1
|
Garcia-Casas P, Rossini M, Filadi R, Pizzo P. Mitochondrial Ca 2+ signaling and Alzheimer's disease: Too much or too little? Cell Calcium 2023; 113:102757. [PMID: 37192560 DOI: 10.1016/j.ceca.2023.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, caused by poorly known pathogenic mechanisms and aggravated by delayed therapeutic intervention, that still lacks an effective cure. However, it is clear that some important neurophysiological processes are altered years before the onset of clinical symptoms, offering the possibility of identifying biological targets useful for implementation of new therapies. Of note, evidence has been provided suggesting that mitochondria, pivotal organelles in sustaining neuronal energy demand and modulating synaptic activity, are dysfunctional in AD samples. In particular, alterations in mitochondrial Ca2+ signaling have been proposed as causal events for neurodegeneration, although the exact outcomes and molecular mechanisms of these defects, as well as their longitudinal progression, are not always clear. Here, we discuss the importance of a correct mitochondrial Ca2+ handling for neuronal physiology and summarize the latest findings on dysfunctional mitochondrial Ca2+ pathways in AD, analysing possible consequences contributing to the neurodegeneration that characterizes the disease.
Collapse
Affiliation(s)
- Paloma Garcia-Casas
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy; Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid, 47003 Valladolid, Spain
| | - Michela Rossini
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy; Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy.
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy; Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Study Centre for Neurodegeneration (CESNE), University of Padova, 35131 Padua, Italy.
| |
Collapse
|
2
|
Unraveling Presenilin 2 Functions in a Knockout Zebrafish Line to Shed Light into Alzheimer's Disease Pathogenesis. Cells 2023; 12:cells12030376. [PMID: 36766721 PMCID: PMC9913325 DOI: 10.3390/cells12030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Mutations in presenilin 2 (PS2) have been causally linked to the development of inherited Alzheimer's disease (AD). Besides its role as part of the γ-secretase complex, mammalian PS2 is also involved, as an individual protein, in a growing number of cell processes, which result altered in AD. To gain more insight into PS2 (dys)functions, we have generated a presenilin2 (psen2) knockout zebrafish line. We found that the absence of the protein does not markedly influence Notch signaling at early developmental stages, suggesting a Psen2 dispensable role in the γ-secretase-mediated Notch processing. Instead, loss of Psen2 induces an exaggerated locomotor response to stimulation in fish larvae, a reduced number of ER-mitochondria contacts in zebrafish neurons, and an increased basal autophagy. Moreover, the protein is involved in mitochondrial axonal transport, since its acute downregulation reduces in vivo organelle flux in zebrafish sensory neurons. Importantly, the expression of a human AD-linked mutant of the protein increases this vital process. Overall, our results confirm zebrafish as a good model organism for investigating PS2 functions in vivo, representing an alternative tool for the characterization of new AD-linked defective cell pathways and the testing of possible correcting drugs.
Collapse
|
3
|
Cano-Abad MF, López MG. Cytotoxicity Models in Chromaffin Cells to Evaluate Neuroprotective Compounds. Methods Mol Biol 2023; 2565:361-370. [PMID: 36205906 DOI: 10.1007/978-1-0716-2671-9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Primary cultures of bovine chromaffin cells are considered a good model to evaluate potential neuroprotective compounds for two major reasons: (i) they share many common features to neurons as they synthesize, store, and release neurotransmitters; they are excitable cells that express voltage-dependent calcium, potassium, and sodium channels; they express different neuronal receptor subtypes; and (ii) they can be easily cultured in high quantities from adult animals; as adult para-neurons, they can be used to reproduce different neurodegenerative-like cytotoxicity models. In this chapter, we describe protocols to mimic calcium overload (veratridine and thapsigargin) and oxidative stress (rotenone plus oligomycin-A and 6-hydroxydopamine) to evaluate potential neuroprotective compounds.
Collapse
Affiliation(s)
- María F Cano-Abad
- Instituto Teófilo Hernando. Departamento de Farmacología. Facultad de Medicina. Universidad Autónoma de Madrid and Instituto de investigación Sanitaria Hospital de la Princesa, Madrid, Spain
| | - Manuela G López
- Instituto Teófilo Hernando. Departamento de Farmacología. Facultad de Medicina. Universidad Autónoma de Madrid and Instituto de investigación Sanitaria Hospital de la Princesa, Madrid, Spain.
| |
Collapse
|
4
|
Arnst N, Redolfi N, Lia A, Bedetta M, Greotti E, Pizzo P. Mitochondrial Ca 2+ Signaling and Bioenergetics in Alzheimer's Disease. Biomedicines 2022; 10:3025. [PMID: 36551781 PMCID: PMC9775979 DOI: 10.3390/biomedicines10123025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is a hereditary and sporadic neurodegenerative illness defined by the gradual and cumulative loss of neurons in specific brain areas. The processes that cause AD are still under investigation and there are no available therapies to halt it. Current progress puts at the forefront the "calcium (Ca2+) hypothesis" as a key AD pathogenic pathway, impacting neuronal, astrocyte and microglial function. In this review, we focused on mitochondrial Ca2+ alterations in AD, their causes and bioenergetic consequences in neuronal and glial cells, summarizing the possible mechanisms linking detrimental mitochondrial Ca2+ signals to neuronal death in different experimental AD models.
Collapse
Affiliation(s)
- Nikita Arnst
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
| | - Nelly Redolfi
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
| | - Annamaria Lia
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
- Neuroscience Institute, Italian National Research Council (CNR), 35131 Padua, Italy
| | - Martina Bedetta
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
- Neuroscience Institute, Italian National Research Council (CNR), 35131 Padua, Italy
- Padova Neuroscience Center (PNC), University of Padova, 35131 Padua, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
- Neuroscience Institute, Italian National Research Council (CNR), 35131 Padua, Italy
- Study Centre for Neurodegeneration (CESNE), University of Padova, 35131 Padua, Italy
| |
Collapse
|
5
|
Hendrickx JO, De Moudt S, Van Dam D, De Deyn PP, Fransen P, De Meyer GRY. Altered stress hormone levels affect in vivo vascular function in the hAPP23 +/- overexpressing mouse model of Alzheimer's disease. Am J Physiol Heart Circ Physiol 2021; 321:H905-H919. [PMID: 34506227 DOI: 10.1152/ajpheart.00254.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) has long been considered a brain-specific dementia syndrome. However, in recent decades, the occurrence of cardiovascular (CV) disease in the progression of AD has been confirmed by increasing epidemiological evidence. In this study, we conducted an in-depth cardiovascular characterization of a humanized amyloid precursor protein (APP) overexpressing mouse model (hAPP23+/-), which overexpresses the Swedish mutation (KM670/671NL). At the age of 6 mo, hAPP23+/- mice had a lower survival, lower body weight, and increased corticosterone and VMA levels compared with C57BL/6 littermates. Systolic blood pressure was increased in hAPP23+/- animals compared with C57BL/6 littermates, but diastolic blood pressure was not statistically different. Pulse pressure remained unchanged but abdominal and carotid pulse-wave velocity (aPWV and cPWV) were increased in hAPP23+/- compared with C57BL/6 mice. Echocardiography showed no differences in systolic or diastolic cardiac function. Ex vivo evaluation of vascular function showed decreased adreno receptor dependent vasoconstriction of hAPP23+/- aortic segments, although the isobaric biomechanics of the aortic wall were similar to C57BL/6 aortic segments. In conclusion, hAPP23+/- mice exhibited high serum corticosterone levels, elevated systolic blood pressure, and increased arterial stiffness in vivo. However, ex vivo aortic stiffness of hAPP23+/- aortic segments was not changed and vascular reactivity to α1-adrenoceptor stimulation was attenuated. These findings highlight the need for more frequent assessment of circulating stress hormone levels and PWV measurements in daily clinical practice for people at risk of AD.NEW & NOTEWORTHY We showed that male amyloid precursor protein (APP) transgenic mice have higher circulating stress hormone levels. As a result, higher systolic blood pressure and pulse-wave velocity were measured in vivo in addition to a smaller α-adrenergic receptor-dependent contraction upon ex vivo stimulation with phenylephrine. Our findings highlight the need for more frequent assessment of circulating stress hormone levels and PWV measurements in daily clinical practice for people at risk of Alzheimer's disease.
Collapse
Affiliation(s)
- Jhana O Hendrickx
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Sofie De Moudt
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, Antwerp, Belgium
- Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, Antwerp, Belgium
- Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Paul Fransen
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Plasma Membrane and Organellar Targets of STIM1 for Intracellular Calcium Handling in Health and Neurodegenerative Diseases. Cells 2021; 10:cells10102518. [PMID: 34685498 PMCID: PMC8533710 DOI: 10.3390/cells10102518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023] Open
Abstract
Located at the level of the endoplasmic reticulum (ER) membrane, stromal interacting molecule 1 (STIM1) undergoes a complex conformational rearrangement after depletion of ER luminal Ca2+. Then, STIM1 translocates into discrete ER-plasma membrane (PM) junctions where it directly interacts with and activates plasma membrane Orai1 channels to refill ER with Ca2+. Furthermore, Ca2+ entry due to Orai1/STIM1 interaction may induce canonical transient receptor potential channel 1 (TRPC1) translocation to the plasma membrane, where it is activated by STIM1. All these events give rise to store-operated calcium entry (SOCE). Besides the main pathway underlying SOCE, which mainly involves Orai1 and TRPC1 activation, STIM1 modulates many other plasma membrane proteins in order to potentiate the influxof Ca2+. Furthermore, it is now clear that STIM1 may inhibit Ca2+ currents mediated by L-type Ca2+ channels. Interestingly, STIM1 also interacts with some intracellular channels and transporters, including nuclear and lysosomal ionic proteins, thus orchestrating organellar Ca2+ homeostasis. STIM1 and its partners/effectors are significantly modulated in diverse acute and chronic neurodegenerative conditions. This highlights the importance of further disclosing their cellular functions as they might represent promising molecular targets for neuroprotection.
