1
|
Marinoiu A, Raceanu M, Carcadea E, Varlam M. Nitrogen-Doped Graphene Oxide as Efficient Metal-Free Electrocatalyst in PEM Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1233. [PMID: 37049326 PMCID: PMC10096973 DOI: 10.3390/nano13071233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Nitrogen-doped graphene is currently recognized as one of the most promising catalysts for the oxygen reduction reaction (ORR). It has been demonstrated to act as a metal-free electrode with good electrocatalytic activity and long-term operation stability, excellent for the ORR in proton exchange membrane fuel cells (PEMFCs). As a consequence, intensive research has been dedicated to the investigation of this catalyst through varying the methodologies for the synthesis, characterization, and technologies improvement. A simple, scalable, single-step synthesis method for nitrogen-doped graphene oxide preparation was adopted in this paper. The physical and chemical properties of various materials obtained from different precursors have been evaluated and compared, leading to the conclusion that ammonia allows for a higher resulting nitrogen concentration, due to its high vapor pressure, which facilitates the functionalization reaction of graphene oxide. Electrochemical measurements indicated that the presence of nitrogen-doped oxide can effectively enhance the electrocatalytic activity and stability for ORR, making it a viable candidate for practical application as a PEMFC cathode electrode.
Collapse
Affiliation(s)
- Adriana Marinoiu
- ICSI Energy Department, National Research and Development Institute for Cryogenic and Isotopic Technologies, 240050 Ramnicu Valcea, Romania
| | - Mircea Raceanu
- ICSI Energy Department, National Research and Development Institute for Cryogenic and Isotopic Technologies, 240050 Ramnicu Valcea, Romania
- Doctoral School, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Elena Carcadea
- ICSI Energy Department, National Research and Development Institute for Cryogenic and Isotopic Technologies, 240050 Ramnicu Valcea, Romania
| | - Mihai Varlam
- ICSI Energy Department, National Research and Development Institute for Cryogenic and Isotopic Technologies, 240050 Ramnicu Valcea, Romania
| |
Collapse
|
2
|
Kumari R, Sahu SK. A new insights into multicolor emissive carbon dots using Trachelospermum jasminoides leaves for the application of WLEDs. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
An In-Depth Exploration of the Electrochemical Oxygen Reduction Reaction (ORR) Phenomenon on Carbon-Based Catalysts in Alkaline and Acidic Mediums. Catalysts 2022. [DOI: 10.3390/catal12070791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Detailed studies of the electrochemical oxygen reduction reaction (ORR) on catalyst materials are crucial to improving the performance of different electrochemical energy conversion and storage systems (e.g., fuel cells and batteries), as well as numerous chemical synthesis processes. In the effort to reduce the loading of expensive platinum group metal (PGM)-based catalysts for ORR in the electrochemical systems, many carbon-based catalysts have already shown promising results and numerous investigations on those catalysts are in progress. Most of these studies show the catalyst materials’ ORR performance as current density data obtained through the rotating disk electrode (RDE), rotating ring-disk electrode (RRDE) experiments taking cyclic voltammograms (CV) or linear sweep voltammograms (LSV) approaches. However, the provided descriptions or interpretations of those data curves are often ambiguous and recondite which can lead to an erroneous understanding of the ORR phenomenon in those specific systems and inaccurate characterization of the catalyst materials. In this paper, we presented a study of ORR on a newly developed carbon-based catalyst, the nitrogen-doped graphene/metal-organic framework (N-G/MOF), through RDE and RRDE experiments in both alkaline and acidic mediums, taking the LSV approach. The functions and crucial considerations for the different parts of the RDE/RRDE experiment such as the working electrode, reference electrode, counter electrode, electrolyte, and overall RDE/RRDE process are delineated which can serve as guidelines for the new researchers in this field. Experimentally obtained LSV curves’ shapes and their correlations with the possible ORR reaction pathways within the applied potential range are discussed in depth. We also demonstrated how the presence of hydrogen peroxide (H2O2), a possible intermediate of ORR, in the alkaline electrolyte and the concentration of acid in the acidic electrolyte can maneuver the ORR current density output in compliance with the possible ORR pathways.
