1
|
Salou M, Nicol B, Garcia A, Laplaud DA. Involvement of CD8(+) T Cells in Multiple Sclerosis. Front Immunol 2015; 6:604. [PMID: 26635816 PMCID: PMC4659893 DOI: 10.3389/fimmu.2015.00604] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/12/2015] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system characterized by focal demyelination patches associated with inflammatory infiltrates containing T lymphocytes. For decades, CD4(+) T cells have been recognized as playing a major role in the disease, especially in animal models, which has led to the development of several therapies. However, interest has recently developed in the involvement of CD8(+) T cells in MS following the analysis of infiltrating T cells in human brain lesions. A broad range of evidence now suggests that the pathological role of this T cell subset in MS may have been underestimated. In this review, we summarize the literature implicating CD8(+) T cells in the pathophysiology of MS. We present data from studies in the fields of genetics, anatomopathology and immunology, mainly in humans but also in animal models of MS. Altogether, this strongly suggests that CD8(+) T cells may be major effectors in the disease process, and that the development of treatments specifically targeting this subset would be germane.
Collapse
Affiliation(s)
- Marion Salou
- UMR 1064, INSERM , Nantes , France ; Medicine Department, Nantes University , Nantes , France
| | - Bryan Nicol
- UMR 1064, INSERM , Nantes , France ; Medicine Department, Nantes University , Nantes , France
| | - Alexandra Garcia
- UMR 1064, INSERM , Nantes , France ; ITUN, Nantes Hospital , Nantes , France
| | - David-Axel Laplaud
- UMR 1064, INSERM , Nantes , France ; Department of Neurology, Nantes Hospital , Nantes , France ; Centre d'Investigation Clinique, INSERM 004 , Nantes , France
| |
Collapse
|
2
|
Salou M, Garcia A, Michel L, Gainche-Salmon A, Loussouarn D, Nicol B, Guillot F, Hulin P, Nedellec S, Baron D, Ramstein G, Soulillou JP, Brouard S, Nicot AB, Degauque N, Laplaud DA. Expanded CD8 T-cell sharing between periphery and CNS in multiple sclerosis. Ann Clin Transl Neurol 2015; 2:609-22. [PMID: 26125037 PMCID: PMC4479522 DOI: 10.1002/acn3.199] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 01/21/2023] Open
Abstract
Objective In multiple sclerosis (MS), central nervous system (CNS), cerebrospinal fluid (CSF), and blood display TCR clonal expansions of CD8+ T cells. These clones have been assumed – but never demonstrated – to be similar in the three compartments. Addressing this key question is essential to infer the implication of peripheral clonally expanded CD8+ T cells in the disease. Methods For the first time, TCR Vβ repertoire from paired blood (purified CD8+ and CD4+ T cells), CSF and CNS (22 lesions, various inflammatory and demyelination statuses) samples from three MS patients was studied using complementary determining region 3 (CDR3) spectratyping and high-throughput sequencing. In parallel, blood and CNS clonally expanded CD8+ T cells were characterized by fluorescent staining. Results TCR Vβ repertoire analysis revealed strong sharing of predominant T-cell clones between CNS lesions, CSF, and blood CD8+ T cells. In parallel, we showed that blood oligoclonal CD8+ T cells exhibit characteristics of pathogenic cells, as they displayed a bias toward a memory phenotype in MS patients, with increased expression of CCR5, CD11a and Granzyme B (GZM-B) compared to non oligoclonal counterparts. CNS-infiltrating T cells were mainly CD8 expressing CD11a and GZM-B. Interpretation This study highlights the predominant implication of CD8+ T cells in MS pathophysiology and demonstrates that potentially aggressive CD8+ T cells can be easily identified and characterized from blood and CSF samples.