Collapse
|
7
|
Ca 2+ handling at the mitochondria-ER contact sites in neurodegeneration. Cell Calcium 2021; 98:102453. [PMID: 34399235 DOI: 10.1016/j.ceca.2021.102453] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria-endoplasmic reticulum (ER) contact sites (MERCS) are morpho-functional units, formed at the loci of close apposition of the ER-forming endomembrane and outer mitochondrial membrane (OMM). These sites contribute to fundamental cellular processes including lipid biosynthesis, autophagy, apoptosis, ER-stress and calcium (Ca2+) signalling. At MERCS, Ca2+ ions are transferred from the ER directly to mitochondria through a core protein complex composed of inositol-1,4,5 trisphosphate receptor (InsP3R), voltage-gated anion channel 1 (VDAC1), mitochondrial calcium uniporter (MCU) and adaptor protein glucose-regulated protein 75 (Grp75); this complex is regulated by several associated proteins. Deregulation of ER-mitochondria Ca2+ transfer contributes to pathogenesis of neurodegenerative and other diseases. The efficacy of Ca2+ transfer between ER and mitochondria depends on the protein composition of MERCS, which controls ER-mitochondria interaction regulating, for example, the transversal distance between ER membrane and OMM and the extension of the longitudinal interface between ER and mitochondria. These parameters are altered in neurodegeneration. Here we overview the ER and mitochondrial Ca2+ homeostasis, the composition of ER-mitochondrial Ca2+ transfer machinery and alterations of the ER-mitochondria Ca2+ transfer in three major neurodegenerative diseases: motor neurone diseases, Parkinson disease and Alzheimer's disease.
Collapse
|
8
|
Loosening ER-Mitochondria Coupling by the Expression of the Presenilin 2 Loop Domain. Cells 2021; 10:cells10081968. [PMID: 34440738 PMCID: PMC8394530 DOI: 10.3390/cells10081968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
Presenilin 2 (PS2), one of the three proteins in which mutations are linked to familial Alzheimer's disease (FAD), exerts different functions within the cell independently of being part of the γ-secretase complex, thus unrelated to toxic amyloid peptide formation. In particular, its enrichment in endoplasmic reticulum (ER) membrane domains close to mitochondria (i.e., mitochondria-associated membranes, MAM) enables PS2 to modulate multiple processes taking place on these signaling hubs, such as Ca2+ handling and lipid synthesis. Importantly, upregulated MAM function appears to be critical in AD pathogenesis. We previously showed that FAD-PS2 mutants reinforce ER-mitochondria tethering, by interfering with the activity of mitofusin 2, favoring their Ca2+ crosstalk. Here, we deepened the molecular mechanism underlying PS2 activity on ER-mitochondria tethering, identifying its protein loop as an essential domain to mediate the reinforced ER-mitochondria connection in FAD-PS2 models. Moreover, we introduced a novel tool, the PS2 loop domain targeted to the outer mitochondrial membrane, Mit-PS2-LOOP, that is able to counteract the activity of FAD-PS2 on organelle tethering, which possibly helps in recovering the FAD-PS2-associated cellular alterations linked to an increased organelle coupling.
Collapse
|
9
|
Wang Y, Zhu Y, Pu Z, Li Z, Deng Y, Li N, Peng F. Soluble resistance-related calcium-binding protein participates in multiple diseases via protein-protein interactions. Biochimie 2021; 189:76-86. [PMID: 34153376 DOI: 10.1016/j.biochi.2021.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022]
Abstract
Soluble resistance-related calcium-binding protein (sorcin), a 22 kDa penta-EF-hand protein, has been intensively studied in cancers and multidrug resistance over a prolonged period. Sorcin is widely distributed in tissues and participates in the regulation of Ca2+ homeostasis and Ca2+-dependent signaling. Protein-protein interactions (PPIs) are essential for regulating protein functions in almost all biological processes. Sorcin interaction partners tend to vary in type, including Ca2+ receptors, Ca2+ transporters, endoplasmic reticulum stress markers, transcriptional regulatory elements, immunomodulation-related factors, and viral proteins. Recent studies have shown that sorcin is involved in a broad range of pathological conditions, such as cardiomyopathy, type 2 diabetes mellitus, neurodegenerative diseases, liver diseases, and viral infections. As a multifunctional cellular protein, in these diseases, sorcin has a role by interacting with or regulating the expression of other proteins, such as sarcoplasmic reticulum/endoplasmic reticulum Ca2+ ATPase, ryanodine receptors, presenilin 2, L-type Ca2+ channels, carbohydrate-responsive element-binding protein, tau, α-synuclein, signal transducer and activator of transcription 3, HCV nonstructural 5A protein, and viral capsid protein 1. This review summarizes the roles that sorcin plays in various diseases, mainly via different PPIs, and focuses principally on non-neoplastic diseases to help acquire a more comprehensive understanding of sorcin's multifunctional characteristics.
Collapse
Affiliation(s)
- Yinmiao Wang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China; NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Yuanyuan Zhu
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China; NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Zhangya Pu
- Department of Infectious Diseases and Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Zhenfen Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China; NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Ying Deng
- People's Hospital of Ningxiang, Changsha, Hunan Province 410600, China
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Fang Peng
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China; NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China.
| |
Collapse
|
10
|
Lemos FO, Bultynck G, Parys JB. A comprehensive overview of the complex world of the endo- and sarcoplasmic reticulum Ca 2+-leak channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119020. [PMID: 33798602 DOI: 10.1016/j.bbamcr.2021.119020] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 12/11/2022]
Abstract
Inside cells, the endoplasmic reticulum (ER) forms the largest Ca2+ store. Ca2+ is actively pumped by the SERCA pumps in the ER, where intraluminal Ca2+-binding proteins enable the accumulation of large amount of Ca2+. IP3 receptors and the ryanodine receptors mediate the release of Ca2+ in a controlled way, thereby evoking complex spatio-temporal signals in the cell. The steady state Ca2+ concentration in the ER of about 500 μM results from the balance between SERCA-mediated Ca2+ uptake and the passive leakage of Ca2+. The passive Ca2+ leak from the ER is often ignored, but can play an important physiological role, depending on the cellular context. Moreover, excessive Ca2+ leakage significantly lowers the amount of Ca2+ stored in the ER compared to normal conditions, thereby limiting the possibility to evoke Ca2+ signals and/or causing ER stress, leading to pathological consequences. The so-called Ca2+-leak channels responsible for Ca2+ leakage from the ER are however still not well understood, despite over 20 different proteins have been proposed to contribute to it. This review has the aim to critically evaluate the available evidence about the various channels potentially involved and to draw conclusions about their relative importance.
Collapse
Affiliation(s)
- Fernanda O Lemos
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|
11
|
Rossi A, Rigotto G, Valente G, Giorgio V, Basso E, Filadi R, Pizzo P. Defective Mitochondrial Pyruvate Flux Affects Cell Bioenergetics in Alzheimer's Disease-Related Models. Cell Rep 2021; 30:2332-2348.e10. [PMID: 32075767 DOI: 10.1016/j.celrep.2020.01.060] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/04/2019] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are key organelles for brain health. Mitochondrial alterations have been reported in several neurodegenerative disorders, including Alzheimer's disease (AD), and the comprehension of the underlying mechanisms appears crucial to understand their relationship with the pathology. Using multiple genetic, pharmacological, imaging, and biochemical approaches, we demonstrate that, in different familial AD cell models, mitochondrial ATP synthesis is affected. The defect depends on reduced mitochondrial pyruvate oxidation, due to both lower Ca2+-mediated stimulation of the Krebs cycle and dampened mitochondrial pyruvate uptake. Importantly, this latter event is linked to glycogen-synthase-kinase-3β (GSK-3β) hyper-activation, leading, in turn, to impaired recruitment of hexokinase 1 (HK1) to mitochondria, destabilization of mitochondrial-pyruvate-carrier (MPC) complexes, and decreased MPC2 protein levels. Remarkably, pharmacological GSK-3β inhibition in AD cells rescues MPC2 expression and improves mitochondrial ATP synthesis and respiration. The defective mitochondrial bioenergetics influences glutamate-induced neuronal excitotoxicity, thus representing a possible target for future therapeutic interventions.
Collapse
Affiliation(s)
- Alice Rossi
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
| | - Giulia Rigotto
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
| | - Giulia Valente
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; Neuroscience Institute - Italian National Research Council (CNR), Padua 35121, Italy
| | - Valentina Giorgio
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; Neuroscience Institute - Italian National Research Council (CNR), Padua 35121, Italy
| | - Emy Basso
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; Neuroscience Institute - Italian National Research Council (CNR), Padua 35121, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; Neuroscience Institute - Italian National Research Council (CNR), Padua 35121, Italy.
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; Neuroscience Institute - Italian National Research Council (CNR), Padua 35121, Italy.
| |
Collapse
|
12
|
Rossi A, Galla L, Gomiero C, Zentilin L, Giacca M, Giorgio V, Calì T, Pozzan T, Greotti E, Pizzo P. Calcium Signaling and Mitochondrial Function in Presenilin 2 Knock-Out Mice: Looking for Any Loss-of-Function Phenotype Related to Alzheimer's Disease. Cells 2021; 10:204. [PMID: 33494218 PMCID: PMC7909802 DOI: 10.3390/cells10020204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder in which learning, memory and cognitive functions decline progressively. Familial forms of AD (FAD) are caused by mutations in amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2) genes. Presenilin 1 (PS1) and its homologue, presenilin 2 (PS2), represent, alternatively, the catalytic core of the γ-secretase complex that, by cleaving APP, produces neurotoxic amyloid beta (Aβ) peptides responsible for one of the histopathological hallmarks in AD brains, the amyloid plaques. Recently, PSEN1 FAD mutations have been associated with a loss-of-function phenotype. To investigate whether this finding can also be extended to PSEN2 FAD mutations, we studied two processes known to be modulated by PS2 and altered by FAD mutations: Ca2+ signaling and mitochondrial function. By exploiting neurons derived from a PSEN2 knock-out (PS2-/-) mouse model, we found that, upon IP3-generating stimulation, cytosolic Ca2+ handling is not altered, compared to wild-type cells, while mitochondrial Ca2+ uptake is strongly compromised. Accordingly, PS2-/- neurons show a marked reduction in endoplasmic reticulum-mitochondria apposition and a slight alteration in mitochondrial respiration, whereas mitochondrial membrane potential, and organelle morphology and number appear unchanged. Thus, although some alterations in mitochondrial function appear to be shared between PS2-/- and FAD-PS2-expressing neurons, the mechanisms leading to these defects are quite distinct between the two models. Taken together, our data appear to be difficult to reconcile with the proposal that FAD-PS2 mutants are loss-of-function, whereas the concept that PS2 plays a key role in sustaining mitochondrial function is here confirmed.