Collapse
|
4
|
Successful Manufacturing Protocols of N-Rich Carbon Electrodes Ensuring High ORR Activity: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10040643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The exploration and development of different carbon nanomaterials happening over the past years have established carbon electrodes as an important electrocatalyst for oxygen reduction reaction. Metal-free catalysts are especially promising potential alternatives for replacing Pt-based catalysts. This article describes recent advances and challenges in the three main synthesis manners (i.e., pyrolysis, hydrothermal method, and chemical vapor deposition) as effective methods for the production of metal-free carbon-based catalysts. To improve the catalytic activity, heteroatom doping the structure of graphene, carbon nanotubes, porous carbons, and carbon nanofibers is important and makes them a prospective candidate for commercial applications. Special attention is paid to providing an overview on the recent major works about nitrogen-doped carbon electrodes with various concentrations and chemical environments of the heteroatom active sites. A detailed discussion and summary of catalytic properties in aqueous electrolytes is given for graphene and porous carbon-based catalysts in particular, including recent studies performed in the authors’ research group. Finally, we discuss pathways and development opportunities approaching the practical use of mainly graphene-based catalysts for metal–air batteries and fuel cells.
Collapse
|
5
|
Etienne EE, Nunna BB, Talukder N, Wang Y, Lee ES. COVID-19 Biomarkers and Advanced Sensing Technologies for Point-of-Care (POC) Diagnosis. Bioengineering (Basel) 2021; 8:98. [PMID: 34356205 PMCID: PMC8301167 DOI: 10.3390/bioengineering8070098] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19, also known as SARS-CoV-2 is a novel, respiratory virus currently plaguing humanity. Genetically, at its core, it is a single-strand positive-sense RNA virus. It is a beta-type Coronavirus and is distinct in its structure and binding mechanism compared to other types of coronaviruses. Testing for the virus remains a challenge due to the small market available for at-home detection. Currently, there are three main types of tests for biomarker detection: viral, antigen and antibody. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) remains the gold standard for viral testing. However, the lack of quantitative detection and turnaround time for results are drawbacks. This manuscript focuses on recent advances in COVID-19 detection that have lower limits of detection and faster response times than RT-PCR testing. The advancements in sensing platforms have amplified the detection levels and provided real-time results for SARS-CoV-2 spike protein detection with limits as low as 1 fg/mL in the Graphene Field Effect Transistor (FET) sensor. Additionally, using multiple biomarkers, detection levels can achieve a specificity and sensitivity level comparable to that of PCR testing. Proper biomarker selection coupled with nano sensing detection platforms are key in the widespread use of Point of Care (POC) diagnosis in COVID-19 detection.
Collapse
Affiliation(s)
- Ernst Emmanuel Etienne
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (E.E.E.); (B.B.N.); (N.T.); (Y.W.)
| | - Bharath Babu Nunna
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (E.E.E.); (B.B.N.); (N.T.); (Y.W.)
- Division of Engineering in Medicine, Department of Medicine, Brigham, and Women’s Hospital, Harvard Medical School, Harvard University, Cambridge, MA 02139, USA
| | - Niladri Talukder
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (E.E.E.); (B.B.N.); (N.T.); (Y.W.)
| | - Yudong Wang
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (E.E.E.); (B.B.N.); (N.T.); (Y.W.)
| | - Eon Soo Lee
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (E.E.E.); (B.B.N.); (N.T.); (Y.W.)
| |
Collapse
|
6
|
Wang Y, Nunna BB, Talukder N, Etienne EE, Lee ES. Blood Plasma Self-Separation Technologies during the Self-Driven Flow in Microfluidic Platforms. Bioengineering (Basel) 2021; 8:94. [PMID: 34356201 PMCID: PMC8301051 DOI: 10.3390/bioengineering8070094] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/19/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Blood plasma is the most commonly used biofluid in disease diagnostic and biomedical analysis due to it contains various biomarkers. The majority of the blood plasma separation is still handled with centrifugation, which is off-chip and time-consuming. Therefore, in the Lab-on-a-chip (LOC) field, an effective microfluidic blood plasma separation platform attracts researchers' attention globally. Blood plasma self-separation technologies are usually divided into two categories: active self-separation and passive self-separation. Passive self-separation technologies, in contrast with active self-separation, only rely on microchannel geometry, microfluidic phenomena and hydrodynamic forces. Passive self-separation devices are driven by the capillary flow, which is generated due to the characteristics of the surface of the channel and its interaction with the fluid. Comparing to the active plasma separation techniques, passive plasma separation methods are more considered in the microfluidic platform, owing to their ease of fabrication, portable, user-friendly features. We propose an extensive review of mechanisms of passive self-separation technologies and enumerate some experimental details and devices to exploit these effects. The performances, limitations and challenges of these technologies and devices are also compared and discussed.
