1
|
Shalchi-Amirkhiz P, Bensch T, Proschmann U, Stock AK, Ziemssen T, Akgün K. Pilot study on the influence of acute alcohol exposure on biophysical parameters of leukocytes. Front Mol Biosci 2023; 10:1243155. [PMID: 37614440 PMCID: PMC10442941 DOI: 10.3389/fmolb.2023.1243155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Objective: This pilot study explores the influence of acute alcohol exposure on cell mechanical properties of steady-state and activated leukocytes conducted with real-time deformability cytometry. Methods: Nineteen healthy male volunteers were enrolled to investigate the effect of binge drinking on biophysical properties and cell counts of peripheral blood leukocytes. Each participant consumed an individualized amount of alcohol to achieve a blood alcohol concentration of 1.2 ‰ as a mean peak. In addition, we also incubated whole blood samples from healthy donors with various ethanol concentrations and performed stimulation experiments using lipopolysaccharide and CytoStim™ in the presence of ethanol. Results: Our findings indicate that the biophysical properties of steady-state leukocytes are not significantly affected by a single episode of binge drinking within the first two hours. However, we observed significant alterations in relative cell counts and a shift toward a memory T cell phenotype. Moreover, exposure to ethanol during stimulation appears to inhibit the cytoskeleton reorganization of monocytes, as evidenced by a hindered increase in cell deformability. Conclusion: Our observations indicate the promising potential of cell mechanical analysis in understanding the influence of ethanol on immune cell functions. Nevertheless, additional investigations in this field are warranted to validate biophysical properties as biomarkers or prognostic indicators for alcohol-related changes in the immune system.
Collapse
Affiliation(s)
- Puya Shalchi-Amirkhiz
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Tristan Bensch
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Undine Proschmann
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
- Biopsychology, Department of Psychology, School of Science, TU Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Katja Akgün
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
2
|
Zheng Y, Yang M, Chen X, Zhang G, Wan S, Zhang B, Huo J, Liu H. Decreased tubulin-binding cofactor B was involved in the formation disorder of nascent astrocyte processes by regulating microtubule plus-end growth through binding with end-binding proteins 1 and 3 after chronic alcohol exposure. Front Cell Neurosci 2022; 16:989945. [PMID: 36385945 PMCID: PMC9641617 DOI: 10.3389/fncel.2022.989945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022] Open
Abstract
Fetal alcohol syndrome (FAS) is a neurological disease caused by excessive drinking during pregnancy and characterized by congenital abnormalities in the structure and function of the fetal brain. This study was proposed to provide new insights into the pathogenesis of FAS by revealing the possible mechanisms of alcohol-induced astrocyte injury. First, a chronic alcohol exposure model of astrocytes was established, and the formation disorder was found in astrocyte processes where tubulin-binding cofactor B (TBCB) was decreased or lost, accompanied by disorganized microtubules (MT). Second, to understand the relationship between TBCB reduction and the formation disorder of astrocyte processes, TBCB was silenced or overexpressed. It caused astrocyte processes to retract or lose after silencing, while the processes increased with expending basal part and obtuse tips after overexpressing. It confirmed that TBCB was one of the critical factors for the formation of astrocyte processes through regulating MT plus-end and provided a new view on the pathogenesis of FAS. Third, to explore the mechanism of TBCB regulating MT plus-ends, we first proved end-binding proteins 1 and 3 (EB1/3) were bound at MT plus-ends in astrocytes. Then, through interference experiments, we found that both EB1 and EB3, which formed in heterodimers, were necessary to mediate TBCB binding to MT plus-ends and thus regulated the formation of astrocyte processes. Finally, the regulatory mechanism was studied and the ERK1/2 signaling pathway was found as one of the main pathways regulating the expression of TBCB in astrocytes after alcohol injury.
Collapse
Affiliation(s)
- Yin Zheng
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- Department of Basic Medicine, Chongqing College of Traditional Chinese Medicine, Chongqing, China
| | - Mei Yang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Xiaoqiao Chen
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Gaoli Zhang
- Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shanshan Wan
- Department of Blood Transfusion, Sichuan Cancer Hospital and Institute, Chengdu, China
| | - Bingqiu Zhang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Jiechao Huo
- Fujian Province University Engineering Research Center of Mindong She Medicine, Medical College, Ningde Normal University, Ningde, China
| | - Hui Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- *Correspondence: Hui Liu
| |
Collapse
|
3
|
Zheng Y, Huo J, Yang M, Zhang G, Wan S, Chen X, Zhang B, Liu H. ERK1/2 Signalling Pathway Regulates Tubulin-Binding Cofactor B Expression and Affects Astrocyte Process Formation after Acute Foetal Alcohol Exposure. Brain Sci 2022; 12:brainsci12070813. [PMID: 35884621 PMCID: PMC9312805 DOI: 10.3390/brainsci12070813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Foetal alcohol spectrum disorders (FASDs) are a spectrum of neurological disorders whose neurological symptoms, besides the neuronal damage caused by alcohol, may also be associated with neuroglial damage. Tubulin-binding cofactor B (TBCB) may be involved in the pathogenesis of FASD. To understand the mechanism and provide new insights into the pathogenesis of FASD, acute foetal alcohol exposure model on astrocytes was established and the interference experiments were carried out. First, after alcohol exposure, the nascent astrocyte processes were reduced or lost, accompanied by the absence of TBCB expression and the disruption of microtubules (MTs) in processes. Subsequently, TBCB was silenced with siRNA. It was severely reduced or lost in nascent astrocyte processes, with a dramatic reduction in astrocyte processes, indicating that TBCB plays a vital role in astrocyte process formation. Finally, the regulating mechanism was studied and it was found that the extracellular signal-regulated protease 1/2 (ERK1/2) signalling pathway was one of the main pathways regulating TBCB expression in astrocytes after alcohol injury. In summary, after acute foetal alcohol exposure, the decreased TBCB in nascent astrocyte processes, regulated by the ERK1/2 signalling pathway, was the main factor leading to the disorder of astrocyte process formation, which could contribute to the neurological symptoms of FASD.
Collapse
Affiliation(s)
- Yin Zheng
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
- Correspondence: (Y.Z.); (J.H.)
| | - Jiechao Huo
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
- Correspondence: (Y.Z.); (J.H.)
| | - Mei Yang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
| | - Gaoli Zhang
- Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400063, China;
| | - Shanshan Wan
- Department of Blood Transfusion, Sichuan Cancer Hospital & Institute, Chengdu 610044, China;
| | - Xiaoqiao Chen
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
| | - Bingqiu Zhang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
| | - Hui Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
| |
Collapse
|
4
|
Macke AJ, Petrosyan A. Alcohol and Prostate Cancer: Time to Draw Conclusions. Biomolecules 2022; 12:375. [PMID: 35327568 PMCID: PMC8945566 DOI: 10.3390/biom12030375] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 01/25/2023] Open
Abstract
It has been a long-standing debate in the research and medical societies whether alcohol consumption is linked to the risk of prostate cancer (PCa). Many comprehensive studies from different geographical areas and nationalities have shown that moderate and heavy drinking is positively correlated with the development of PCa. Nevertheless, some observations could not confirm that such a correlation exists; some even suggest that wine consumption could prevent or slow prostate tumor growth. Here, we have rigorously analyzed the evidence both for and against the role of alcohol in PCa development. We found that many of the epidemiological studies did not consider other, potentially critical, factors, including diet (especially, low intake of fish, vegetables and linoleic acid, and excessive use of red meat), smoking, family history of PCa, low physical activity, history of high sexual activities especially with early age of first intercourse, and sexually transmitted infections. In addition, discrepancies between observations come from selectivity criteria for control groups, questionnaires about the type and dosage of alcohol, and misreported alcohol consumption. The lifetime history of alcohol consumption is critical given that a prostate tumor is typically slow-growing; however, many epidemiological observations that show no association monitored only current or relatively recent drinking status. Nevertheless, the overall conclusion is that high alcohol intake, especially binge drinking, is associated with increased risk for PCa, and this effect is not limited to any type of beverage. Alcohol consumption is also directly linked to PCa lethality as it may accelerate the growth of prostate tumors and significantly shorten the time for the progression to metastatic PCa. Thus, we recommend immediately quitting alcohol for patients diagnosed with PCa. We discuss the features of alcohol metabolism in the prostate tissue and the damaging effect of ethanol metabolites on intracellular organization and trafficking. In addition, we review the impact of alcohol consumption on prostate-specific antigen level and the risk for benign prostatic hyperplasia. Lastly, we highlight the known mechanisms of alcohol interference in prostate carcinogenesis and the possible side effects of alcohol during androgen deprivation therapy.