Collapse
Affiliation(s)
- Alice Rossi
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (A.R.); (L.G.); (C.G.); (V.G.); (T.C.); (T.P.); (P.P.)
| | - Luisa Galla
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (A.R.); (L.G.); (C.G.); (V.G.); (T.C.); (T.P.); (P.P.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| | - Chiara Gomiero
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (A.R.); (L.G.); (C.G.); (V.G.); (T.C.); (T.P.); (P.P.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (L.Z.); (M.G.)
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (L.Z.); (M.G.)
| | - Valentina Giorgio
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (A.R.); (L.G.); (C.G.); (V.G.); (T.C.); (T.P.); (P.P.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
- Department of Biomedical and Neuromotor Science, University of Bologna, 40112 Bologna, Italy
| | - Tito Calì
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (A.R.); (L.G.); (C.G.); (V.G.); (T.C.); (T.P.); (P.P.)
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (A.R.); (L.G.); (C.G.); (V.G.); (T.C.); (T.P.); (P.P.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), 35131 Padua, Italy
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (A.R.); (L.G.); (C.G.); (V.G.); (T.C.); (T.P.); (P.P.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (A.R.); (L.G.); (C.G.); (V.G.); (T.C.); (T.P.); (P.P.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| |
Collapse
|
13
|
Pizzo P, Basso E, Filadi R, Greotti E, Leparulo A, Pendin D, Redolfi N, Rossini M, Vajente N, Pozzan T, Fasolato C. Presenilin-2 and Calcium Handling: Molecules, Organelles, Cells and Brain Networks. Cells 2020; 9:E2166. [PMID: 32992716 PMCID: PMC7601421 DOI: 10.3390/cells9102166] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Presenilin-2 (PS2) is one of the three proteins that are dominantly mutated in familial Alzheimer's disease (FAD). It forms the catalytic core of the γ-secretase complex-a function shared with its homolog presenilin-1 (PS1)-the enzyme ultimately responsible of amyloid-β (Aβ) formation. Besides its enzymatic activity, PS2 is a multifunctional protein, being specifically involved, independently of γ-secretase activity, in the modulation of several cellular processes, such as Ca2+ signalling, mitochondrial function, inter-organelle communication, and autophagy. As for the former, evidence has accumulated that supports the involvement of PS2 at different levels, ranging from organelle Ca2+ handling to Ca2+ entry through plasma membrane channels. Thus FAD-linked PS2 mutations impact on multiple aspects of cell and tissue physiology, including bioenergetics and brain network excitability. In this contribution, we summarize the main findings on PS2, primarily as a modulator of Ca2+ homeostasis, with particular emphasis on the role of its mutations in the pathogenesis of FAD. Identification of cell pathways and molecules that are specifically targeted by PS2 mutants, as well as of common targets shared with PS1 mutants, will be fundamental to disentangle the complexity of memory loss and brain degeneration that occurs in Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
| | - Emy Basso
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
| | - Alessandro Leparulo
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
| | - Diana Pendin
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
| | - Nelly Redolfi
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
| | - Michela Rossini
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
| | - Nicola Vajente
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Via G. Orus 2B, 35131 Padua, Italy
| | - Cristina Fasolato
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
| |
Collapse
|
14
|
Scremin E, Agostini M, Leparulo A, Pozzan T, Greotti E, Fasolato C. ORAI2 Down-Regulation Potentiates SOCE and Decreases Aβ42 Accumulation in Human Neuroglioma Cells. Int J Mol Sci 2020; 21:ijms21155288. [PMID: 32722509 PMCID: PMC7432374 DOI: 10.3390/ijms21155288] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
Abstract
Senile plaques, the hallmarks of Alzheimer's Disease (AD), are generated by the deposition of amyloid-beta (Aβ), the proteolytic product of amyloid precursor protein (APP), by β and γ-secretase. A large body of evidence points towards a role for Ca2+ imbalances in the pathophysiology of both sporadic and familial forms of AD (FAD). A reduction in store-operated Ca2+ entry (SOCE) is shared by numerous FAD-linked mutations, and SOCE is involved in Aβ accumulation in different model cells. In neurons, both the role and components of SOCE remain quite obscure, whereas in astrocytes, SOCE controls their Ca2+-based excitability and communication to neurons. Glial cells are also directly involved in Aβ production and clearance. Here, we focus on the role of ORAI2, a key SOCE component, in modulating SOCE in the human neuroglioma cell line H4. We show that ORAI2 overexpression reduces both SOCE level and stores Ca2+ content, while ORAI2 downregulation significantly increases SOCE amplitude without affecting store Ca2+ handling. In Aβ-secreting H4-APPswe cells, SOCE inhibition by BTP2 and SOCE augmentation by ORAI2 downregulation respectively increases and decreases Aβ42 accumulation. Based on these findings, we suggest ORAI2 downregulation as a potential tool to rescue defective SOCE in AD, while preventing plaque formation.
Collapse
Affiliation(s)
- Elena Scremin
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.S.); (M.A.); (A.L.); (T.P.)
| | - Mario Agostini
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.S.); (M.A.); (A.L.); (T.P.)
| | - Alessandro Leparulo
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.S.); (M.A.); (A.L.); (T.P.)
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.S.); (M.A.); (A.L.); (T.P.)
- Neuroscience Institute—Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Via G. Orus 2B, 35129 Padua, Italy
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.S.); (M.A.); (A.L.); (T.P.)
- Neuroscience Institute—Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
- Correspondence: (E.G.); (C.F.)
| | - Cristina Fasolato
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.S.); (M.A.); (A.L.); (T.P.)
- Correspondence: (E.G.); (C.F.)
| |
Collapse
|
15
|
Kabir MT, Uddin MS, Setu JR, Ashraf GM, Bin-Jumah MN, Abdel-Daim MM. Exploring the Role of PSEN Mutations in the Pathogenesis of Alzheimer's Disease. Neurotox Res 2020; 38:833-849. [PMID: 32556937 DOI: 10.1007/s12640-020-00232-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Mutations of presenilin (PSEN) genes that encode presenilin proteins have been found as the vital causal factors for early-onset familial AD (FAD). AD pathological features such as memory loss, synaptic dysfunction, and formation of plaques have been successfully mimicked in the transgenic mouse models that coexpress FAD-related presenilin and amyloid precursor protein (APP) variants. γ-Secretase (GS) is an enzyme that plays roles in catalyzing intramembranous APP proteolysis to release pathogenic amyloid beta (Aβ). It has been found that presenilins can play a role as the GS's catalytic subunit. FAD-related mutations in presenilins can modify the site of GS cleavage in a way that can elevate the production of longer and highly fibrillogenic Aβ. Presenilins can interact with β-catenin to generate presenilin complexes. Aforesaid interactions have also been studied to observe the mutational and physiological activities in the catenin signal transduction pathway. Along with APP, GS can catalyze intramembrane proteolysis of various substrates that play a vital role in synaptic function. PSEN mutations can cause FAD with autosomal dominant inheritance and early onset of the disease. In this article, we have reviewed the current progress in the analysis of PSENs and the correlation of PSEN mutations and AD pathogenesis.
Collapse
Affiliation(s)
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh. .,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | | | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
16
|
Galla L, Redolfi N, Pozzan T, Pizzo P, Greotti E. Intracellular Calcium Dysregulation by the Alzheimer's Disease-Linked Protein Presenilin 2. Int J Mol Sci 2020; 21:E770. [PMID: 31991578 PMCID: PMC7037278 DOI: 10.3390/ijms21030770] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Even though most AD cases are sporadic, a small percentage is familial due to autosomal dominant mutations in amyloid precursor protein (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2) genes. AD mutations contribute to the generation of toxic amyloid β (Aβ) peptides and the formation of cerebral plaques, leading to the formulation of the amyloid cascade hypothesis for AD pathogenesis. Many drugs have been developed to inhibit this pathway but all these approaches currently failed, raising the need to find additional pathogenic mechanisms. Alterations in cellular calcium (Ca2+) signaling have also been reported as causative of neurodegeneration. Interestingly, Aβ peptides, mutated presenilin-1 (PS1), and presenilin-2 (PS2) variously lead to modifications in Ca2+ homeostasis. In this contribution, we focus on PS2, summarizing how AD-linked PS2 mutants alter multiple Ca2+ pathways and the functional consequences of this Ca2+ dysregulation in AD pathogenesis.
Collapse
Affiliation(s)
- Luisa Galla
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (L.G.); (N.R.); (T.P.); (E.G.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| | - Nelly Redolfi
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (L.G.); (N.R.); (T.P.); (E.G.)
