 P. R. China
| | - Qianrui Lv
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education); Beijing Key Lab of Microanalytical Methods & Instrumentation; Department of Chemistry; Tsinghua University; Beijing 100084 P. R. China
| | - Lei Liu
- Department of Chemistry; Northeastern University; Shenyang 110819 P. R. China
| | - Hong-bin Sun
- Department of Chemistry; Northeastern University; Shenyang 110819 P. R. China
| | - Mingyu Ding
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education); Beijing Key Lab of Microanalytical Methods & Instrumentation; Department of Chemistry; Tsinghua University; Beijing 100084 P. R. China
| | - Qionglin Liang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education); Beijing Key Lab of Microanalytical Methods & Instrumentation; Department of Chemistry; Tsinghua University; Beijing 100084 P. R. China
| |
Collapse
|
16
|
Kumar R, Rajendiran R, Choudhary HK, G.M. NK, Balaiah B, A.V. A, Sahoo B. Role of pyrolysis reaction temperature and heating-rate in the growth and morphology of carbon nanostructures. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.nanoso.2017.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|