Collapse
Affiliation(s)
- Amanda J. Macke
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Armen Petrosyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- The Fred and Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Siqueira M, Araujo APB, Gomes FCA, Stipursky J. Ethanol Gestational Exposure Impairs Vascular Development and Endothelial Potential to Control BBB-Associated Astrocyte Function in the Developing Cerebral Cortex. Mol Neurobiol 2021; 58:1755-1768. [PMID: 33387302 DOI: 10.1007/s12035-020-02214-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
Ethanol consumption during pregnancy or lactation period can induce permanent damage to the development of the central nervous system (CNS), resulting in fetal alcohol spectrum disorders (FASD). CNS development depends on proper neural cells and blood vessel (BV) development and blood-brain barrier (BBB) establishment; however, little is known about how ethanol affects these events. Here, we investigated the impact of ethanol exposure to endothelial cells (ECs) function and to ECs interaction with astrocytes in the context of BBB establishment. Cerebral cortex of newborn mice exposed in utero to ethanol (FASD model) presented a hypervascularized phenotype, revealed by augmented vessel density, length, and branch points. Further, aberrant distribution of the tight junction ZO-1 protein along BVs and increased rates of perivascular astrocytic endfeet around BVs were observed. In vitro exposure of human brain microcapillary ECs (HBMEC) to ethanol significantly disrupted ZO-1 distribution, decreased Claudin-5 and GLUT-1 expression and impaired glucose uptake, and increased nitric oxide secretion. These events were accompanied by upregulation of angiogenesis-related secreted proteins by ECs in response to ethanol exposure. Treatment of cortical astrocytes with conditioned medium (CM) from ethanol exposed ECs, upregulated astrocyte's expression of GFAP, Cx43, and Lipocalin-2 genes, as well as the pro-inflammatory genes, IL-1beta, IL-6, and TNF-alpha, which was accompanied by NF-kappa B protein nuclear accumulation. Our findings suggest that ethanol triggers a dysfunctional phenotype in brain ECs, leading to impairment of cortical vascular network formation, and promotes ECs-induced astrocyte dysfunction, which could dramatically affect BBB establishment in the developing brain.
Collapse
Affiliation(s)
- Michele Siqueira
- Laboratório de Neurobiologia Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco F, Sala F15, Ilha do Fundão, Rio de Janeiro, RJ, 21949-902, Brazil
| | - Ana Paula Bérgamo Araujo
- Laboratório de Neurobiologia Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco F, Sala F15, Ilha do Fundão, Rio de Janeiro, RJ, 21949-902, Brazil
| | - Flávia Carvalho Alcantara Gomes
- Laboratório de Neurobiologia Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco F, Sala F15, Ilha do Fundão, Rio de Janeiro, RJ, 21949-902, Brazil
| | - Joice Stipursky
- Laboratório de Neurobiologia Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco F, Sala F15, Ilha do Fundão, Rio de Janeiro, RJ, 21949-902, Brazil.
| |
Collapse
|
6
|
Abstract
OBJECTIVE There is a lack of accurate alcohol-use biomarkers in children/adolescents due to a short drinking duration/rapid normalization of elevated markers. We checked if lysosomal exoglycosidases, elevated earlier in binge-drinking young adults, can be applicable in children/adolescents as markers of harmful alcohol use. METHODS The serum activities (pKat/mL) of α-fucosidase (FUC), β-galactosidase (GAL), β-glucuronidase (GLU), β-hexosaminidase (HEX; its HEX A and HEX B isoenzymes), and α-mannosidase (MAN) were determined in 20 healthy controls (C) and 25 children/adolescents with harmful alcohol use (intoxicated by alcohol at hospital admission -AI1 and on the next day -AI2). RESULTS The serum HEX A and alanine aminotransferase (ALT) activity was significantly higher in the AI1 group than in the control. The activities of FUC, GAL, GLU, HEX B, and MAN were lower in the AI group. We found fair and poor accuracy, respectively, for increased enzymes HEX A and ALT. We found fair accuracy for decreased HEX B (AI1) and MAN (AI1), good accuracy for GLU (AI2), FUC (AI2), GAL (AI1, AI2), MAN (AI2), and excellent for FUC (AI1). Correlations were found: ALT with C-reactive protein (CRP), HEX A with white blood cell (WBC) count, blood alcohol concentration with FUC, MAN and HEX B, and WBC with FUC. CONCLUSIONS Decreased FUC, GLU, GAL, MAN values, and especially FUC (AI1) have the potential to be markers of harmful alcohol use in children/adolescents. The raised activity of HEX A and ALT points to the need for further research to check another inflammatory agent as potential alcohol marker in children and adolescents. Samples need to be collected before intravenous fluid therapy.
Collapse
|
7
|
Wong EL, Stowell RD, Majewska AK. What the Spectrum of Microglial Functions Can Teach us About Fetal Alcohol Spectrum Disorder. Front Synaptic Neurosci 2017; 9:11. [PMID: 28674490 PMCID: PMC5474469 DOI: 10.3389/fnsyn.2017.00011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/29/2017] [Indexed: 12/18/2022] Open
Abstract
Alcohol exposure during gestation can lead to severe defects in brain development and lifelong physical, behavioral and learning deficits that are classified under the umbrella term fetal alcohol spectrum disorder (FASD). Sadly, FASD is diagnosed at an alarmingly high rate, affecting 2%–5% of live births in the United States, making it the most common non-heritable cause of mental disability. Currently, no standard therapies exist that are effective at battling FASD symptoms, highlighting a pressing need to better understand the underlying mechanisms by which alcohol affects the developing brain. While it is clear that sensory and cognitive deficits are driven by inappropriate development and remodeling of the neural circuits that mediate these processes, alcohol’s actions acutely and long-term on the brain milieu are diverse and complex. Microglia, the brain’s immune cells, have been thought to be a target for alcohol during development because of their exquisite ability to rapidly detect and respond to perturbations affecting the brain. Additionally, our view of these immune cells is rapidly changing, and recent studies have revealed a myriad of microglial physiological functions critical for normal brain development and long-term function. A clear and complete understanding of how microglial roles on this end of the spectrum may be altered in FASD is currently lacking. Such information could provide important insights toward novel therapeutic targets for FASD treatment. Here we review the literature that links microglia to neural circuit remodeling and provide a discussion of the current understanding of how developmental alcohol exposure affects microglial behavior in the context of developing brain circuits.
Collapse
Affiliation(s)
- Elissa L Wong
- Department of Environmental Medicine, University of Rochester Medical CenterRochester, NY, United States
| | - Rianne D Stowell
- Department of Neuroscience, University of Rochester Medical CenterRochester, NY, United States
| | - Ania K Majewska
- Department of Neuroscience, University of Rochester Medical CenterRochester, NY, United States
| |
Collapse
|
8
|
Trindade P, Hampton B, Manhães AC, Medina AE. Developmental alcohol exposure leads to a persistent change on astrocyte secretome. J Neurochem 2016; 137:730-43. [PMID: 26801685 PMCID: PMC5471499 DOI: 10.1111/jnc.13542] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/08/2015] [Accepted: 12/28/2015] [Indexed: 01/03/2023]
Abstract
Fetal alcohol spectrum disorder is the most common cause of mental disabilities in the western world. It has been quite established that acute alcohol exposure can dramatically affect astrocyte function. Because the effects of early alcohol exposure on cell physiology can persist into adulthood, we tested the hypothesis that ethanol exposure in ferrets during a period equivalent to the last months of human gestation leads to persistent changes in astrocyte secretome in vitro. Animals were treated with ethanol (3.5 g/kg) or saline between postnatal day (P)10-30. At P31, astrocyte cultures were made and cells were submitted to stable isotope labeling by amino acids. Twenty-four hour conditioned media of cells obtained from ethanol- or saline-treated animals (ET-CM or SAL-CM) were collected and analyzed by quantitative mass spectrometry in tandem with liquid chromatography. Here, we show that 65 out of 280 quantifiable proteins displayed significant differences comparing ET-CM to SAL-CM. Among the 59 proteins that were found to be reduced in ET-CM we observed components of the extracellular matrix such as laminin subunits α2, α4, β1, β2, and γ1 and the proteoglycans biglycan, heparan sulfate proteoglycan 2, and lumican. Proteins with trophic function such as insulin-like growth factor binding protein 4, pigment epithelium-derived factor, and clusterin as well as proteins involved on modulation of proteolysis such as metalloproteinase inhibitor 1 and plasminogen activator inhibitor-1 were also reduced. In contrast, pro-synaptogeneic proteins like thrombospondin-1, hevin as well as the modulator of extracelular matrix expression, angiotensinogen, were found increased in ET-CM. The analysis of interactome maps through ingenuity pathway analysis demonstrated that the amyloid beta A4 protein precursor, which was found reduced in ET-CM, was previously shown to interact with ten other proteins that exhibited significant changes in the ET-CM. Taken together our results strongly suggest that early exposure to teratogens such as alcohol may lead to an enduring change in astrocyte secretome. Despite efforts in prevention, fetal alcohol spectrum disorders are a major cause of mental disabilities. Here, we show that developmental exposure to alcohol lead to a persistent change in the pattern of proteins secreted (secretome) by astrocytes. This study is also the first mass spectrometry-based assessment of the astrocyte secretome in a gyrencephalic animal. Cover Image for this issue: doi: 10.1111/jnc.13320.