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (L.G.); (N.R.); (T.P.); (E.G.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), 35131 Padua, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (L.G.); (N.R.); (T.P.); (E.G.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (L.G.); (N.R.); (T.P.); (E.G.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| |
Collapse
|
17
|
Fedeli C, Filadi R, Rossi A, Mammucari C, Pizzo P. PSEN2 (presenilin 2) mutants linked to familial Alzheimer disease impair autophagy by altering Ca 2+ homeostasis. Autophagy 2019; 15:2044-2062. [PMID: 30892128 PMCID: PMC6844518 DOI: 10.1080/15548627.2019.1596489] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 02/14/2019] [Accepted: 02/28/2019] [Indexed: 02/05/2023] Open
Abstract
PSEN2 (presenilin 2) is one of the 3 proteins that, when mutated, causes early onset familial Alzheimer disease (FAD) cases. In addition to its well-known role within the γ-secretase complex (the enzyme ultimately responsible for Aβ peptides formation), PSEN2 is endowed with some γ-secretase-independent functions in distinct cell signaling pathways, such as the modulation of intracellular Ca2+ homeostasis. Here, by using different FAD-PSEN2 cell models, we demonstrate that mutated PSEN2 impairs autophagy by causing a block in the degradative flux at the level of the autophagosome-lysosome fusion step. The defect does not depend on an altered lysosomal functionality but rather on a decreased recruitment of the small GTPase RAB7 to autophagosomes, a key event for normal autophagy progression. Importantly, FAD-PSEN2 action on autophagy is unrelated to its γ-secretase activity but depends on its previously reported ability to partially deplete ER Ca2+ content, thus reducing cytosolic Ca2+ response upon IP3-linked cell stimulations. Our data sustain the pivotal role for Ca2+ signaling in autophagy and reveal a novel mechanism by which FAD-linked presenilins alter the degradative process, reinforcing the view of a causative role for a dysfunctional quality control pathway in AD neurodegeneration.Abbreviations: Aβ: amyloid β; AD: Alzheimer disease; ACTB: actin beta; AMPK: AMP-activated protein kinase; APP: amyloid-beta precursor protein; BafA: bafilomycin A1; BAPTA-AM: 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester; CFP: cyan fluorescent protein; EGTA-AM: ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid acetoxymethyl ester; ER: endoplasmic reticulum; EGFP-HDQ74: enhanced GFP-huntingtin exon 1 containing 74 polyglutamine repeats; FAD: familial Alzheimer disease; FCS: fetal calf serum; FRET: fluorescence/Förster resonance energy transfer; GFP: green fluorescent protein; IP3: inositol trisphosphate; KD: knockdown; LAMP1: lysosomal associated membrane protein 1; MAP1LC3-II/LC3-II: lipidated microtubule-associated protein 1 light chain 3; MCU: mitochondrial calcium uniporter; MICU1: mitochondrial calcium uptake 1; MEFs: mouse embryonic fibroblasts; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; SQSTM1/p62: sequestosome 1; PSEN1: presenilin 1; PSEN2: presenilin 2; RAB7: RAB7A: member RAS oncogene family; RFP: red fluorescent protein; ATP2A/SERCA: ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting; siRNA: small interference RNA; V-ATPase: vacuolar-type H+-ATPase; WT: wild type.
Collapse
Affiliation(s)
- Chiara Fedeli
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Alice Rossi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Neuroscience Institute – Italian National Research Council (CNR), Padua, Italy
| |
Collapse
|
18
|
Roles for the Endoplasmic Reticulum in Regulation of Neuronal Calcium Homeostasis. Cells 2019; 8:cells8101232. [PMID: 31658749 PMCID: PMC6829861 DOI: 10.3390/cells8101232] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
By influencing Ca2+ homeostasis in spatially and architecturally distinct neuronal compartments, the endoplasmic reticulum (ER) illustrates the notion that form and function are intimately related. The contribution of ER to neuronal Ca2+ homeostasis is attributed to the organelle being the largest reservoir of intracellular Ca2+ and having a high density of Ca2+ channels and transporters. As such, ER Ca2+ has incontrovertible roles in the regulation of axodendritic growth and morphology, synaptic vesicle release, and neural activity dependent gene expression, synaptic plasticity, and mitochondrial bioenergetics. Not surprisingly, many neurological diseases arise from ER Ca2+ dyshomeostasis, either directly due to alterations in ER resident proteins, or indirectly via processes that are coupled to the regulators of ER Ca2+ dynamics. In this review, we describe the mechanisms involved in the establishment of ER Ca2+ homeostasis in neurons. We elaborate upon how changes in the spatiotemporal dynamics of Ca2+ exchange between the ER and other organelles sculpt neuronal function and provide examples that demonstrate the involvement of ER Ca2+ dyshomeostasis in a range of neurological and neurodegenerative diseases.
Collapse
|
19
|
Familial Alzheimer's disease-linked presenilin mutants and intracellular Ca 2+ handling: A single-organelle, FRET-based analysis. Cell Calcium 2019; 79:44-56. [PMID: 30822648 DOI: 10.1016/j.ceca.2019.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
An imbalance in Ca2+ homeostasis represents an early event in the pathogenesis of Alzheimer's disease (AD). Presenilin-1 and -2 (PS1 and PS2) mutations, the major cause of familial AD (FAD), have been extensively associated with alterations in different Ca2+ signaling pathways, in particular those handled by storage compartments. However, FAD-PSs effect on organelles Ca2+ content is still debated and the mechanism of action of mutant proteins is unclear. To fulfil the need of a direct investigation of intracellular stores Ca2+ dynamics, we here present a detailed and quantitative single-cell analysis of FAD-PSs effects on organelle Ca2+ handling using specifically targeted, FRET (Fluorescence/Förster Resonance Energy Transfer)-based Ca2+ indicators. In SH-SY5Y human neuroblastoma cells and in patient-derived fibroblasts expressing different FAD-PSs mutations, we directly measured Ca2+ concentration within the main intracellular Ca2+ stores, e.g., Endoplasmic Reticulum (ER) and Golgi Apparatus (GA) medial- and trans-compartment. We unambiguously demonstrate that the expression of FAD-PS2 mutants, but not FAD-PS1, in either SH-SY5Y cells or FAD patient-derived fibroblasts, is able to alter Ca2+ handling of ER and medial-GA, but not trans-GA, reducing, compared to control cells, the Ca2+ content within these organelles by partially blocking SERCA (Sarco/Endoplasmic Reticulum Ca2+-ATPase) activity. Moreover, by using a cytosolic Ca2+ probe, we show that the expression of both FAD-PS1 and -PS2 reduces the Ca2+ influx activated by stores depletion (Store-Operated Ca2+ Entry; SOCE), by decreasing the expression levels of one of the key molecules, STIM1 (STromal Interaction Molecule 1), controlling this pathway. Our data indicate that FAD-linked PSs mutants differentially modulate the Ca2+ content of intracellular stores yet leading to a complex dysregulation of Ca2+ homeostasis, which represents a common disease phenotype of AD.
Collapse
|
20
|
Toussay X, Morel JL, Biendon N, Rotureau L, Legeron FP, Boutonnet MC, Cho YH, Macrez N. Presenilin 1 mutation decreases both calcium and contractile responses in cerebral arteries. Neurobiol Aging 2017; 58:201-212. [PMID: 28753475 DOI: 10.1016/j.neurobiolaging.2017.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 12/26/2022]
Abstract
Mutations or upregulation in presenilin 1 (PS1) gene are found in familial early-onset Alzheimer's disease or sporadic late-onset Alzheimer's disease, respectively. PS1 has been essentially studied in neurons and its mutation was shown to alter intracellular calcium (Ca2+) signals. Here, we showed that PS1 is expressed in smooth muscle cells (SMCs) of mouse cerebral arteries, and we assessed the effects of the deletion of exon 9 of PS1 (PS1dE9) on Ca2+ signals and contractile responses of vascular SMC. Agonist-induced contraction of cerebral vessels was significantly decreased in PS1dE9 both in vivo and ex vivo. Spontaneous activity of Ca2+ sparks through ryanodine-sensitive channels (RyR) was unchanged, whereas the RyR-mediated Ca2+-release activated by caffeine was shorter in PS1dE9 SMC when compared with control. Moreover, PS1dE9 mutation decreased the caffeine-activated capacitive Ca2+ entry, and inhibitors of SERCA pumps reversed the effects of PS1dE9 on Ca2+ signals. PS1dE9 mutation also leads to the increased expression of SERCA3, phospholamban, and RyR3. These results show that PS1 plays a crucial role in the cerebrovascular system and the vascular reactivity is decreased through altered Ca2+ signals in PS1dE9 mutant mice.
Collapse
Affiliation(s)
- Xavier Toussay
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Centre de Neurosciences Intégratives et Cognitives, UMR 5228, Bordeaux, France
| | - Jean-Luc Morel
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Nathalie Biendon
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Lolita Rotureau
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Centre de Neurosciences Intégratives et Cognitives, UMR 5228, Bordeaux, France
| | - François-Pierre Legeron
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Marie-Charlotte Boutonnet
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Yoon H Cho
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Nathalie Macrez
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| |
Collapse
|
21
|
Guo C, Ma Y, Ma S, Mu F, Deng J, Duan J, Xiong L, Yin Y, Wang Y, Xi M, Wen A. The Role of TRPC6 in the Neuroprotection of Calycosin Against Cerebral Ischemic Injury. Sci Rep 2017; 7:3039. [PMID: 28596571 PMCID: PMC5465205 DOI: 10.1038/s41598-017-03404-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/27/2017] [Indexed: 12/03/2022] Open
Abstract
Our previous studies have provided evidences that calycosin can protect the brain from ischemia/reperfusion injury, but its mechanisms is not fully understand. Transient receptor potential canonical 6 (TRPC6) has a critical role in promoting neuronal survival against cerebral ischemic injury. The aim of the present study is to test whether calycosin protects against cerebral ischemic injury through TRPC6-CREB pathway. In vivo, rats were subjected to transient middle cerebral artery occlusion (MCAO) for 2 h and then treated with different doses of calycosin at the onset of reperfusion. In vitro, primary cultured neurons were treated by calycosin, then exposed to 2 h oxygen glucose deprivation (OGD) followed by 24 h reoxygenation. Our results showed that treatment with calycosin protected against ischemia-induced damages by increasing TRPC6 and P-CREB expression and inhibiting calpain activation. The neuroprotection effect of calycosin was diminished by inhibition or knockdown of TRPC6 and CREB. These findings indicated that the potential neuroprotection mechanism of calycosin was involved with TRPC6-CREB pathway.
Collapse
Affiliation(s)
- Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Yongyuan Ma
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Shanbo Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Fei Mu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Jiao Deng
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Jialin Duan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Lize Xiong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Ying Yin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Yanhua Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Miaomaio Xi
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P.R. China.
