1
|
Joo S, Lee CE, Kang J, Seo S, Song YK, Kim JH. Intaglio Contact Printing of Versatile Carbon Nanotube Composites and Its Applications for Miniaturizing High-Performance Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106174. [PMID: 34878227 DOI: 10.1002/smll.202106174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Composites based on carbon nanotubes (CNTs) are promising patternable materials that can be engineered to incorporate the outstanding properties of CNTs into various applications via printing technologies. However, conventional printing methods for CNTs require further improvement to overcome the major drawbacks that limit the patterning resolution and target substrate. Herein, an intaglio contact printing method based on a CNT/paraffin composite is presented for realizing highly precise CNT network patterns without restrictions on the substrate. In this method, the CNT/paraffin composite can be patterned with a high resolution (<10 µm) and neatly transferred onto various substrates with a wide range of surface energies, including human skin. The patterned composite exhibits high durability against structural deformations, and structural damage caused by fatigue accumulation can be cured in a few seconds. In addition, miniaturized sensing and energy-harvesting applications are demonstrated with high performances. The present method facilitates the rapid fabrication of highly precise interdigitated electrodes via one-step printing, enabling high-performance operation and miniaturization of the devices. It is anticipated that these results will not only spur the further development of various applications of CNTs but also contribute to advances in soft lithography methods applicable to many fields of science and engineering.
Collapse
Affiliation(s)
- Seokwon Joo
- Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - Chae-Eun Lee
- Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeongmin Kang
- Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - Soonmin Seo
- College of BioNano Technology, Gachon University, Gyeonggi, 13120, Republic of Korea
| | - Yoon-Kyu Song
- Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ju-Hyung Kim
- Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| |
Collapse
|
2
|
Gu Y, Jiang L, Jin W, Wei Z, Liu X, Guo M, Xia K, Chen L. Experimental research and molecular dynamics simulation on thermal properties of capric acid/ethylene-vinyl/graphene composite phase change materials. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
The Effect of Hydroxylated Multi-Walled Carbon Nanotubes on the Properties of Peg-Cacl2 Form-Stable Phase Change Materials. ENERGIES 2021. [DOI: 10.3390/en14051403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Calcium ions can react with polyethylene glycol (PEG) to form a form-stable phase change material, but the low thermal conductivity hinders its practical application. In this paper, hydroxylated multi-walled carbon nanotubes (MWCNTs) with different mass are introduced into PEG1500·CaCl2 form-stable phase change material to prepare a new type of energy storage material. Carbon nanotubes increased the mean free path (MFP) of phonons and effectively reduced the interfacial thermal resistance between pure PEG and PEG1500·CaCl2 3D skeleton structure. Thermal conductivity was significant improved after increasing MWCNTs mass, while the latent heat decreases. At 1.5 wt%, composite material shows the highest phase change temperature of 42 °C, and its thermal conductivity is 291.30% higher than pure PEG1500·CaCl2. This article can provide some suggestions for the preparation and application of high thermal conductivity form-stable phase change materials.
Collapse
|
4
|
Lau YJ, Karri RR, Mubarak NM, Lau SY, Chua HB, Khalid M, Jagadish P, Abdullah EC. Removal of dye using peroxidase-immobilized Buckypaper/polyvinyl alcohol membrane in a multi-stage filtration column via RSM and ANFIS. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40121-40134. [PMID: 32656753 DOI: 10.1007/s11356-020-10045-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
The feasibility and performance of Jicama peroxidase (JP) immobilized Buckypaper/polyvinyl alcohol (BP/PVA) membrane for methylene blue (MB) dye removal was investigated in a customized multi-stage filtration column under batch recycle mode. The effect of independent variables, such as influent flow rate, ratio of H2O2/MB dye concentration, and contact time on the dye removal efficiency, were investigated using response surface methodology (RSM). To capture the inherent characteristics and better predict the removal efficiency, a data-driven adaptive neuro-fuzzy inference system (ANFIS) is implemented. Results indicated that the optimum dye removal efficiency of 99.7% was achieved at a flow rate of 2 mL/min, 75:1 ratio of H2O2/dye concentration with contact time of 183 min. The model predictions of ANFIS are significantly good compared with RSM, thus resulting in R2 values of 0.9912 and 0.9775, respectively. The enzymatic kinetic parameters, Km and Vmax, were evaluated, which are 1.98 mg/L and 0.0219 mg/L/min, respectively. Results showed that JP-immobilized BP/PVA nanocomposite membrane can be promising and cost-effective biotechnology for the practical application in the treatment of industrial dye effluents.
Collapse
Affiliation(s)
- Yien Jun Lau
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei (UTB), Gadong, Brunei Darussalam
| | - Nabisab Mujawar Mubarak
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia.
| | - Sie Yon Lau
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia
| | - Han Bing Chua
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Priyanka Jagadish
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Ezzat Chan Abdullah
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia (UTM), Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Oladapo BI, Malachi IO, Malachi OB, Elemure IE, Olawumi AM. Nano-structures of 4D morphology surface analysis of C1.7Mn0.6P0.1S0.07 (SAE 1045) tool wear. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|