Collapse
Affiliation(s)
- Pablo Trindade
- Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Brian Hampton
- Protein Analysis Laboratory, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Alex C Manhães
- Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Physiology, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre E Medina
- Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Harada K, Kamiya T, Tsuboi T. Gliotransmitter Release from Astrocytes: Functional, Developmental, and Pathological Implications in the Brain. Front Neurosci 2016; 9:499. [PMID: 26793048 PMCID: PMC4709856 DOI: 10.3389/fnins.2015.00499] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022] Open
Abstract
Astrocytes comprise a large population of cells in the brain and are important partners to neighboring neurons, vascular cells, and other glial cells. Astrocytes not only form a scaffold for other cells, but also extend foot processes around the capillaries to maintain the blood–brain barrier. Thus, environmental chemicals that exist in the blood stream could have potentially harmful effects on the physiological function of astrocytes. Although astrocytes are not electrically excitable, they have been shown to function as active participants in the development of neural circuits and synaptic activity. Astrocytes respond to neurotransmitters and contribute to synaptic information processing by releasing chemical transmitters called “gliotransmitters.” State-of-the-art optical imaging techniques enable us to clarify how neurotransmitters elicit the release of various gliotransmitters, including glutamate, D-serine, and ATP. Moreover, recent studies have demonstrated that the disruption of gliotransmission results in neuronal dysfunction and abnormal behaviors in animal models. In this review, we focus on the latest technical approaches to clarify the molecular mechanisms of gliotransmitter exocytosis, and discuss the possibility that exposure to environmental chemicals could alter gliotransmission and cause neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kazuki Harada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan
| | - Taichi Kamiya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan
| |
Collapse
|
10
|
Wilhelm CJ, Guizzetti M. Fetal Alcohol Spectrum Disorders: An Overview from the Glia Perspective. Front Integr Neurosci 2016; 9:65. [PMID: 26793073 PMCID: PMC4707276 DOI: 10.3389/fnint.2015.00065] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/10/2015] [Indexed: 01/30/2023] Open
Abstract
Alcohol consumption during pregnancy can produce a variety of central nervous system (CNS) abnormalities in the offspring resulting in a broad spectrum of cognitive and behavioral impairments that constitute the most severe and long-lasting effects observed in fetal alcohol spectrum disorders (FASD). Alcohol-induced abnormalities in glial cells have been suspected of contributing to the adverse effects of alcohol on the developing brain for several years, although much research still needs to be done to causally link the effects of alcohol on specific brain structures and behavior to alterations in glial cell development and function. Damage to radial glia due to prenatal alcohol exposure may underlie observations of abnormal neuronal and glial migration in humans with Fetal Alcohol Syndrome (FAS), as well as primate and rodent models of FAS. A reduction in cell number and altered development has been reported for several glial cell types in animal models of FAS. In utero alcohol exposure can cause microencephaly when alcohol exposure occurs during the brain growth spurt a period characterized by rapid astrocyte proliferation and maturation; since astrocytes are the most abundant cells in the brain, microenchephaly may be caused by reduced astrocyte proliferation or survival, as observed in in vitro and in vivo studies. Delayed oligodendrocyte development and increased oligodendrocyte precursor apoptosis has also been reported in experimental models of FASD, which may be linked to altered myelination/white matter integrity found in FASD children. Children with FAS exhibit hypoplasia of the corpus callosum and anterior commissure, two areas requiring guidance from glial cells and proper maturation of oligodendrocytes. Finally, developmental alcohol exposure disrupts microglial function and induces microglial apoptosis; given the role of microglia in synaptic pruning during brain development, the effects of alcohol on microglia may be involved in the abnormal brain plasticity reported in FASD. The consequences of prenatal alcohol exposure on glial cells, including radial glia and other transient glial structures present in the developing brain, astrocytes, oligodendrocytes and their precursors, and microglia contributes to abnormal neuronal development, reduced neuron survival and disrupted brain architecture and connectivity. This review highlights the CNS structural abnormalities caused by in utero alcohol exposure and outlines which abnormalities are likely mediated by alcohol effects on glial cell development and function.
Collapse
Affiliation(s)
- Clare J Wilhelm
- Research Service, VA Portland Health Care SystemPortland, OR, USA; Department of Psychiatry, Oregon Health and Science UniversityPortland, OR, USA
| | - Marina Guizzetti
- Research Service, VA Portland Health Care SystemPortland, OR, USA; Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortland, OR, USA
| |
Collapse
|
11
|
Killinger BA, Moszczynska A. Epothilone D prevents binge methamphetamine-mediated loss of striatal dopaminergic markers. J Neurochem 2015; 136:510-25. [PMID: 26465779 DOI: 10.1111/jnc.13391] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 09/12/2015] [Accepted: 09/21/2015] [Indexed: 02/06/2023]
Abstract
Exposure to binge methamphetamine (METH) can result in a permanent or transient loss of dopaminergic (DAergic) markers such as dopamine (DA), dopamine transporter, and tyrosine hydroxylase (TH) in the striatum. We hypothesized that the METH-induced loss of striatal DAergic markers was, in part, due to a destabilization of microtubules (MTs) in the nigrostriatal DA pathway that ultimately impedes anterograde axonal transport of these markers. To test this hypothesis, adult male Sprague-Dawley rats were treated with binge METH or saline in the presence or absence of epothilone D (EpoD), a MT-stabilizing compound, and assessed 3 days after the treatments for the levels of several DAergic markers as well as for the levels of tubulins and their post-translational modifications (PMTs). Binge METH induced a loss of stable long-lived MTs within the striatum but not within the substantia nigra pars compacta (SNpc). Treatment with a low dose of EpoD increased the levels of markers of stable MTs and prevented METH-mediated deficits in several DAergic markers in the striatum. In contrast, administration of a high dose of EpoD appeared to destabilize MTs and potentiated the METH-induced deficits in several DAergic markers. The low-dose EpoD also prevented the METH-induced increase in striatal DA turnover and increased behavioral stereotypy during METH treatment. Together, these results demonstrate that MT dynamics plays a role in the development of METH-induced losses of several DAergic markers in the striatum and may mediate METH-induced degeneration of terminals in the nigrostriatal DA pathway. Our study also demonstrates that MT-stabilizing drugs such as EpoD have a potential to serve as useful therapeutic agents to restore function of DAergic nerve terminals following METH exposure when administered at low doses. Administration of binge methamphetamine (METH) negatively impacts neurotransmission in the nigrostriatal dopamine (DA) system. The effects of METH include decreasing the levels of DAergic markers in the striatum. We have determined that high-dose METH destabilizes microtubules in this pathway, which is manifested by decreased levels of acetylated (Acetyl) and detyrosinated (Detyr) α-tubulin (I). A microtubule stabilizing agent epothilone D protects striatal microtubules form the METH-induced loss of DAergic markers (II). These findings provide a new strategy for protection form METH - restoration of proper axonal transport.