Collapse
Affiliation(s)
- Marion Salou
- INSERM, UMR 1064 Nantes, F-44093, France ; Medicine Department, Nantes University Nantes, F-44035, France
| | - Alexandra Garcia
- INSERM, UMR 1064 Nantes, F-44093, France ; Nantes Hospital, ITUN Nantes, F-44093, France
| | - Laure Michel
- INSERM, UMR 1064 Nantes, F-44093, France ; Neurology Department, Nantes Hospital Nantes, F-44093, France
| | | | | | - Bryan Nicol
- INSERM, UMR 1064 Nantes, F-44093, France ; Medicine Department, Nantes University Nantes, F-44035, France
| | - Flora Guillot
- INSERM, UMR 1064 Nantes, F-44093, France ; Medicine Department, Nantes University Nantes, F-44035, France
| | - Philippe Hulin
- SFR François Bonamy, Cellular and Tissue Imaging Core Facility (MicroPICell) Nantes, F-44093, France
| | - Steven Nedellec
- SFR François Bonamy, Cellular and Tissue Imaging Core Facility (MicroPICell) Nantes, F-44093, France
| | - Daniel Baron
- INSERM, UMR 1064 Nantes, F-44093, France ; Medicine Department, Nantes University Nantes, F-44035, France ; Nantes Hospital, ITUN Nantes, F-44093, France
| | | | | | - Sophie Brouard
- INSERM, UMR 1064 Nantes, F-44093, France ; Nantes Hospital, ITUN Nantes, F-44093, France
| | - Arnaud B Nicot
- INSERM, UMR 1064 Nantes, F-44093, France ; Medicine Department, Nantes University Nantes, F-44035, France ; Nantes Hospital, ITUN Nantes, F-44093, France
| | - Nicolas Degauque
- INSERM, UMR 1064 Nantes, F-44093, France ; Nantes Hospital, ITUN Nantes, F-44093, France
| | - David A Laplaud
- INSERM, UMR 1064 Nantes, F-44093, France ; Neurology Department, Nantes Hospital Nantes, F-44093, France ; INSERM 004, Centre d'Investigation Clinique Nantes, F-44093, France
| |
Collapse
|
3
|
Somma P, Ristori G, Battistini L, Cannoni S, Borsellino G, Diamantini A, Salvetti M, Sorrentino R, Fiorillo MT. Characterization of CD8+ T cell repertoire in identical twins discordant and concordant for multiple sclerosis. J Leukoc Biol 2006; 81:696-710. [PMID: 17110420 DOI: 10.1189/jlb.0906584] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Autoreactive CD4+ and CD8+ T cells directed against CNS autoantigens may play a role in the development of multiple sclerosis (MS). Identical twins share the same genetic background but not the TCR repertoire that is shaped by the encounter with self or foreign antigens. To gain insights into the interplay between MS and T cell repertoire, peripheral blood CD4+ and CD8+ T lymphocytes and their CCR7+/CCR7- subsets from five pairs of identical twins (four discordant and one concordant for MS; none of which had taken disease-modifying therapy) were compared by TCR beta-chain (TCRB) complementary-determining region 3 (CDR3) spectratyping. CD4+ T cells generally showed a Gaussian distribution, whereas CD8+ T cells exhibited subject-specific, widely skewed TCR spectratypes. There was no correlation between CD8+ T cell oligoclonality and disease. Sequencing of predominant spectratype expansions revealed shared TCRB-CDR3 motifs when comparing inter- and/or intrapair twin members. In many cases, these sequences were homologous to published TCRs, specific for viruses implicated in MS pathogenesis, CNS autoantigens, or copaxone [glatiramer acetate (GA)], implying the occurrence of naturally GA-responding CD8+ T cells. It is notable that these expanded T cell clones with putative pathogenic or regulatory properties were present in the affected as well as in the healthy subject, thus suggesting the existence of a "MS predisposing trait" shared by co-twins discordant for MS.