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P.R. China.
| |
Collapse
|
22
|
Bollimuntha S, Pani B, Singh BB. Neurological and Motor Disorders: Neuronal Store-Operated Ca 2+ Signaling: An Overview and Its Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:535-556. [PMID: 28900932 PMCID: PMC5821072 DOI: 10.1007/978-3-319-57732-6_27] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Calcium (Ca2+) is a ubiquitous second messenger that performs significant physiological task such as neurosecretion, exocytosis, neuronal growth/differentiation, and the development and/or maintenance of neural circuits. An important regulatory aspect of neuronal Ca2+ homeostasis is store-operated Ca2+ entry (SOCE) which, in recent years, has gained much attention for influencing a variety of nerve cell responses. Essentially, activation of SOCE ensues following the activation of the plasma membrane (PM) store-operated Ca2+ channels (SOCC) triggered by the depletion of endoplasmic reticulum (ER) Ca2+ stores. In addition to the TRPC (transient receptor potential canonical) and the Orai family of ion channels, STIM (stromal interacting molecule) proteins have been baptized as key molecular regulators of SOCE. Functional significance of the TRPC channels in neurons has been elaborately studied; however, information on Orai and STIM components of SOCE, although seems imminent, is currently limited. Importantly, perturbations in SOCE have been implicated in a spectrum of neuropathological conditions. Hence, understanding the precise involvement of SOCC in neurodegeneration would presumably unveil avenues for plausible therapeutic interventions. We thus review the role of SOCE-regulated neuronal Ca2+ signaling in selecting neurodegenerative conditions.
Collapse
Affiliation(s)
- Sunitha Bollimuntha
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA.
| | - Biswaranjan Pani
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Brij B Singh
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA.
| |
Collapse
|
23
|
Cai Y, Bagyinszky E, An SSA, Kim SY. In silico modeling of pathogenic or possibly pathogenic point mutations in PSEN2. Mol Cell Toxicol 2016. [DOI: 10.1007/s13273-016-0050-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Fontana R, Agostini M, Murana E, Mahmud M, Scremin E, Rubega M, Sparacino G, Vassanelli S, Fasolato C. Early hippocampal hyperexcitability in PS2APP mice: role of mutant PS2 and APP. Neurobiol Aging 2016; 50:64-76. [PMID: 27889678 DOI: 10.1016/j.neurobiolaging.2016.10.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/17/2016] [Accepted: 10/28/2016] [Indexed: 12/27/2022]
Abstract
Alterations of brain network activity are observable in Alzheimer's disease (AD) together with the occurrence of mild cognitive impairment, before overt pathology. However, in humans as well in AD mouse models, identification of early biomarkers of network dysfunction is still at its beginning. We performed in vivo recordings of local field potential activity in the dentate gyrus of PS2APP mice expressing the human amyloid precursor protein (APP) Swedish mutation and the presenilin-2 (PS2) N141I. From a frequency-domain analysis, we uncovered network hyper-synchronicity as early as 3 months, when intracellular accumulation of amyloid beta was also observable. In addition, at 6 months of age, we identified network hyperactivity in the beta/gamma frequency bands, along with increased theta-beta and theta-gamma phase-amplitude cross-frequency coupling, in coincidence with the histopathological traits of the disease. Although hyperactivity and hypersynchronicity were respectively detected in mice expressing the PS2-N141I or the APP Swedish mutant alone, the increase in cross-frequency coupling specifically characterized the 6-month-old PS2APP mice, just before the surge of the cognitive decline.
Collapse
Affiliation(s)
- Roberto Fontana
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Mario Agostini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Emanuele Murana
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Mufti Mahmud
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Elena Scremin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Maria Rubega
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Giovanni Sparacino
- Department of Information Engineering, University of Padova, Padova, Italy
| | | | - Cristina Fasolato
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
25
|
Agostini M, Fasolato C. When, where and how? Focus on neuronal calcium dysfunctions in Alzheimer's Disease. Cell Calcium 2016; 60:289-298. [PMID: 27451385 DOI: 10.1016/j.ceca.2016.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD), since its characterization as a precise form of dementia with its own pathological hallmarks, has captured scientists' attention because of its complexity. The last 30 years have been filled with discoveries regarding the elusive aetiology of this disease and, thanks to advances in molecular biology and live imaging techniques, we now know that an important role is played by calcium (Ca2+). Ca2+, as ubiquitous second messenger, regulates a vast variety of cellular processes, from neuronal excitation and communication, to muscle fibre contraction and hormone secretion, with its action spanning a temporal scale that goes from microseconds to hours. It is therefore very challenging to conceive a single hypothesis that can integrate the numerous findings on this issue with those coming from the classical fields of AD research such as amyloid-beta (Aβ) and tau pathology. In this contribution, we will focus our attention on the Ca2+ hypothesis of AD, dissecting it, as much as possible, in its subcellular localization, where the Ca2+ signal meets its specificity. We will also follow the temporal evolution of the Ca2+ hypothesis, providing some of the most updated discoveries. Whenever possible, we will link the findings regarding Ca2+ dysfunction to the other players involved in AD pathogenesis, hoping to provide a crossover body of evidence, useful to amplify the knowledge that will lead towards the discovery of an effective therapy.
Collapse
Affiliation(s)
- Mario Agostini
- Department of Biomedical Sciences, University of Padua, Italy.
| | | |
Collapse
|
26
|
Filadi R, Greotti E, Turacchio G, Luini A, Pozzan T, Pizzo P. Presenilin 2 Modulates Endoplasmic Reticulum-Mitochondria Coupling by Tuning the Antagonistic Effect of Mitofusin 2. Cell Rep 2016; 15:2226-2238. [PMID: 27239030 DOI: 10.1016/j.celrep.2016.05.013] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/23/2016] [Accepted: 04/28/2016] [Indexed: 01/31/2023] Open
Abstract
Communication between organelles plays key roles in cell biology. In particular, physical and functional coupling of the endoplasmic reticulum (ER) and mitochondria is crucial for regulation of various physiological and pathophysiological processes. Here, we demonstrate that Presenilin 2 (PS2), mutations in which underlie familial Alzheimer's disease (FAD), promotes ER-mitochondria coupling only in the presence of mitofusin 2 (Mfn2). PS2 is not necessary for the antagonistic effect of Mfn2 on organelle coupling, although its abundance can tune it. The two proteins physically interact, whereas their homologues Mfn1 and PS1 are dispensable for this interplay. Moreover, PS2 mutants associated with FAD are more effective than the wild-type form in modulating ER-mitochondria tethering because their binding to Mfn2 in mitochondria-associated membranes is favored. We propose a revised model for ER-mitochondria interaction to account for these findings and discuss possible implications for FAD pathogenesis.
Collapse
Affiliation(s)
- Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/B, Padua 35131, Italy
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/B, Padua 35131, Italy; Department of Biomedical Sciences, Institute of Neuroscience, Italian National Research Council (CNR), via U. Bassi 58/B, Padua 35131, Italy
| | - Gabriele Turacchio
- Department of Biomedical Sciences, Institute of Protein Biochemistry, Italian National Research Council (CNR), via P. Castellino 111, Naples 80131, Italy
| | - Alberto Luini
- Department of Biomedical Sciences, Institute of Protein Biochemistry, Italian National Research Council (CNR), via P. Castellino 111, Naples 80131, Italy
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/B, Padua 35131, Italy; Venetian Institute of Molecular Medicine, via Orus 2, Padua 35131, Italy; Department of Biomedical Sciences, Institute of Neuroscience, Italian National Research Council (CNR), via U. Bassi 58/B, Padua 35131, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/B, Padua 35131, Italy.
| |
Collapse
|
27
|
Cai Y, An SSA, Kim S. Mutations in presenilin 2 and its implications in Alzheimer's disease and other dementia-associated disorders. Clin Interv Aging 2015; 10:1163-72. [PMID: 26203236 PMCID: PMC4507455 DOI: 10.2147/cia.s85808] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Mutations in the genes encoding presenilin 1 (PSEN1), presenilin 2 (PSEN2), and amyloid precursor protein have been identified as the main genetic causes of familial AD. To date, more than 200 mutations have been described worldwide in PSEN1, which is highly homologous with PSEN2, while mutations in PSEN2 have been rarely reported. We performed a systematic review of studies describing the mutations identified in PSEN2. Most PSEN2 mutations were detected in European and in African populations. Only two were found in Korean populations. Interestingly, PSEN2 mutations appeared not only in AD patients but also in patients with other disorders, including frontotemporal dementia, dementia with Lewy bodies, breast cancer, dilated cardiomyopathy, and Parkinson's disease with dementia. Here, we have summarized the PSEN2 mutations and the potential implications of these mutations in dementia-associated disorders.
Collapse
Affiliation(s)
- Yan Cai
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, South Korea
| |
Collapse
|
28
|
Liang J, Kulasiri D, Samarasinghe S. Ca2+ dysregulation in the endoplasmic reticulum related to Alzheimer's disease: A review on experimental progress and computational modeling. Biosystems 2015; 134:1-15. [PMID: 25998697 DOI: 10.1016/j.biosystems.2015.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a devastating, incurable neurodegenerative disease affecting millions of people worldwide. Dysregulation of intracellular Ca(2+) signaling has been observed as an early event prior to the presence of clinical symptoms of AD and is believed to be a crucial factor contributing to its pathogenesis. The progressive and sustaining increase in the resting level of cytosolic Ca(2+) will affect downstream activities and neural functions. This review focuses on the issues relating to the increasing Ca(2+) release from the endoplasmic reticulum (ER) observed in AD neurons. Numerous research papers have suggested that the dysregulation of ER Ca(2+) homeostasis is associated with mutations in the presenilin genes and amyloid-β oligomers. These disturbances could happen at many different points in the signaling process, directly affecting ER Ca(2+) channels or interfering with related pathways, which makes it harder to reveal the underlying mechanisms. This review paper also shows that computational modeling is a powerful tool in Ca(2+) signaling studies and discusses the progress in modeling related to Ca(2+) dysregulation in AD research.
Collapse
Affiliation(s)
- Jingyi Liang
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand; Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - Don Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand; Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand.
| | - Sandhya Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand; Department of Informatics and Enabling Technologies, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
29
|
Giorgi C, Missiroli S, Patergnani S, Duszynski J, Wieckowski MR, Pinton P. Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications. Antioxid Redox Signal 2015; 22:995-1019. [PMID: 25557408 DOI: 10.1089/ars.2014.6223] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE In all cells, the endoplasmic reticulum (ER) and mitochondria are physically connected to form junctions termed mitochondria-associated membranes (MAMs). This subcellular compartment is under intense investigation because it represents a "hot spot" for the intracellular signaling of important pathways, including the synthesis of cholesterol and phospholipids, calcium homeostasis, and reactive oxygen species (ROS) generation and activity. RECENT ADVANCES The advanced methods currently used to study this fascinating intracellular microdomain in detail have enabled the identification of the molecular composition of MAMs and their involvement within different physiopathological contexts. CRITICAL ISSUES Here, we review the knowledge regarding (i) MAMs composition in terms of protein composition, (ii) the relationship between MAMs and ROS, (iii) the involvement of MAMs in cell death programs with particular emphasis within the tumor context, (iv) the emerging role of MAMs during inflammation, and (v) the key role of MAMs alterations in selected neurological disorders. FUTURE DIRECTIONS Whether alterations in MAMs represent a response to the disease pathogenesis or directly contribute to the disease has not yet been unequivocally established. In any case, the signaling at the MAMs represents a promising pharmacological target for several important human diseases.