Collapse
Affiliation(s)
- Bryan A Killinger
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
12
|
Romero AM, Renau-Piqueras J, Marín MP, Esteban-Pretel G. Chronic alcohol exposure affects the cell components involved in membrane traffic in neuronal dendrites. Neurotox Res 2014; 27:43-54. [PMID: 25022897 DOI: 10.1007/s12640-014-9484-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/13/2014] [Accepted: 07/01/2014] [Indexed: 01/09/2023]
Abstract
The specific traffic of the membrane components in neurons is a major requirement to establish and maintain neuronal domains-the axonal and the somatodendritic domains-and their polarized morphology. Unlike axons, dendrites contain membranous organelles, which are involved in the secretory pathway, including the endoplasmic reticulum, the Golgi apparatus and post-Golgi apparatus carriers, the cytoskeleton, and plasma membrane. A variety of molecules and factors are also involved in this process. Previous studies have shown that chronic alcohol exposure negatively affects several of these cell components, such as the Golgi apparatus or cytoskeleton in neurons. Yet very little information is available on the possible effects of this exposure on the remaining cell elements involved in intracellular trafficking in neurons, particularly in dendrites. By qualitative and quantitative electron microscopy, immunofluorescence and immunoblotting, we herein show that chronic exposure to moderate levels (30 mM) of ethanol in cultured neurons reduces the volume and surface density of the rough endoplasmic reticulum, and increases the levels of GRP78, a chaperone involved in endoplasmic reticulum stress. Ethanol also significantly diminishes the proportion of neurons that show an extension of Golgi into dendrites and dendritic Golgi outposts, a structure present exclusively in longer, thicker apical dendrites. Both Golgi apparatus types were also fragmented into a large number of cells. We also investigated the effect of alcohol on the levels of microtubule-based motor proteins KIF5, KIF17, KIFC2, dynein, and myosin IIb, responsible for transporting different cargoes in dendrites. Of these, alcohol differently affects several of them by lowering dynein and raising KIF5, KIFC2, and myosin IIb. These results, together with other previously published ones, suggest that practically all the protein trafficking steps in dendrites are altered to a greater or lesser extent by chronic alcohol exposure in neuronal cells, which may have negative repercussions for the development and maintenance of their polarized morphology and function.
Collapse
Affiliation(s)
- Ana M Romero
- Sección de Biología y Patología Celular, Centro de Investigación, Hospital Universitario ''La Fe'', Avenida Campanar 21, 46009, Valencia, Spain
| | | | | | | |
Collapse
|
13
|
Tóth ME, Vígh L, Sántha M. Alcohol stress, membranes, and chaperones. Cell Stress Chaperones 2014; 19:299-309. [PMID: 24122554 PMCID: PMC3982023 DOI: 10.1007/s12192-013-0472-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 12/28/2022] Open
Abstract
Ethanol, which affects all body organs, exerts a number of cytotoxic effects, most of them independent of cell type. Ethanol treatment leads to increased membrane fluidity and to changes in membrane protein composition. It can also interact directly with membrane proteins, causing conformational changes and thereby influencing their function. The cytotoxic action may include an increased level of oxidative stress. Heat shock protein molecular chaperones are ubiquitously expressed evolutionarily conserved proteins which serve as critical regulators of cellular homeostasis. Heat shock proteins can be induced by various forms of stresses such as elevated temperature, alcohol treatment, or ischemia, and they are also upregulated in certain pathological conditions. As heat shock and ethanol stress provoke similar responses, it is likely that heat shock protein activation also has a role in the protection of membranes and other cellular components during alcohol stress.
Collapse
Affiliation(s)
- Melinda E. Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| | - Miklós Sántha
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| |
Collapse
|
14
|
Guizzetti M, Zhang X, Goeke C, Gavin DP. Glia and neurodevelopment: focus on fetal alcohol spectrum disorders. Front Pediatr 2014; 2:123. [PMID: 25426477 PMCID: PMC4227495 DOI: 10.3389/fped.2014.00123] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/24/2014] [Indexed: 12/03/2022] Open
Abstract
During the last 20 years, new and exciting roles for glial cells in brain development have been described. Moreover, several recent studies implicated glial cells in the pathogenesis of neurodevelopmental disorders including Down syndrome, Fragile X syndrome, Rett Syndrome, Autism Spectrum Disorders, and Fetal Alcohol Spectrum Disorders (FASD). Abnormalities in glial cell development and proliferation and increased glial cell apoptosis contribute to the adverse effects of ethanol on the developing brain and it is becoming apparent that the effects of fetal alcohol are due, at least in part, to effects on glial cells affecting their ability to modulate neuronal development and function. The three major classes of glial cells, astrocytes, oligodendrocytes, and microglia as well as their precursors are affected by ethanol during brain development. Alterations in glial cell functions by ethanol dramatically affect neuronal development, survival, and function and ultimately impair the development of the proper brain architecture and connectivity. For instance, ethanol inhibits astrocyte-mediated neuritogenesis and oligodendrocyte development, survival and myelination; furthermore, ethanol induces microglia activation and oxidative stress leading to the exacerbation of ethanol-induced neuronal cell death. This review article describes the most significant recent findings pertaining the effects of ethanol on glial cells and their significance in the pathophysiology of FASD and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marina Guizzetti
- Department of Psychiatry, University of Illinois at Chicago , Chicago, IL , USA ; Jesse Brown VA Medical Center, U.S. Department of Veterans Affairs , Chicago, IL , USA ; Department of Environmental and Occupational Health Sciences, University of Washington , Seattle, WA , USA
| | - Xiaolu Zhang
- Department of Psychiatry, University of Illinois at Chicago , Chicago, IL , USA ; Jesse Brown VA Medical Center, U.S. Department of Veterans Affairs , Chicago, IL , USA
| | - Calla Goeke
- Department of Psychiatry, University of Illinois at Chicago , Chicago, IL , USA ; Jesse Brown VA Medical Center, U.S. Department of Veterans Affairs , Chicago, IL , USA
| | - David P Gavin
- Department of Psychiatry, University of Illinois at Chicago , Chicago, IL , USA ; Jesse Brown VA Medical Center, U.S. Department of Veterans Affairs , Chicago, IL , USA
| |
Collapse
|
15
|
Romero AM, Renau-Piqueras J, Pilar Marin M, Timoneda J, Berciano MT, Lafarga M, Esteban-Pretel G. Chronic alcohol alters dendritic spine development in neurons in primary culture. Neurotox Res 2013; 24:532-48. [PMID: 23820986 DOI: 10.1007/s12640-013-9409-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/07/2013] [Accepted: 06/21/2013] [Indexed: 12/24/2022]
Abstract
Dendritic spines are specialised membrane protrusions of neuronal dendrites that receive the majority of excitatory synaptic inputs. Abnormal changes in their density, size and morphology have been associated with various neurological and psychiatric disorders, including those deriving from drug addiction. Dendritic spine formation, morphology and synaptic functions are governed by the actin cytoskeleton. Previous in vivo studies have shown that ethanol alters the number and morphology of spines, although the mechanisms underlying these alterations remain unknown. It has also been described how chronic ethanol exposure affects the levels, assembly and cellular organisation of the actin cytoskeleton in hippocampal neurons in primary culture. Therefore, we hypothesised that the ethanol-induced alterations in the number and shape of dendritic spines are due to alterations in the mechanisms regulating actin cytoskeleton integrity. The results presented herein show that chronic exposure to moderate levels of alcohol (30 mM) during the first 2 weeks of culture reduces dendritic spine density and alters the proportion of the different morphologies of these structures in hippocampal neurons, which affects the formation of mature spines. Apparently, these effects are associated with an increase in the G-actin/F-actin ratio due to a reduction of the F-actin fraction, leading to changes in the levels of the different factors regulating the organisation of this cytoskeletal component. The data presented herein indicate that these effects occur between weeks 1 and 2 of culture, an important period in dendritic spines development. These changes may be related to the dysfunction in the memory and learning processes present in children prenatally exposed to ethanol.
Collapse
Affiliation(s)
- Ana M Romero
- Sección de Biología y Patología Celular, Centro de Investigación, Hospital Universitario ''La Fe'', Avenida Campanar 21, 46009, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Ethanol neurotoxicity in the developing cerebellum: underlying mechanisms and implications. Brain Sci 2013; 3:941-63. [PMID: 24961432 PMCID: PMC4061865 DOI: 10.3390/brainsci3020941] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/08/2013] [Accepted: 06/04/2013] [Indexed: 01/18/2023] Open
Abstract
Ethanol is the main constituent of alcoholic beverages that exerts toxicity to neuronal development. Ethanol affects synaptogenesis and prevents proper brain development. In humans, synaptogenesis takes place during the third trimester of pregnancy, and in rodents this period corresponds to the initial few weeks of postnatal development. In this period neuronal maturation and differentiation begin and neuronal cells start migrating to their ultimate destinations. Although the neuronal development of all areas of the brain is affected, the cerebellum and cerebellar neurons are more susceptible to the damaging effects of ethanol. Ethanol’s harmful effects include neuronal cell death, impaired differentiation, reduction of neuronal numbers, and weakening of neuronal plasticity. Neuronal development requires many hormones and growth factors such as retinoic acid, nerve growth factors, and cytokines. These factors regulate development and differentiation of neurons by acting through various receptors and their signaling pathways. Ethanol exposure during development impairs neuronal signaling mechanisms mediated by the N-methyl-d-aspartate (NMDA) receptors, the retinoic acid receptors, and by growth factors such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-I), and basic fibroblast growth factor (bFGF). In combination, these ethanol effects disrupt cellular homeostasis, reduce the survival and migration of neurons, and lead to various developmental defects in the brain. Here we review the signaling mechanisms that are required for proper neuronal development, and how these processes are impaired by ethanol resulting in harmful consequences to brain development.