Collapse
MESH Headings
- Adult
- Amino Acid Motifs
- Amino Acid Sequence
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/classification
- CD8-Positive T-Lymphocytes/immunology
- Complementarity Determining Regions/analysis
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/immunology
- Female
- Humans
- Male
- Middle Aged
- Molecular Sequence Data
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Polymerase Chain Reaction/methods
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Sequence Analysis, DNA/methods
- T-Lymphocyte Subsets/immunology
- Twins, Monozygotic
Collapse
Affiliation(s)
- Paolo Somma
- Department of Cell Biology and Development, University of Rome La Sapienza, Via dei Sardi 70, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Miqueu P, Guillet M, Degauque N, Doré JC, Soulillou JP, Brouard S. Statistical analysis of CDR3 length distributions for the assessment of T and B cell repertoire biases. Mol Immunol 2006; 44:1057-64. [PMID: 16930714 DOI: 10.1016/j.molimm.2006.06.026] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 06/15/2006] [Indexed: 12/20/2022]
Abstract
Complementarity-determining region 3 (CDR3) length distribution analysis explores the diversity of the T cell receptor (TCR) and immunoglobulin (Ig) repertoire at the transcriptome level. Studies of the CDR3, the most hypervariable part of these molecules, have been frequently used to identify recruitment of T and B cell clones involved in immunological responses. CDR3 length distribution analysis gives a clear perception of repertoire variations between individuals and over time. However, the complexity of CDR3 length distribution patterns and the high number of possible repertoire alterations per individual called for the development of robust data analysis methods. The goal of these methods is to identify, quantify and statistically assess differences between repertoires so as to offer a better diagnostic or predictive tool for pathologies involving the immune system. In this review we will explain the benefit of analyzing CDR3 length distribution for the study of immune cell diversity. We will start by describing this technology and its associated data processing, and will subsequently focus on the statistical methods used to compare CDR3 length distribution patterns. Finally, we will address the various methods for assessing CDR3 length distribution gene signatures in pathological states.
Collapse
Affiliation(s)
- Patrick Miqueu
- Institut National de la Santé Et de la Recherche Médicale (I.N.S.E.R.M.), Unité 643, "Immunointervention dans les Allo et Xénotransplantations", CHU Hôtel-Dieu, 30 Bd Jean Monnet, 44093 Nantes Cedex 01, France
| | | | | | | | | | | |
Collapse
|
5
|
Warabi Y, Yagi K, Hayashi H, Matsumoto Y. Characterization of the T cell receptor repertoire in the Japanese neuromyelitis optica: T cell activity is up-regulated compared to multiple sclerosis. J Neurol Sci 2006; 249:145-52. [PMID: 16860825 DOI: 10.1016/j.jns.2006.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 06/06/2006] [Indexed: 11/16/2022]
Abstract
To characterize T cell immunity in Japanese neuromyelitis optica (NMO), we examined the T cell receptor (TCR) repertoire in NMO patients with complementarity-determining region 3 (CDR3) spectratyping and compared the results with those from multiple sclerosis (MS) patients and healthy subjects. Both NMO and MS patients had a larger number of clonally expanded Vbeta genes than healthy subjects. Moreover, NMO patients had a significantly larger number of expanded Vbetas than MS patients. The detailed analysis revealed that Vbeta1 and Vbeta13 were significantly activated in NMO than MS. These results reflected unique pathophysiology of Japanese NMO, which is distinguishable from that of MS. Furthermore, longitudinal examinations of the TCR repertoire demonstrated that the number of clonally expanded Vbetas in NMO correlates with the Kurtzke Expanded disability status scale (EDSS). Although the activation pattern of the TCR repertoire in relapsing-remitting MS (RRMS) was similar to that in NMO, secondary progressive MS (SPMS) patients with longer disease durations and higher EDSS scores consistently had a smaller number of clonally expanded Vbetas than RRMS patients. Detailed TCR investigations will provide useful information to evaluate the clinical and immunological status of NMO and MS and to develop effective immunotherapies.