Collapse
Affiliation(s)
- Yudong Wang
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
| | - Bharath Babu Nunna
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Cambridge, MA 02139, USA
| | - Niladri Talukder
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
| | - Ernst Emmanuel Etienne
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
| | - Eon Soo Lee
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
| |
Collapse
|
7
|
Hossain SKS. Bimetallic Pd–Fe Supported on Nitrogen-Doped Reduced Graphene Oxide as Electrocatalyst for Formic Acid Oxidation. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05192-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Eco-Friendly Nitrogen-Doped Graphene Preparation and Design for the Oxygen Reduction Reaction. Molecules 2021; 26:molecules26133858. [PMID: 34202753 PMCID: PMC8270343 DOI: 10.3390/molecules26133858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/21/2021] [Indexed: 11/29/2022] Open
Abstract
Four N-doped graphene materials with a nitrogen content ranging from 8.34 to 13.1 wt.% are prepared by the ball milling method. This method represents an eco-friendly mechanochemical process that can be easily adapted for industrial-scale productivity and allows both the exfoliation of graphite and the synthesis of large quantities of functionalized graphene. These materials are characterized by transmission and scanning electron microscopy, thermogravimetry measurements, X-ray powder diffraction, X-ray photoelectron and Raman spectroscopy, and then, are tested towards the oxygen reduction reaction by cyclic voltammetry and rotating disk electrode methods. Their responses towards ORR are analysed in correlation with their properties and use for the best ORR catalyst identification. However, even though the mechanochemical procedure and the characterization techniques are clean and green methods (i.e., water is the only solvent used for these syntheses and investigations), they are time consuming and, generally, a low number of materials can be prepared, characterized and tested. In order to eliminate some of these limitations, the use of regression learner and reverse engineering methods are proposed for facilitating the optimization of the synthesis conditions and the materials’ design. Thus, the machine learning algorithms are applied to data containing the synthesis parameters, the results obtained from different characterization techniques and the materials response towards ORR to quickly provide predictions that allow the best synthesis conditions or the best electrocatalysts’ identification.
Collapse
|
9
|
dos Santos TC, Mancera RC, Rocha MV, da Silva AF, Furtado IO, Barreto J, Stavale F, Archanjo BS, de M. Carneiro JW, Costa LT, Ronconi CM. CO2 and H2 adsorption on 3D nitrogen-doped porous graphene: Experimental and theoretical studies. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Shida N, Nishimi H, Asanuma Y, Tomita I, Inagi S. Synthesis of a conjugated polymer with ring-fused pyridinium units via a postpolymerization intramolecular cyclization reaction. Polym J 2020. [DOI: 10.1038/s41428-020-0388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Kamedulski P, Truszkowski S, Lukaszewicz JP. Highly Effective Methods of Obtaining N-Doped Graphene by Gamma Irradiation. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4975. [PMID: 33167374 PMCID: PMC7663846 DOI: 10.3390/ma13214975] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 11/16/2022]
Abstract
The design and fabrication of a new effective manufacturing method of heteroatom-doped carbon materials is still ongoing. In this paper, we present alternative and facile methods to obtain N-rich graphene with the use of low energy gamma radiation. This method was used as a pure and facile method for altering the physical and chemical properties of graphene. The obtained materials have an exceptionally high N content-up to 4 wt %. (dry method) and up to 2 wt %. (wet method). High-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectra and X-ray photoelectron spectroscopy (XPS) studies allowed us to evaluate the quality of the obtained materials. The presented results will provide new insights in designing and optimizing N-doped carbon materials potentially for the development of anode or cathode materials for electrochemical device applications, especially supercapacitors, metal-air batteries and fuel cells. Nitrogen atoms are exclusively bonded as quaternary groups. The method is expandable to the chemical insertion of other heteroatoms to graphene, especially such as sulfur, boron or phosphorus.
Collapse
Affiliation(s)
- Piotr Kamedulski
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland; (P.K.); (S.T.)
| | - Stanislaw Truszkowski
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland; (P.K.); (S.T.)
| | - Jerzy P. Lukaszewicz
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland; (P.K.); (S.T.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
| |
Collapse
|
12
|
Pentsak EO, Gordeev EG, Ananikov VP. Carbocatalysis: From Acetylene Trimerization to Modern Organic Synthesis. A Review. DOKLADY PHYSICAL CHEMISTRY 2020. [DOI: 10.1134/s0012501620380017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Abstract
The oxygen reduction reaction (ORR) is a key process for the operation of fuel cells. To accelerate the sluggish kinetics of ORR, a wide range of catalysts have been proposed and tested. In this work, a nano-dispersed copper-impregnated platinum catalyst prepared by electrodeposition of platinum on a poly[Cu(Salen)] template followed by polymer destruction is described. In addition to the high activity of the thus prepared catalyst in the oxygen reduction reaction surpassing that of both polycrystalline platinum catalyst and the commercial carbon-platinum catalyst (“E-TEK”), it showed remarkable tolerance to the presence of methanol in solution.
Collapse
|