Collapse
|
17
|
Ethanol-induced disruption of Golgi apparatus morphology, primary neurite number and cellular orientation in developing cortical neurons. Alcohol 2012; 46:619-27. [PMID: 22840816 DOI: 10.1016/j.alcohol.2012.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/10/2012] [Accepted: 07/12/2012] [Indexed: 01/28/2023]
Abstract
Prenatal ethanol exposure disrupts cortical neurite initiation and outgrowth, but prior studies have reported both ethanol-dependent growth promotion and inhibition. To resolve this ambiguity and better approximate in vivo conditions, we quantitatively analyzed neuronal morphology using a new, whole hemisphere explant model. In this model, Layer 6 (L6) cortical neurons migrate, laminate and extend neurites in an organotypic fashion. To selectively label L6 neurons, we performed ex utero electroporation of a GFP expression construct at embryonic day 13 and allowed the explants to develop for 2 days in vitro. Explants were exposed to (400 mg/dL) ethanol for either 4 or 24 h prior to fixation. Complete 3-D reconstructions were made of >80 GFP-positive neurons in each experimental condition. Acute responses to ethanol exposure included compaction of the Golgi apparatus accompanied by elaboration of supernumerary primary apical neurites, as well as a modest (∼15%) increase in higher order apical neurite length. With longer exposure time, ethanol exposure leads to a consistent, significant disorientation of the cell (cell body, primary apical neurite, and Golgi) with respect to the pial surface. The effects on cellular orientation were accompanied by decreased expression of cytoskeletal elements, microtubule-associated protein 2 and F-actin. These findings indicate that upon exposure to ethanol, developing L6 neurons manifest disruptions in Golgi apparatus and cytoskeletal elements which may in turn trigger selective and significant perturbations to primary neurite formation and neuronal polarity.
Collapse
|
18
|
Esteban-Pretel G, Marín MP, Romero AM, Timoneda J, Ponsoda X, Ballestín R, Renau-Piqueras J. Polyphosphoinositide metabolism and Golgi complex morphology in hippocampal neurons in primary culture is altered by chronic ethanol exposure. Alcohol Alcohol 2012; 48:15-27. [PMID: 23118092 DOI: 10.1093/alcalc/ags117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AIMS Ethanol affects not only the cytoskeletal organization and activity, but also intracellular trafficking in neurons in the primary culture. Polyphosphoinositide (PPIn) are essential regulators of many important cell functions, including those mentioned, cytoskeleton integrity and intracellular vesicle trafficking. Since information about the effect of chronic ethanol exposure on PPIn metabolism in neurons is scarce, this study analysed the effect of this treatment on three of these phospholipids. METHODS Phosphatidylinositol (PtdIns) levels as well as the activity and/or levels of enzymes involved in their metabolism were analysed in neurons chronically exposed to ethanol. The levels of phospholipases C and D, and phosphatidylethanol formation were also assessed. The consequence of the possible alterations in the levels of PtdIns on the Golgi complex (GC) was also analysed. RESULTS We show that phosphatidylinositol (4,5)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate levels, both involved in the control of intracellular trafficking and cytoskeleton organization, decrease in ethanol-exposed hippocampal neurons. In contrast, several kinases that participate in the metabolism of these phospholipids, and the level and/or activity of phospholipases C and D, increase in cells after ethanol exposure. Ethanol also promotes phosphatidylethanol formation in neurons, which can result in the suppression of phosphatidic acid synthesis and, therefore, in PPIn biosynthesis. This treatment also lowers the phosphatidylinositol 4-phosphate levels, the main PPIn in the GC, with alterations in their morphology and in the levels of some of the proteins involved in structure maintenance. CONCLUSIONS The deregulation of the metabolism of PtdIns may underlie the ethanol-induced alterations on different neuronal processes, including intracellular trafficking and cytoskeletal integrity.
Collapse
Affiliation(s)
- Guillermo Esteban-Pretel
- Corresponding author: Sección de Biología y Patología Celular, Centro de Investigación, Hospital Universitario La Fe, Avda. Campanar 21, Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
19
|
Alcohol induces Golgi fragmentation in differentiated PC12 cells by deregulating Rab1-dependent ER-to-Golgi transport. Histochem Cell Biol 2012; 138:489-501. [PMID: 22614950 DOI: 10.1007/s00418-012-0970-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
Abstract
In the present study, we analyze the effects of ethanol on the Golgi structure and membrane transport in differentiated PC12 cells, which are used as a model of neurons. Chronic exposure to moderate doses of ethanol induces Golgi fragmentation, a common characteristic of many neurodegenerative diseases. Alcohol impaired the lateral linking of stacks without causing microtubule damage. Extensive immunocytochemical and western blot analyses of representative Golgi proteins showed that few, but important, proteins are significantly affected. Thus, alcohol exposure induced a significant ER-to-Golgi transport delay, the retention of the GTPase Rab1 in the Golgi membranes and the accumulation of tethering factor p115 in the cytosol. These modifications would explain the observed fragmentation. The amount of p115 and the stacking protein GRASP65 increased in alcohol-treated cells, which might be a mechanism to reverse Golgi damage. Importantly, the overexpression of GTP-tagged Rab1 but not of a dominant-negative Rab1 mutant, restored the Golgi morphology, suggesting that this protein is the main target of alcohol. Taken together, our results support the view that alcohol and neurodegenerative diseases such as Parkinson have similar effects on intracellular trafficking and provide new clues on the neuropathology of alcoholism.
Collapse
|
20
|
Selva J, Egea G. Ethanol increases p190RhoGAP activity, leading to actin cytoskeleton rearrangements. J Neurochem 2011; 119:1306-16. [PMID: 21985251 DOI: 10.1111/j.1471-4159.2011.07522.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We previously reported that cells chronically exposed to ethanol show alterations in actin cytoskeleton organization and dynamics in primary cultures of newborn rat astrocytes, a well-established in vitro model for foetal alcohol spectrum disorders. These alterations were attributed to a decrease in the cellular levels of active RhoA (RhoA-GTP), which in turn was produced by an increase in the total RhoGAP activity. We here provide evidence that p190RhoGAPs are the main factors responsible for such increase. Thus, in astrocytes chronically exposed to ethanol we observe: (i) an increase in p190A- and p190B-associated RhoGAP activity; (ii) a higher binding of p190A and p190B to RhoA-GTP; (iii) a higher p120RasGAP-p190A RhoGAP complex formation; and (iv) the recruitment of both p190RhoGAPs to the plasma membrane. The simultaneous silencing of both p190 isoforms prevents the actin rearrangements and the total RhoGAP activity increase triggered both by ethanol. Therefore, our data directly points p190RhoGAPs as ethanol-exposure molecular targets on glial cells of the CNS.
Collapse
Affiliation(s)
- Javier Selva
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, and Instituts d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) i de Nanociències i Nanotecnologia (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|
21
|
Abstract
Eukaryotic cells comprise a set of organelles, surrounded by membranes with a unique composition, which is maintained by a complex synthesis and transport system. Cells also synthesize the proteins destined for secretion. Together, these processes are known as the secretory pathway or exocytosis. In addition, many molecules can be internalized by cells through a process called endocytosis. Chronic and acute alcohol (ethanol) exposure alters the secretion of different essential products, such as hormones, neurotransmitters and others in a variety of cells, including central nervous system cells. This effect could be due to a range of mechanisms, including alcohol-induced alterations in the different steps involved in intracellular transport, such as glycosylation and vesicular transport along cytoskeleton elements. Moreover, alcohol consumption during pregnancy disrupts developmental processes in the central nervous system. No single mechanism has proved sufficient to account for these effects, and multiple factors are likely involved. One such mechanism indicates that ethanol also perturbs protein trafficking. The purpose of this review is to summarize our understanding of how ethanol exposure alters the trafficking of proteins in different cell systems, especially in central nervous system cells (neurons and astrocytes) in adult and developing brains.