Collapse
Affiliation(s)
- Carlotta Giorgi
- 1 Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Aβ42 oligomers selectively disrupt neuronal calcium release. Neurobiol Aging 2015; 36:877-85. [DOI: 10.1016/j.neurobiolaging.2014.10.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/09/2014] [Accepted: 10/14/2014] [Indexed: 12/30/2022]
|
31
|
Kuo IY, Hu J, Ha Y, Ehrlich BE. Presenilin-like GxGD membrane proteases have dual roles as proteolytic enzymes and ion channels. J Biol Chem 2015; 290:6419-27. [PMID: 25609250 DOI: 10.1074/jbc.m114.629584] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GxGD proteases function to cleave protein substrates within the membrane. As these proteases contain multiple transmembrane domains typical of ion channels, we examined if GxGD proteases also function as ion channels. We tested the putative dual function by examining two archeobacterial GxGD proteases (PSH and FlaK), with known three-dimensional structures. Both are in the same GxGD family as presenilin, a protein mutated in Alzheimer Disease. Here, we demonstrate that PSH and FlaK form cation channels in lipid bilayers. A mutation that affected the enzymatic activity of FlaK rendered the channel catalytically inactive and altered the ion selectivity, indicating that the ion channel and the catalytic activities are linked. We report that the GxGD proteases, PSH and FlaK, are true "chanzymes" with interdependent ion channel and protease activity conferred by a single structural domain embedded in the membrane, supporting the proposal that higher-order proteases, including presenilin, have channel function.
Collapse
Affiliation(s)
| | - Jian Hu
- From the Departments of Pharmacology and
| | - Ya Ha
- From the Departments of Pharmacology and
| | - Barbara E Ehrlich
- From the Departments of Pharmacology and Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
32
|
Brini M, Calì T, Ottolini D, Carafoli E. Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 2014; 71:2787-814. [PMID: 24442513 PMCID: PMC11113927 DOI: 10.1007/s00018-013-1550-7] [Citation(s) in RCA: 429] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/15/2013] [Accepted: 12/30/2013] [Indexed: 01/07/2023]
Abstract
Calcium (Ca(2+)) is an universal second messenger that regulates the most important activities of all eukaryotic cells. It is of critical importance to neurons as it participates in the transmission of the depolarizing signal and contributes to synaptic activity. Neurons have thus developed extensive and intricate Ca(2+) signaling pathways to couple the Ca(2+) signal to their biochemical machinery. Ca(2+) influx into neurons occurs through plasma membrane receptors and voltage-dependent ion channels. The release of Ca(2+) from the intracellular stores, such as the endoplasmic reticulum, by intracellular channels also contributes to the elevation of cytosolic Ca(2+). Inside the cell, Ca(2+) is controlled by the buffering action of cytosolic Ca(2+)-binding proteins and by its uptake and release by mitochondria. The uptake of Ca(2+) in the mitochondrial matrix stimulates the citric acid cycle, thus enhancing ATP production and the removal of Ca(2+) from the cytosol by the ATP-driven pumps in the endoplasmic reticulum and the plasma membrane. A Na(+)/Ca(2+) exchanger in the plasma membrane also participates in the control of neuronal Ca(2+). The impaired ability of neurons to maintain an adequate energy level may impact Ca(2+) signaling: this occurs during aging and in neurodegenerative disease processes. The focus of this review is on neuronal Ca(2+) signaling and its involvement in synaptic signaling processes, neuronal energy metabolism, and neurotransmission. The contribution of altered Ca(2+) signaling in the most important neurological disorders will then be considered.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Biology, University of Padova, Via U.Bassi, 58/b, 35131 Padua, Italy
| | - Tito Calì
- Department of Biology, University of Padova, Via U.Bassi, 58/b, 35131 Padua, Italy
| | - Denis Ottolini
- Department of Biology, University of Padova, Via U.Bassi, 58/b, 35131 Padua, Italy
| | - Ernesto Carafoli
- Venetian Institute for Molecular Medicine (VIMM), Via G.Orus, 2, 35129 Padua, Italy
| |
Collapse
|
33
|
Physiological Function and Characterization of TRPCs in Neurons. Cells 2014; 3:455-75. [PMID: 24852263 PMCID: PMC4092863 DOI: 10.3390/cells3020455] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/22/2014] [Accepted: 05/13/2014] [Indexed: 12/14/2022] Open
Abstract
Ca2+ entry is essential for regulating vital physiological functions in all neuronal cells. Although neurons are engaged in multiple modes of Ca2+ entry that regulates variety of neuronal functions, we will only discuss a subset of specialized Ca2+-permeable non-selective Transient Receptor Potential Canonical (TRPC) channels and summarize their physiological and pathological role in these excitable cells. Depletion of endoplasmic reticulum (ER) Ca2+ stores, due to G-protein coupled receptor activation, has been shown to activate TRPC channels in both excitable and non-excitable cells. While all seven members of TRPC channels are predominately expressed in neuronal cells, the ion channel properties, mode of activation, and their physiological responses are quite distinct. Moreover, many of these TRPC channels have also been suggested to be associated with neuronal development, proliferation and differentiation. In addition, TRPCs also regulate neurosecretion, long-term potentiation and synaptic plasticity. Similarly, perturbations in Ca2+ entry via the TRPC channels have been also suggested in a spectrum of neuropathological conditions. Hence, understanding the precise involvement of TRPCs in neuronal function and in neurodegenerative conditions would presumably unveil avenues for plausible therapeutic interventions for these devastating neuronal diseases.
Collapse
|
34
|
Popugaeva E, Bezprozvanny I. Role of endoplasmic reticulum Ca2+ signaling in the pathogenesis of Alzheimer disease. Front Mol Neurosci 2013; 6:29. [PMID: 24065882 PMCID: PMC3776136 DOI: 10.3389/fnmol.2013.00029] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/30/2013] [Indexed: 01/24/2023] Open
Abstract
Alzheimer disease (AD) is a major threat of twenty-first century that is responsible for the majority of dementia in the elderly. Development of effective AD-preventing therapies are the top priority tasks for neuroscience research. Amyloid hypothesis of AD is a dominant idea in the field, but so far all amyloid-targeting therapies have failed in clinical trials. In addition to amyloid accumulation, there are consistent reports of abnormal calcium signaling in AD neurons. AD neurons exhibit enhanced intracellular calcium (Ca2+) liberation from the endoplasmic reticulum (ER) and reduced store-operated Ca2+ entry (SOC). These changes occur primarily as a result of ER Ca2+ overload. We argue that normalization of intracellular Ca2+ homeostasis could be a strategy for development of effective disease-modifying therapies. The current review summarizes recent data about changes in ER Ca2+ signaling in AD. Ca2+ channels that are discussed in the current review include: inositol trisphosphate receptors, ryanodine receptors, presenilins as ER Ca2+ leak channels, and neuronal SOC channels. We discuss how function of these channels is altered in AD and how important are resulting Ca2+ signaling changes for AD pathogenesis.
Collapse
Affiliation(s)
- Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Saint Petersburg State Polytechnical University Saint Petersburg, Russia
| | | |
Collapse
|
35
|
Honarnejad K, Jung CKE, Lammich S, Arzberger T, Kretzschmar H, Herms J. Involvement of presenilin holoprotein upregulation in calcium dyshomeostasis of Alzheimer's disease. J Cell Mol Med 2013; 17:293-302. [PMID: 23379308 PMCID: PMC3822592 DOI: 10.1111/jcmm.12008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 11/29/2012] [Indexed: 12/16/2022] Open
Abstract
Mutations in presenilins (PS1 and PS2) account for the vast majority of early onset familial Alzheimer's disease cases. Beside the well investigated role of presenilins as the catalytic unit in γ-secretase complex, their involvement in regulation of intracellular calcium homeostasis has recently come into more focus of Alzheimer's disease research. Here we report that the overexpression of PS1 full-length holoprotein forms, in particular familial Alzheimer's disease-causing forms of PS1, result in significantly attenuated calcium release from thapsigargin- and bradykinin-sensitive stores. Interestingly, treatment of HEK293 cells with γ-secretase inhibitors also leads to decreased amount of calcium release from endoplasmic reticulum (ER) accompanying elevated PS1 holoprotein levels. Similarly, the knockdown of PEN-2 which is associated with deficient PS1 endoproteolysis and accumulation of its holoprotein form also leads to decreased ER calcium release. Notably, we detected enhanced PS1 holoprotein levels also in postmortem brains of patients carrying familial Alzheimer's disease PS1 mutations. Taken together, the conditions in which the amount of full length PS1 holoprotein is increased result in reduction of calcium release from ER. Based on these results, we propose that the disturbed ER calcium homeostasis mediated by the elevation of PS1 holoprotein levels may be a contributing factor to the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Kamran Honarnejad
- Department of Translational Brain Research, DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Calì T, Ottolini D, Brini M. Mitochondrial Ca(2+) and neurodegeneration. Cell Calcium 2012; 52:73-85. [PMID: 22608276 PMCID: PMC3396847 DOI: 10.1016/j.ceca.2012.04.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 12/16/2022]
Abstract
Mitochondria are essential for ensuring numerous fundamental physiological processes such as cellular energy, redox balance, modulation of Ca2+ signaling and important biosynthetic pathways. They also govern the cell fate by participating in the apoptosis pathway. The mitochondrial shape, volume, number and distribution within the cells are strictly controlled. The regulation of these parameters has an impact on mitochondrial function, especially in the central nervous system, where trafficking of mitochondria is critical to their strategic intracellular distribution, presumably according to local energy demands. Thus, the maintenance of a healthy mitochondrial population is essential to avoid the impairment of the processes they regulate: for this purpose, cells have developed mechanisms involving a complex system of quality control to remove damaged mitochondria, or to renew them. Defects of these processes impair mitochondrial function and lead to disordered cell function, i.e., to a disease condition. Given the standard role of mitochondria in all cells, it might be expected that their dysfunction would give rise to similar defects in all tissues. However, damaged mitochondrial function has pleiotropic effects in multicellular organisms, resulting in diverse pathological conditions, ranging from cardiac and brain ischemia, to skeletal muscle myopathies to neurodegenerative diseases. In this review, we will focus on the relationship between mitochondrial (and cellular) derangements and Ca2+ dysregulation in neurodegenerative diseases, emphasizing the evidence obtained in genetic models. Common patterns, that recognize the derangement of Ca2+ and energy control as a causative factor, have been identified: advances in the understanding of the molecular regulation of Ca2+ homeostasis, and on the ways in which it could become perturbed in neurological disorders, may lead to the development of therapeutic strategies that modulate neuronal Ca2+ signaling.