Collapse
MESH Headings
- Adult
- Aged
- Clone Cells/immunology
- Clone Cells/pathology
- Female
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Humans
- Immunity, Cellular
- Immunosuppressive Agents/therapeutic use
- Japan
- Lymphocyte Activation
- Male
- Middle Aged
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/ethnology
- Multiple Sclerosis/immunology
- Neuromyelitis Optica/drug therapy
- Neuromyelitis Optica/ethnology
- Neuromyelitis Optica/immunology
- Receptors, Antigen, T-Cell/analysis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Severity of Illness Index
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
Collapse
Affiliation(s)
- Yoko Warabi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | | | | | | |
Collapse
|
6
|
Abstract
Multiple sclerosis (MS) develops in young adults with a complex predisposing genetic trait and probably requires an inciting environmental insult such as a viral infection to trigger the disease. The activation of CD4+ autoreactive T cells and their differentiation into a Th1 phenotype are a crucial events in the initial steps, and these cells are probably also important players in the long-term evolution of the disease. Damage of the target tissue, the central nervous system, is, however, most likely mediated by other components of the immune system, such as antibodies, complement, CD8+ T cells, and factors produced by innate immune cells. Perturbations in immunomodulatory networks that include Th2 cells, regulatory CD4+ T cells, NK cells, and others may in part be responsible for the relapsing-remitting or chronic progressive nature of the disease. However, an important paradigmatic shift in the study of MS has occurred in the past decade. It is now clear that MS is not just a disease of the immune system, but that factors contributed by the central nervous system are equally important and must be considered in the future.
Collapse
Affiliation(s)
- Mireia Sospedra
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1400, USA.
| | | |
Collapse
|
7
|
TCR Analyses. ANALYZING T CELL RESPONSES 2005. [PMCID: PMC7120667 DOI: 10.1007/1-4020-3623-x_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
T-cells play a crucial role in immune surveillance against transformed cells and intracellular infections; they are involved in auto-immune reactions. They recognize their targets, i.e. MHC / peptide complexes, trough the T-cell receptor. TCR usage determines the molecular interaction of the immune system with biologically relevant MHC/peptide molecules. The TCR coding genes (variable, diversity and junctional) determine the molecular composition of the TCR alpha and beta heterodimer. The random association of the VDJ genes constitutes the complementarity determining region 3 (CDR3) responsible for antigen recognition and TCR specificity. The molecular composition of a T-cell population can be objectively defined by measuring the CDR3 region. Qualitative and quantitative comparisons of the TCR composition in different anatomic compartments, or longitudinally over time, allow to asses the entire TCR repertoire. This methodology can be supplemented with functional T-cell based assays and aids to objectively describe any alteration in the T-cell pool. TCR CDR3 analysis is useful in immunomonitoring, e.g. examining patients after BMT or solid organ transplantation, patients with HAART therapy, or patients receiving molecularly defined vaccines.
Collapse
|
8
|
Démoulins T, Gachelin G, Bequet D, Dormont D. A biased Valpha24+ T-cell repertoire leads to circulating NKT-cell defects in a multiple sclerosis patient at the onset of his disease. Immunol Lett 2004; 90:223-8. [PMID: 14687729 DOI: 10.1016/j.imlet.2003.09.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As natural killer T (NKT) cells have been implicated in the regulation of multiple sclerosis (MS), we investigated expression of the Valpha24JalphaQ canonical rearrangement in MS patients during relapses. We observed major changes in the entire blood Valpha24(+) T-cell repertoire. Seven of the eight patients showed a marked decrease in Valpha24(+) transcript number and a decrease in the diversity of the Valpha24(+) T-cell repertoire, with the exception of a few expanded clones. These perturbations, exacerbated in patient MS (A), led to circulating NKT cell defects.
Collapse
MESH Headings
- Amino Acid Sequence
- Cells, Cultured
- Humans
- Killer Cells, Natural/immunology
- Multiple Sclerosis/blood
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Recurrence
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Thomas Démoulins
- CEA, Service de Neurovirologie, CRSSA, EPHE, 60-68, avenue de la Division Leclerc, B.P. 6, Fontenay-aux-Roses, France
| | | | | | | |
Collapse
|