Collapse
|
22
|
Evrard SG, Brusco A. Ethanol Effects on the Cytoskeleton of Nerve Tissue Cells. ADVANCES IN NEUROBIOLOGY 2011. [DOI: 10.1007/978-1-4419-6787-9_29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
Ballestín R, Molowny A, Marín MP, Esteban-Pretel G, Romero AM, Lopez-Garcia C, Renau-Piqueras J, Ponsoda X. Ethanol reduces zincosome formation in cultured astrocytes. Alcohol Alcohol 2010; 46:17-25. [PMID: 21123366 DOI: 10.1093/alcalc/agq079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Zinc is an ion that participates in basic cellular and tissular functions. Zinc deficiency is present in many physiological and health problems affecting most body organs, including the brain. Among the circumstances involved in zinc deficiency, ethanol consumption is probably one of the most frequent. A dietary zinc supplement has been proposed as possibly being an efficient method to palliate zinc deficiency. Astrocytes form part of the hematoencephalic barrier, and they are apparently implicated in the homeostasis of the neuronal medium. In this work, we analyze the effect of ethanol on extracellular zinc management by rat astrocytes in culture. METHODS Intracellular levels of 'free zinc ions', in controls and 30 mM ethanol-treated astrocytes, were visualized by using the zinc fluorochrome TSQ. Cytoplasmic fluorescence and zincosome formation were measured after adding extracellular 50 µM ZnSO(4) to cell monolayers. Zincosomes were also observed at the electron microscopy level. RESULTS Exposure to ethanol for 7 days lowered the basal zinc levels of astrocytes by ∼30%. This difference was consistently maintained after the zinc pulse. Zinc ions were confined to bright fluorescent particles, the 'zincosomes', which appeared to be formed by the endocytic pathway. Zincosomes were less abundant in alcohol-treated cells, indicating a deficit in endocytoses as the origin of low zinc intake in astrocytes after ethanol treatment. CONCLUSIONS Ethanol reduces both intracellular ionic zinc levels and extracellular zinc uptake, resulting in poorer zincosome formation. Given the endocytic nature of zincosomes, the effect of ethanol on membrane trafficking is apparently the origin of this deficit.
Collapse
Affiliation(s)
- Raúl Ballestín
- 1Biologia Cellular, Universitat de València, Avda. Dr. Moliner 50, 46100 Burjassot, Spain
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Acute ethanol exposure disrupts actin cytoskeleton and generates reactive oxygen species in c6 cells. Toxicol In Vitro 2010; 25:28-36. [PMID: 20837132 DOI: 10.1016/j.tiv.2010.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/02/2010] [Accepted: 09/07/2010] [Indexed: 02/02/2023]
Abstract
Central nervous system dysfunctions are among the most significant effects of exposure to ethanol and the glial cells that play an important role in maintaining neuronal function, are extremely involved with these effects. The actin cytoskeleton plays a crucial role in a wide variety of cellular functions, especially when there is some injury. Therefore the aim of the present study was to analyze the short-term effects of ethanol (50, 100 and 200 mM) on the cytoskeleton of C6 glioma cells. Here we report that acute ethanol exposure profoundly disrupts the actin cytoskeleton in C6 cells decreasing stress fiber formation and downregulating RhoA and vinculin immunocontent. In contrast, microtubule and GFAP networks were not altered. We further demonstrate that anti-oxidants prevent ethanol-induced actin alterations, suggesting that the actions of ethanol on the actin cytoskeleton are related with generation of reactive oxygen species (ROS) in these cells. Our results show that ethanol at concentrations described to be toxic to the central nervous system was able to target the cytoskeleton of C6 cells and this effect could be related with increased ROS generation. Therefore, we propose that the dynamic restructuring of the cytoskeleton of glial cells might contribute to the response to the injury provoked by binge-like ethanol exposure in brain.
Collapse
|
25
|
Romero AM, Esteban-Pretel G, Marín MP, Ponsoda X, Ballestín R, Canales JJ, Renau-Piqueras J. Chronic ethanol exposure alters the levels, assembly, and cellular organization of the actin cytoskeleton and microtubules in hippocampal neurons in primary culture. Toxicol Sci 2010; 118:602-12. [PMID: 20829428 DOI: 10.1093/toxsci/kfq260] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The organization and dynamics of microtubules (MTs) and the actin cytoskeleton are critical for the correct development and functions of neurons, including intracellular traffic and signaling. In vitro ethanol exposure impairs endocytosis, exocytosis, and nucleocytoplasmic traffic in astrocytes and alters endocytosis in cultured neurons. In astrocytes, these effects relate to changes in the organization and/or function of MTs and the actin cytoskeleton. To evaluate this possibility in hippocampal cultured neurons, we analyzed if chronic ethanol exposure affects the levels, assembly, and cellular organization of both cytoskeleton elements and the possible underlying mechanisms of these effects by morphological and biochemical methods. In the experiments described below, we provide the first evidence that chronic alcohol exposure decreases the amount of both filamentous actin and polymerized tubulin in neurons and that the number of MTs in dendrites lowers in treated cells. Alcohol also diminishes the MT-associated protein-2 levels, which mainly localizes in the somatodendritic compartment in neurons. Ethanol decreases the levels of total Rac, Cdc42, and RhoA, three small guanosine triphosphatases (GTPases) involved in the organization and dynamics of the actin cytoskeleton and MTs. Yet when alcohol decreases the levels of the active forms (GTP bound) of Rac1 and Cdc42, it does not affect the active form of RhoA. We also investigated the levels of several effector and regulator molecules of these GTPases to find that alcohol induces heterogeneous results. In conclusion, our results show that MT, actin cytoskeleton organization, and Rho GTPase signaling pathways are targets for the toxic effects of ethanol in neurons.
Collapse
Affiliation(s)
- Ana M Romero
- Section of Biología y Patología Celular, Centro Investigación, Hospital La Fe, E-46009 Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Overexpression of serum response factor restores ocular dominance plasticity in a model of fetal alcohol spectrum disorders. J Neurosci 2010; 30:2513-20. [PMID: 20164336 DOI: 10.1523/jneurosci.5840-09.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neuronal plasticity deficits underlie many of the neurobehavioral problems seen in fetal alcohol spectrum disorders (FASD). Recently, we showed that third trimester alcohol exposure leads to a persistent disruption in ocular dominance (OD) plasticity. For instance, a few days of monocular deprivation results in a robust reduction of cortical regions responsive to the deprived eye in normal animals, but not in ferrets exposed early to alcohol. This plasticity deficit can be reversed if alcohol-exposed animals are treated with a phosphodiesterase type 1 (PDE1) inhibitor during the period of monocular deprivation. PDE1 inhibition can increase cAMP and cGMP levels, activating transcription factors such as the cAMP response element binding protein (CREB) and the serum response factor (SRF). SRF is important for many plasticity processes such as LTP, LTD, spine motility, and axonal pathfinding. Here we attempt to rescue OD plasticity in alcohol-treated ferrets using a Sindbis viral vector to express a constitutively active form of SRF during the period of monocular deprivation. Using optical imaging of intrinsic signals and single-unit recordings, we observed that overexpression of a constitutively active form of SRF, but neither its dominant-negative nor GFP, restored OD plasticity in alcohol-treated animals. Surprisingly, this restoration was observed throughout the extent of the primary visual cortex and most cells infected by the virus were positive for GFAP rather than NeuN. This finding suggests that overexpression of SRF in astrocytes may reduce the deficits in neuronal plasticity seen in models of FASD.