Collapse
Affiliation(s)
- Tito Calì
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | | | | |
Collapse
|
37
|
Shilling D, Mak DOD, Kang DE, Foskett JK. Lack of evidence for presenilins as endoplasmic reticulum Ca2+ leak channels. J Biol Chem 2012; 287:10933-44. [PMID: 22311977 DOI: 10.1074/jbc.m111.300491] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Familial Alzheimer disease (FAD) is linked to mutations in the presenilin (PS) homologs. FAD mutant PS expression has several cellular consequences, including exaggerated intracellular Ca(2+) ([Ca(2+)](i)) signaling due to enhanced agonist sensitivity and increased magnitude of [Ca(2+)](i) signals. The mechanisms underlying these phenomena remain controversial. It has been proposed that PSs are constitutively active, passive endoplasmic reticulum (ER) Ca(2+) leak channels and that FAD PS mutations disrupt this function resulting in ER store overfilling that increases the driving force for release upon ER Ca(2+) release channel opening. To investigate this hypothesis, we employed multiple Ca(2+) imaging protocols and indicators to directly measure ER Ca(2+) dynamics in several cell systems. However, we did not observe consistent evidence that PSs act as ER Ca(2+) leak channels. Nevertheless, we confirmed observations made using indirect measurements employed in previous reports that proposed this hypothesis. Specifically, cells lacking PS or expressing a FAD-linked PS mutation displayed increased area under the ionomycin-induced [Ca(2+)](i) versus time curve (AI) compared with cells expressing WT PS. However, an ER-targeted Ca(2+) indicator revealed that this did not reflect overloaded ER stores. Monensin pretreatment selectively attenuated the AI in cells lacking PS or expressing a FAD PS allele. These findings contradict the hypothesis that PSs form ER Ca(2+) leak channels and highlight the need to use ER-targeted Ca(2+) indicators when studying ER Ca(2+) dynamics.
Collapse
Affiliation(s)
- Dustin Shilling
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
38
|
|
39
|
Presenilins as endoplasmic reticulum calcium leak channels and Alzheimer's disease pathogenesis. SCIENCE CHINA-LIFE SCIENCES 2011; 54:744-51. [PMID: 21786197 DOI: 10.1007/s11427-011-4201-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 06/08/2011] [Indexed: 10/18/2022]
Abstract
Alzheimer disease (AD) is the most common neurodegenerative disorder worldwide and is at present, incurable. The accumulation of toxic amyloid-beta (Aβ) peptide aggregates in AD brain is thought to trigger the extensive synaptic loss and neurodegeneration linked to cognitive decline, an idea that underlies the 'amyloid hypothesis' of AD etiology in both the familal (FAD) and sporadic forms of the disease. Genetic mutations causing FAD also result in the dysregulation of neuronal calcium (Ca(2+)) handling and may contribute to AD pathogenesis, an idea termed the 'calcium hypothesis' of AD. Mutations in presenilin proteins account for majority of FAD cases. Presenilins function as catalytic subunit of γ-secretase involved in generation of Aβ peptide Recently, we discovered that presenilns function as low-conductance, passive ER Ca(2+) leak channels, independent of γ-secretase activity. We further discovered that many FAD mutations in presenilins result in loss of ER Ca(2+) leak function activity and Ca(2+) overload in the ER. These results provided potential explanation for abnormal Ca(2+) signaling observed in FAD cells with mutations in presenilns. Our latest work on studies of ER Ca(2+) leak channel function of presenilins and implications of these findings for understanding AD pathogenesis are discussed in this article.
Collapse
|
40
|
Supnet C, Bezprozvanny I. Presenilins function in ER calcium leak and Alzheimer's disease pathogenesis. Cell Calcium 2011; 50:303-9. [PMID: 21663966 DOI: 10.1016/j.ceca.2011.05.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 10/18/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide and is at present, incurable. The accumulation of toxic amyloid-beta (Aβ) peptide aggregates in AD brain is thought to trigger the extensive synaptic loss and neurodegeneration linked to cognitive decline, an idea that underlies the 'amyloid hypothesis' of AD etiology in both the familal (FAD) and sporadic forms of the disease. Genetic mutations causing FAD also result in the dysregulation of neuronal calcium (Ca(2+)) handling and may contribute to AD pathogenesis, an idea termed the 'calcium hypothesis' of AD. Mutations in presenilin proteins account for the majority of FAD cases. Presenilins function as catalytic subunits of γ-secretase involved in the generation of Aβ peptide. Recently, we discovered that presenilns function as low-conductance, passive ER Ca(2+) leak channels, independent of γ-secretase activity. We further discovered that many FAD mutations in presenilins results in the loss of ER Ca(2+) leak function activity and Ca(2+) overload in the ER. These results provided potential explanation for abnormal Ca(2+) signaling observed in FAD cells with mutations in presenilns. The implications of these findings for understanding AD pathogenesis are discussed in this article.
Collapse
Affiliation(s)
- Charlene Supnet
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9040, United States
| | | |
Collapse
|
41
|
Giacomello M, Girardi S, Scorzeto M, Peruffo A, Maschietto M, Cozzi B, Vassanelli S. Stimulation of Ca²+ signals in neurons by electrically coupled electrolyte-oxide-semiconductor capacitors. J Neurosci Methods 2011; 198:1-7. [PMID: 21345350 DOI: 10.1016/j.jneumeth.2011.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/10/2011] [Accepted: 02/11/2011] [Indexed: 01/12/2023]
Abstract
Electrolyte-oxide-semiconductor capacitors (EOSCs) are a class of microtransducers for extracellular electrical stimulation that have been successfully employed to activate voltage-dependent sodium channels at the neuronal soma to generate action potentials in vitro. In the present work, we report on their use to control Ca²+ signalling in cultured mammalian cells, including neurons. Evidence is provided that EOSC stimulation with voltage waveforms in the microsecond or nanosecond range activates two distinct Ca²+ pathways, either by triggering Ca²+ entry through the plasma membrane or its release from intracellular stores. Ca²+ signals were activated in non-neuronal and neuronal cell lines, CHO-K1 and SH-SY5Y. On this basis, stimulation was tailored to rat and bovine neurons to mimic physiological somatic Ca²+ transients evoked by glutamate. Being minimally invasive and easy to use, the new method represents a versatile complement to standard electrophysiology and imaging techniques for the investigation of Ca²+ signalling in dissociated primary neurons and cell lines.
Collapse
Affiliation(s)
- M Giacomello
- Department of Experimental Veterinary Science, University of Padova, viale dell'Università 16, 35020 Legnaro-Agripolis (PD), Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Contreras L, Drago I, Zampese E, Pozzan T. Mitochondria: the calcium connection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:607-18. [PMID: 20470749 DOI: 10.1016/j.bbabio.2010.05.005] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/04/2010] [Accepted: 05/04/2010] [Indexed: 12/21/2022]
Abstract
Calcium handling by mitochondria is a key feature in cell life. It is involved in energy production for cell activity, in buffering and shaping cytosolic calcium rises and also in determining cell fate by triggering or preventing apoptosis. Both mitochondria and the mechanisms involved in the control of calcium homeostasis have been extensively studied, but they still provide researchers with long-standing or even new challenges. Technical improvements in the tools employed for the investigation of calcium dynamics have been-and are still-opening new perspectives in this field, and more prominently for mitochondria. In this review we present a state-of-the-art toolkit for calcium measurements, with major emphasis on the advantages of genetically encoded indicators. These indicators can be efficiently and selectively targeted to specific cellular sub-compartments, allowing previously unavailable high-definition calcium dynamic studies. We also summarize the main features of cellular and, in more detail, mitochondrial calcium handling, especially focusing on the latest breakthroughs in the field, such as the recent direct characterization of the calcium microdomains that occur on the mitochondrial surface upon cellular stimulation. Additionally, we provide a major example of the key role played by calcium in patho-physiology by briefly describing the extensively reported-albeit highly controversial-alterations of calcium homeostasis in Alzheimer's disease, casting lights on the possible alterations in mitochondrial calcium handling in this pathology.
Collapse
Affiliation(s)
- Laura Contreras
- Department of Biomedical Sciences, University of Padua, Italy.
| | | | | | | |
Collapse
|
43
|
Supnet C, Bezprozvanny I. The dysregulation of intracellular calcium in Alzheimer disease. Cell Calcium 2010; 47:183-9. [PMID: 20080301 PMCID: PMC2834825 DOI: 10.1016/j.ceca.2009.12.014] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 12/29/2009] [Indexed: 11/24/2022]
Abstract
Alzheimer disease (AD) is the most common neurodegenerative disorder worldwide and is at present, incurable. The accumulation of toxic amyloid-beta (Abeta) peptide aggregates in AD brain are thought to trigger the extensive synaptic loss and neurodegeneration linked to cognitive decline, an idea that underlies the 'amyloid hypothesis' of AD etiology in both the familal (FAD) and sporadic forms of the disease. Mutations causing FAD also result in the dysregulation of neuronal calcium (Ca2+) handling and may contribute to AD pathogenesis, an idea termed the 'calcium hypothesis' of AD. In particular, Ca2+ dysregulation by the endoplasmic reticulum (ER) in AD mouse models results in augmented cytosolic Ca2+ levels which can trigger signalling cascades that are detrimental to neuronal function and health. However, there is growing evidence to suggest that not all forms of Ca2+ dysregulation in AD neurons are harmful and some of them instead may be compensatory. These changes may help modulate neuronal excitability and slow AD pathology, especially in the early stages of the disease. Clearly, a better understanding of how dysregulation of neuronal Ca2+ handling contributes to neurodegeneration and neuroprotection in AD is needed as Ca2+ signalling modulators are targets of great interest as potential AD therapeutics.