Collapse
|
27
|
Selva J, Martínez SE, Buceta D, Rodríguez-Vázquez MJ, Blanco MC, López-Quintela MA, Egea G. Silver Sub-nanoclusters Electrocatalyze Ethanol Oxidation and Provide Protection against Ethanol Toxicity in Cultured Mammalian Cells. J Am Chem Soc 2010; 132:6947-54. [DOI: 10.1021/ja907988s] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Javier Selva
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Instituts d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) i de Nanociències i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08036 Barcelona, Spain, and Laboratorio de Magnetismo y Nanotecnología (Nanomag), Instituto de Investigación Tecnológica, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Susana E. Martínez
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Instituts d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) i de Nanociències i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08036 Barcelona, Spain, and Laboratorio de Magnetismo y Nanotecnología (Nanomag), Instituto de Investigación Tecnológica, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - David Buceta
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Instituts d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) i de Nanociències i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08036 Barcelona, Spain, and Laboratorio de Magnetismo y Nanotecnología (Nanomag), Instituto de Investigación Tecnológica, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - María J. Rodríguez-Vázquez
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Instituts d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) i de Nanociències i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08036 Barcelona, Spain, and Laboratorio de Magnetismo y Nanotecnología (Nanomag), Instituto de Investigación Tecnológica, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - M. Carmen Blanco
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Instituts d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) i de Nanociències i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08036 Barcelona, Spain, and Laboratorio de Magnetismo y Nanotecnología (Nanomag), Instituto de Investigación Tecnológica, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - M. Arturo López-Quintela
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Instituts d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) i de Nanociències i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08036 Barcelona, Spain, and Laboratorio de Magnetismo y Nanotecnología (Nanomag), Instituto de Investigación Tecnológica, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Gustavo Egea
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Instituts d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) i de Nanociències i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08036 Barcelona, Spain, and Laboratorio de Magnetismo y Nanotecnología (Nanomag), Instituto de Investigación Tecnológica, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
28
|
Marín MP, Esteban-Pretel G, Ponsoda X, Romero AM, Ballestín R, López C, Megías L, Timoneda J, Molowny A, Canales JJ, Renau-Piqueras J. Endocytosis in Cultured Neurons Is Altered by Chronic Alcohol Exposure. Toxicol Sci 2010; 115:202-13. [DOI: 10.1093/toxsci/kfq040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Denmark DL, Buck KJ. Molecular analyses and identification of promising candidate genes for loci on mouse chromosome 1 affecting alcohol physical dependence and associated withdrawal. GENES BRAIN AND BEHAVIOR 2008; 7:599-608. [PMID: 18363851 DOI: 10.1111/j.1601-183x.2008.00396.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We recently mapped quantitative trait loci (QTLs) with large effects on predisposition to physical dependence and associated withdrawal severity following chronic and acute alcohol exposure (Alcdp1/Alcw1) to a 1.1-Mb interval of mouse chromosome 1 syntenic with human chromosome 1q23.2-23.3. Here, we provide a detailed analysis of the genes within this interval and show that it contains 40 coding genes, 17 of which show validated genotype-dependent transcript expression and/or non-synonymous coding sequence variation that may underlie the influence of Alcdp1/Alcw1 on ethanol dependence and associated withdrawal. These high priority candidates are involved in diverse cellular functions including intracellular trafficking, oxidative homeostasis, mitochondrial respiration, and extracellular matrix dynamics, and indicate both established and novel aspects of the neurobiological response to ethanol. This work represents a substantial advancement toward identification of the gene(s) that underlies the phenotypic effects of Alcdp1/Alcw1. Additionally, a multitude of QTLs for a variety of complex traits, including diverse behavioral responses to ethanol, have been mapped in the vicinity of Alcdp1/Alcw1, and as many as four QTLs on human chromosome 1q have been implicated in human mapping studies for alcoholism and associated endophenotypes. Thus, our results will be primary to further efforts to identify genes involved in a wide variety of behavioral responses to alcohol and may directly facilitate progress in human alcoholism genetics.
Collapse
Affiliation(s)
- D L Denmark
- Department of Behavioral Neuroscience, Neuroscience Graduate Program, and Portland Alcohol Research Center, Veterans Affairs Medical Center and Oregon Health and Science University, Portland, OR, USA.
| | | |
Collapse
|
30
|
Marín MP, Tomas M, Esteban-Pretel G, Megías L, López-Iglesias C, Egea G, Renau-Piqueras J. Chronic ethanol exposure induces alterations in the nucleocytoplasmic transport in growing astrocytes. J Neurochem 2008; 106:1914-28. [DOI: 10.1111/j.1471-4159.2008.05514.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
31
|
Kapfhamer D, Bettinger JC, Davies AG, Eastman CL, Smail EA, Heberlein U, McIntire SL. Loss of RAB-3/A in Caenorhabditis elegans and the mouse affects behavioral response to ethanol. GENES BRAIN AND BEHAVIOR 2008; 7:669-76. [PMID: 18397381 DOI: 10.1111/j.1601-183x.2008.00404.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The mechanisms by which ethanol induces changes in behavior are not well understood. Here, we show that Caenorhabditis elegans loss-of-function mutations in the synaptic vesicle-associated RAB-3 protein and its guanosine triphosphate exchange factor AEX-3 confer resistance to the acute locomotor effects of ethanol. Similarly, mice lacking one or both copies of Rab3A are resistant to the ataxic and sedative effects of ethanol, and Rab3A haploinsufficiency increases voluntary ethanol consumption. These data suggest a conserved role of RAB-3-/RAB3A-regulated neurotransmitter release in ethanol-related behaviors.
Collapse
Affiliation(s)
- D Kapfhamer
- The Ernest Gallo Clinic and Research Center, University of California at San Francisco, Emeryville, CA 94608, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Vetter I, Wyse BD, Roberts-Thomson SJ, Monteith GR, Cabot PJ. Mechanisms involved in potentiation of transient receptor potential vanilloid 1 responses by ethanol. Eur J Pain 2007; 12:441-54. [PMID: 17826200 DOI: 10.1016/j.ejpain.2007.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 07/02/2007] [Accepted: 07/09/2007] [Indexed: 11/23/2022]
Abstract
The transient receptor potential vanilloid 1 or TRPV1 is a calcium-permeable ion channel that is activated by capsaicin, the active component of hot chilli peppers, and is involved in the development of inflammatory and neuropathic hyperalgesias. Ethanol can sensitise TRPV1-mediated responses, but the pathways contributing to the potentiation of TRPV1 by ethanol have not been clearly defined. Since the mu opioid receptor (MOP) agonist morphine can inhibit TRPV1 responses potentiated by cAMP-dependent protein kinase A (PKA), and ethanol-mediated modulation of other ion channels involves activation of PKA, we aimed to assess the contribution of MOP-sensitive pathways to the potentiation of TRPV1-mediated capsaicin responses by ethanol. Calcium responses elicited by the TRPV1 agonist capsaicin were potentiated by treatment with ethanol, but morphine was not able to inhibit ethanol-sensitised capsaicin responses. Indeed, cAMP-dependent PKA did not appear to contribute to potentiation of TRPV1 responses by ethanol, as the PKA inhibitor Rp-cAMPS did not inhibit ethanol-potentiated capsaicin responses. Similarly, treatment with specific PKC and PI3K inhibitors did not affect capsaicin responses in the presence of ethanol. However, treatment with wortmannin at concentrations reported to cause PIP2 depletion limited the ability of ethanol to sensitise TRPV1-mediated capsaicin responses. Among other plausible mechanisms, such as non-specific inhibition of kinases including mTOR, DNA-PK, MLCK, MAPK and polo-like kinases, this suggests that ethanol may affect the PIP2-TRPV1 interaction. This was confirmed by inhibition of ethanol-potentiation by the PLC inhibitor U73122. The results presented here suggest that morphine may be of limited use in inhibiting nociceptive TRPV1 responses that have been sensitised by exposure to ethanol.
Collapse
Affiliation(s)
- Irina Vetter
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
33
|
Martínez SE, Lázaro-Diéguez F, Selva J, Calvo F, Piqueras JR, Crespo P, Claro E, Egea G. Lysophosphatidic acid rescues RhoA activation and phosphoinositides levels in astrocytes exposed to ethanol. J Neurochem 2007; 102:1044-52. [PMID: 17442046 DOI: 10.1111/j.1471-4159.2007.04581.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Long-term ethanol treatment substantially impairs glycosylation and membrane trafficking in primary cultures of rat astrocytes. Our previous studies indicated that these effects were attributable to a primary alteration in the dynamics and organization of the actin cytoskeleton, although the molecular mechanism(s) remains to be elucidated. As small Rho GTPases and phosphoinositides are involved in the actin cytoskeleton organization, we now explore the effects of chronic ethanol treatment on these pathways. We show that chronic ethanol treatment of rat astrocytes specifically reduced endogenous levels of active RhoA as a result of the increase of in the RhoGAP activity. Furthermore, ethanol-treated astrocytes showed reduced phosphoinositides levels. When lysophosphatidic acid was added to ethanol-treated astrocytes, it rapidly reverted actin cytoskeleton reorganization and raised active RhoA levels and phosphoinositides content to those observed in untreated astrocytes. Overall, our results indicate that the harmful effects of chronic exposure to ethanol on a variety of actin dynamics-associated cellular events are primarily because of alterations of activated RhoA and phosphoinositides pools.
Collapse
Affiliation(s)
- Susana E Martínez
- Departament de Biologia Cellular i Anatomia Patològica, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Tomás M, Marín MP, Portolés M, Megías L, Gómez-Lechón MJ, Renau-Piqueras J. Ethanol affects calmodulin and the calmodulin-binding proteins neuronal nitric oxide synthase and alphaII-spectrin (alpha-fodrin) in the nucleus of growing and differentiated rat astrocytes in primary culture. Toxicol In Vitro 2007; 21:1039-49. [PMID: 17482793 DOI: 10.1016/j.tiv.2007.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 03/20/2007] [Accepted: 03/20/2007] [Indexed: 11/27/2022]
Abstract
The distribution of calmodulin (CaM) and the CaM-binding proteins neuronal nitric oxide synthase (nNOS) and alphaII-spectrin (alpha-fodrin) in the nucleus of growing and differentiated astrocytes was analysed using immunogold electronmicroscopy. We also analysed the effect of moderate ethanol exposure on these proteins. For this, female Wistar rat were fed with an alcoholic liquid diet and exposed to males after several weeks. Pregnant rats were fed with this diet and, after birth, the foetuses brains were used to establish primary cultures of astrocytes. Astrocytes from control and ethanol-exposed rats foetuses were cultured in the absence or presence of ethanol (30 mM) for 7 days (growing cells) and 21 days (differentiated astrocytes). Our results indicate that all the proteins studied appeared mainly on the condensed chromatin of both control- and alcohol-exposed cells and that there are significant variations in the amount of these proteins between quiescent and dividing astrocytes. Altogether, we have not found a co-localisation between CaM and the CaM-binding proteins.