Collapse
Affiliation(s)
- Charlene Supnet
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| | - Ilya Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| |
Collapse
|
44
|
Supnet C, Bezprozvanny I. Neuronal calcium signaling, mitochondrial dysfunction, and Alzheimer's disease. J Alzheimers Dis 2010; 20 Suppl 2:S487-98. [PMID: 20413848 PMCID: PMC4996661 DOI: 10.3233/jad-2010-100306] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder among the aged worldwide. AD is characterized by extensive synaptic and neuronal loss that leads to impaired memory and cognitive decline. The cause of AD is not completely understood and no effective therapy has been developed. The accumulation of toxic amyloid-beta42 (Abeta42) peptide oligomers and aggregates in AD brain has been proposed to be primarily responsible for the pathology of the disease, an idea dubbed the 'amyloid hypothesis' of AD etiology. In addition to the increase in Abeta42 levels, disturbances in neuronal calcium (Ca2+) signaling and alterations in expression levels of Ca2+ signaling proteins have been observed in animal models of familial AD and in studies of postmortem brain samples from sporadic AD patients. Based on these data, the 'Ca2+ hypothesis of AD' has been proposed. In particular, familial AD has been linked with enhanced Ca2+ release from the endoplasmic reticulum and elevated cytosolic Ca2+ levels. The augmented cytosolic Ca2+ levels can trigger signaling cascades that affect synaptic stability and function and can be detrimental to neuronal health, such as activation of calcineurin and calpains. Here we review the latest results supporting the 'Ca2+ hypothesis' of AD pathogenesis. We further argue that over time, supranormal cytosolic Ca2+ signaling can impair mitochondrial function in AD neurons. We conclude that inhibitors and stabilizers of neuronal Ca2+ signaling and mitochondrial function may have therapeutic potential for AD treatment. We also discuss latest and planned AD therapeutic trials of agents targeting Ca2+ channels and mitochondria.
Collapse
Affiliation(s)
- Charlene Supnet
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| | - Ilya Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| |
Collapse
|
45
|
Yu JT, Chang RCC, Tan L. Calcium dysregulation in Alzheimer's disease: from mechanisms to therapeutic opportunities. Prog Neurobiol 2009; 89:240-55. [PMID: 19664678 DOI: 10.1016/j.pneurobio.2009.07.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Revised: 07/28/2009] [Accepted: 07/31/2009] [Indexed: 11/28/2022]
Abstract
Calcium is involved in many facets of neuronal physiology, including activity, growth and differentiation, synaptic plasticity, and learning and memory, as well as pathophysiology, including necrosis, apoptosis, and degeneration. Though disturbances in calcium homeostasis in cells from Alzheimer's disease (AD) patients have been observed for many years, much more attention was focused on amyloid-beta (Abeta) and tau as key causative factors for the disease. Nevertheless, increasing lines of evidence have recently reported that calcium dysregulation plays a central role in AD pathogenesis. Systemic calcium changes accompany almost the whole brain pathology process that is observed in AD, including synaptic dysfunction, mitochondrial dysfunction, presenilins mutation, Abeta production and Tau phosphorylation. Given the early and ubiquitous involvement of calcium dysregulation in AD pathogenesis, it logically presents a variety of potential therapeutic targets for AD prevention and treatment, such as calcium channels in the plasma membrane, calcium channels in the endoplasmic reticulum membrane, Abeta-formed calcium channels, calcium-related proteins. The review aims to provide an overview of the current understanding of the molecular mechanisms involved in calcium dysregulation in AD, and an insight on how to exploit calcium regulation as therapeutic opportunities in AD.
Collapse
Affiliation(s)
- Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No. 5 Donghai Middle Road, Qingdao, Shandong Province 266071, China
| | | | | |
Collapse
|
46
|
Zampese E, Brunello L, Lissandron V, Pozzan T, Pizzo P, Fasolato C. P2‐195: Organelle‐targeted Ca2+ probes help to visualize store Ca2+ handling by wild‐type and mutant presenilin‐2. Alzheimers Dement 2009. [DOI: 10.1016/j.jalz.2009.04.507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Brunello L, Zampese E, Florean C, Pozzan T, Pizzo P, Fasolato C. Presenilin-2 dampens intracellular Ca2+ stores by increasing Ca2+ leakage and reducing Ca2+ uptake. J Cell Mol Med 2009; 13:3358-69. [PMID: 19382908 PMCID: PMC4516491 DOI: 10.1111/j.1582-4934.2009.00755.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have previously shown that familial Alzheimer’s disease mutants of presenilin-2 (PS2) and, to a lesser extent, of presenilin-1 (PS1) lower the Ca2+ concentration of intracellular stores. We here examined the mechanism by which wild-type and mutant PS2 affect store Ca2+ handling. By using HeLa, SH-SY5Y and MEFs as model cells, and recombinant aequorins as Ca2+ probes, we show evidence that transient expression of either wild-type or mutant PS2 increases the passive Ca2+ leakage: both ryanodine- and IP3-receptors contribute to Ca2+ exit out of the ER, whereas the ribosome translocon complex is not involved. In SH-SY5Y cells and MEFs, wild-type and mutant PS2 potently reduce the uptake of Ca2+ inside the stores, an effect that can be counteracted by over-expression of SERCA-2B. On this line, in wild-type MEFs, lowering the endogenous level of PS2 by RNA interference, increases the Ca2+-loading capability of intracellular stores. Furthermore, we show that in PS double knockout MEFs, reduction of Ca2+ stores is mimicked by the expression of PS2-D366A, a loss-of-function mutant, uncleaved because also devoid of presenilinase activity but not by co-expression of the two catalytic active fragments of PS2. In summary, both physiological and increased levels of wild-type and mutant PS2 reduce the Ca2+ uptake by intracellular stores. To exert this newly described function, PS2 needs to be in its full-length form, even if it can subsequently be cleaved.
Collapse
Affiliation(s)
- Lucia Brunello
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Celsi F, Pizzo P, Brini M, Leo S, Fotino C, Pinton P, Rizzuto R. Mitochondria, calcium and cell death: a deadly triad in neurodegeneration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:335-44. [PMID: 19268425 DOI: 10.1016/j.bbabio.2009.02.021] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 12/17/2022]
Abstract
Mitochondrial Ca(2+) accumulation is a tightly controlled process, in turn regulating functions as diverse as aerobic metabolism and induction of cell death. The link between Ca(2+) (dys)regulation, mitochondria and cellular derangement is particularly evident in neurodegenerative disorders, in which genetic models and environmental factors allowed to identify common traits in the pathogenic routes. We will here summarize: i) the current view of mechanisms and functions of mitochondrial Ca(2+) homeostasis, ii) the basic principles of organelle Ca(2+) transport, iii) the role of Ca(2+) in neuronal cell death, and iv) the new information on the pathogenesis of Alzheimer's, Huntington's and Parkinson's diseases, highlighting the role of Ca(2+) and mitochondria.
Collapse
Affiliation(s)
- Fulvio Celsi
- Department of Experimental and Diagnostic Medicine, Interdisciplinary Center for the Study of Inflammation, Italy
| | | | | | | | | | | | | |
Collapse
|
49
|
Schepers E, Glorieux G, Dhondt A, Leybaert L, Vanholder R. Role of symmetric dimethylarginine in vascular damage by increasing ROS via store-operated calcium influx in monocytes. Nephrol Dial Transplant 2008; 24:1429-35. [PMID: 19059932 DOI: 10.1093/ndt/gfn670] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The guanidines asymmetric dimethylarginine (ADMA), a marker of endothelial dysfunction, and its counterpart symmetric dimethylarginine (SDMA), considered inert, are accumulated in chronic kidney disease (CKD). The present study evaluates their effect on monocyte function, since previous data demonstrated leukocyte activation by other guanidino compounds. METHODS The effect of ADMA and SDMA on reactive oxygen species (ROS) production in human whole blood at baseline and after N-formyl-methionine-leucine-phenylalanine (fMLP) stimulation was evaluated. By using the fluorescent probe Fluo3-AM, the role of changes in monocytic cytoplasmic calcium ([Ca2+]i) was studied. Thapsigargin, and removal followed by addition of extracellular Ca2+ (Ca2+(ex)), was used to investigate the contribution of store-operated Ca2+-channels (SOCs). SKF96365 was used as a selective inhibitor of the SOCs. A pharmacologic intervention with captopril, known to affect Ca2+ influx, was tested. RESULTS SDMA enhanced ROS production in fMLP-stimulated monocytes using heparinized blood, and this effect was abolished in EDTA-anticoagulated blood. In the presence of SDMA, an increased Ca2+ entry from the extracellular milieu resulted in an elevated amplitude of the peak [Ca2+]i change triggered by fMLP. None of these effects were seen with ADMA. Depletion of the intracellular stores with thapsigargin in the absence of Ca2+(ex), followed by re-addition of Ca2+(ex) triggered a significantly larger Ca2+ entry after SDMA treatment versus saline. This effect was prevented with SKF96365, as was the SDMA-enhanced oxidative burst after fMLP. Pre-incubation with captopril also reduced the increased ROS production seen with SDMA. CONCLUSIONS SDMA, a uraemic retention solute considered inert, stimulates ROS production of monocytes by acting on Ca2+ entry via SOCs. This pro-inflammatory effect may trigger vascular pathology and may be involved in altering the prevalence of cardiovascular disease in CKD.
Collapse
Affiliation(s)
- Eva Schepers
- Renal Division, Department of Internal Medicine, University Hospital Gent, Gent, Belgium
| | | | | | | | | |
Collapse
|
50
|
Fedrizzi L, Lim D, Carafoli E, Brini M. Interplay of the Ca2+-binding Protein DREAM with Presenilin in Neuronal Ca2+ Signaling. J Biol Chem 2008; 283:27494-27503. [DOI: 10.1074/jbc.m804152200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|