Collapse
Affiliation(s)
- M Tomás
- Sección de Biología y Patología Celular, Centro de Investigación, Hospital Universitario La Fe, Avda. Campanar 21, E-46009 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Camarillo C, Kumar LS, Bake S, Sohrabji F, Miranda RC. Ethanol regulates angiogenic cytokines during neural development: evidence from an in vitro model of mitogen-withdrawal-induced cerebral cortical neuroepithelial differentiation. Alcohol Clin Exp Res 2007; 31:324-35. [PMID: 17250626 PMCID: PMC2909106 DOI: 10.1111/j.1530-0277.2006.00308.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Heavy alcohol consumption during pregnancy can cause significant mental retardation and brain damage. We recently showed that ethanol depletes reserve cerebral cortical stem cell capacity. Moreover, proliferating neuroepithelial cells exposed to ethanol were resistant to subsequent retinoic acid-induced differentiation. Emerging evidence suggests that cytokines play a crucial growth-promoting role in the developing neural tube. METHODS We cultured murine cortical neurosphere cultures in control or ethanol-supplemented mitogenic medium, to mimic alcohol exposure during the period of neuroepithelial proliferation. Cultures were then treated with a step-wise mitogen-withdrawal, integrin-activation model to mimic subsequent phases of neuronal migration and early differentiation. We examined the impact of alcohol exposure during neurogenesis on the secretion of inflammatory and growth-promoting cytokines. RESULTS Cortical neurosphere cultures exhibit increasingly complex differentiation phenotypes in response to step-wise mitogen-withdrawal and laminin exposure. Some inflammation-modulating cytokines were secreted independent of differentiation state. However, chemotactic cytokines were specifically secreted at high levels, as a function of differentiation stage. monocyte chemotactic protein-1, vascular endothelial growth factor-A, and interleukin (IL)-10 were coordinately decreased during differentiation compared with neuroepithelial proliferation, while granulocyte macrophage-colony stimulating factor (GM-CSF) was induced during differentiation, compared with the neuroepithelial proliferation period. Ethanol exposure during the period of neuroepithelial proliferation prevented the early differentiation-induced increase in GM-CSF while inducing differentiation-associated increase in IL-12 secretion. CONCLUSION Embryonic cerebral cortical neuroepithelial-derived precursors secrete high levels of several angiogenic and neural-growth-promoting cytokines as they differentiate into neurons. Our data collectively suggest that ethanol exposure during the period of neuroepithelial proliferation significantly disrupts cytokine signals that are required for the support of emerging neurovascular networks, and the maintenance of neural stem cell beds.
Collapse
Affiliation(s)
- Cynthia Camarillo
- Texas A&M Health Science Ctr., College of Medicine, Dept. Neuroscience and Experimental Therapeutics, 228 Reynolds Medical Bldg., College Station, TX 77843-1114
| | - Leena S Kumar
- Texas A&M Health Science Ctr., College of Medicine, Dept. Neuroscience and Experimental Therapeutics, 228 Reynolds Medical Bldg., College Station, TX 77843-1114
| | - Shameena Bake
- Texas A&M Health Science Ctr., College of Medicine, Dept. Neuroscience and Experimental Therapeutics, 228 Reynolds Medical Bldg., College Station, TX 77843-1114
| | - Farida Sohrabji
- Texas A&M Health Science Ctr., College of Medicine, Dept. Neuroscience and Experimental Therapeutics, 228 Reynolds Medical Bldg., College Station, TX 77843-1114
- Center for Environmental and Rural Health, Texas A&M University
| | - Rajesh C. Miranda
- Texas A&M Health Science Ctr., College of Medicine, Dept. Neuroscience and Experimental Therapeutics, 228 Reynolds Medical Bldg., College Station, TX 77843-1114
- Center for Environmental and Rural Health, Texas A&M University
- Corresponding author:
| |
Collapse
|
36
|
Chen X, Sebastian BM, Nagy LE. Chronic ethanol feeding to rats decreases adiponectin secretion by subcutaneous adipocytes. Am J Physiol Endocrinol Metab 2007; 292:E621-8. [PMID: 17047161 PMCID: PMC1794258 DOI: 10.1152/ajpendo.00387.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic ethanol feeding to mice and rats decreases serum adiponectin concentration and adiponectin treatment attenuates chronic ethanol-induced liver injury. Although it is clear that lowered adiponectin has pathophysiological importance, the mechanisms by which chronic ethanol decreases adiponectin are not known. Here, we have investigated the impact of chronic ethanol feeding on adiponectin expression and secretion by adipose tissue. Rats were fed a 36% Lieber-DeCarli ethanol-containing liquid diet or pair-fed control diet for 4 wk. Chronic ethanol feeding decreased adiponectin mRNA but had no effect on adiponectin protein in subcutaneous adipose tissue. Chronic ethanol feeding also reduced adiponectin secretion by isolated subcutaneous and retroperitoneal adipocytes despite the maintenance of equivalent intracellular concentrations of adiponectin between subcutaneous adipocytes from ethanol- and pair-fed rats. Treatment with brefeldin A suppressed adiponectin secretion by subcutaneous adipocytes from pair-fed rats but had little effect after ethanol feeding. In subcutaneous adipocytes from pair-fed rats, adiponectin was enriched in endoplasmic reticulum (ER)/Golgi relative to plasma membrane; however, after chronic ethanol feeding, adiponectin was equally distributed between plasma membrane and ER/Golgi fractions. In conclusion, chronic ethanol feeding impaired adiponectin secretion by subcutaneous and retroperitoneal adipocytes; impaired secretion likely contributes to decreased adiponectin concentrations after chronic ethanol feeding.
Collapse
Affiliation(s)
- Xiaocong Chen
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106-4906
- Department of Pathobiology, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Becky M. Sebastian
- Department of Pathobiology, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Laura E. Nagy
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106-4906
- Department of Gastroenterology, Cleveland Clinic Foundation, Cleveland, OH 44195
- Department of Pathobiology, Cleveland Clinic Foundation, Cleveland, OH 44195
| |
Collapse
|
37
|
Braza-Boïls A, Tomás M, Marín MP, Megías L, Sancho-Tello M, Fornas E, Renau-Piqueras J. GLYCOSYLATION IS ALTERED BY ETHANOL IN RAT HIPPOCAMPAL CULTURED NEURONS. Alcohol Alcohol 2006; 41:494-504. [PMID: 16751217 DOI: 10.1093/alcalc/agl044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AIMS Glycoproteins, such as adhesion molecules and growth factors, participate in the regulation of nervous system development. Ethanol affects the synthesis, intracellular transport, distribution, and secretion of N-glycoproteins in different cell types, including astrocytes and hepatocytes, suggesting alterations in the glycosylation process. We analysed the effect of exposure to low doses of ethanol (30 mm, 7 days) on glycosylation in cultured hippocampal neurons. METHODS Neurons were incubated for short (5 min) and long (90 min) periods with the radioactively labelled carbohydrate precursors 2-deoxy-glucose, N-acetyl-D-mannosamine and mannose. The uptake and metabolism of these precursors, as well as the radioactivity distribution in protein gels, were analysed. The levels of the glucose transporters GLUT1 and GLUT3 were also determined. RESULTS Ethanol exposure reduces the synthesis of proteins, DNA and RNA and decreased the uptake of mannose, but not of 2-deoxy-glucose and N-acetyl-D-mannosamine, and it increased the protein levels of both glucose transporters. Moreover, it altered the carbohydrate moiety of several proteins. Finally, alcohol treatment results in an increment of cell surface glycoconjugates containing terminal non-reduced mannose. CONCLUSIONS Alcohol-induced alterations in glycosylation of proteins in neurons could be a key mechanism involved in the teratogenic effects of alcohol exposure on brain development.
Collapse
Affiliation(s)
- Aitana Braza-Boïls
- Section of Cell Biology and Pathology, Center for Investigation, Hospital La Fe, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|