1
|
Hernández-Montiel W, Martínez-Núñez MA, Ramón-Ugalde JP, Román-Ponce SI, Calderón-Chagoya R, Zamora-Bustillos R. Genome-Wide Association Study Reveals Candidate Genes for Litter Size Traits in Pelibuey Sheep. Animals (Basel) 2020; 10:ani10030434. [PMID: 32143402 PMCID: PMC7143297 DOI: 10.3390/ani10030434] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/22/2022] Open
Abstract
The Pelibuey sheep has adaptability to climatic variations, resistance to parasites, and good maternal ability, whereas some ewes present multiple births, which increases the litter size in farm sheep. The litter size in some wool sheep breeds is associated with the presence of mutations, mainly in the family of the transforming growth factor β (TGF-β) genes. To explore genetic mechanisms underlying the variation in litter size, we conducted a genome-wide association study in two groups of Pelibuey sheep (multiparous sheep with two lambs per birth vs. uniparous sheep with a single lamb at birth) using the OvineSNP50 BeadChip. We identified a total of 57 putative SNPs markers (p < 3.0 × 10-3, Bonferroni correction). The candidate genes that may be associated with litter size in Pelibuey sheep are CLSTN2, MTMR2, DLG1, CGA, ABCG5, TRPM6, and HTR1E. Genomic regions were also identified that contain three quantitative trait loci (QTLs) for aseasonal reproduction (ASREP), milk yield (MY), and body weight (BW). These results allowed us to identify SNPs associated with genes that could be involved in the reproductive process related to prolificacy.
Collapse
Affiliation(s)
- Wilber Hernández-Montiel
- TecNM/Instituto Tecnológico de Conkal, Av. Tecnológico S/N, Conkal, Yucatán 97345, Mexico; (W.H.-M.); (J.P.R.-U.)
- Departamento de Ciencias Agropecuarias, Universidad del Papaloapan, Loma Bonita Oaxaca 68400, Mexico
| | - Mario Alberto Martínez-Núñez
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sierra Papacal-Chuburna Km 5, Mérida, Yucatán 97302, Mexico;
| | - Julio Porfirio Ramón-Ugalde
- TecNM/Instituto Tecnológico de Conkal, Av. Tecnológico S/N, Conkal, Yucatán 97345, Mexico; (W.H.-M.); (J.P.R.-U.)
| | - Sergio Iván Román-Ponce
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, INIFAP, Ajuchitlán Colón, Querétaro 76280, Mexico;
- Correspondence: (S.I.R.-P.); (R.Z.-B.); Tel.: +52-5538718700 (ext. 80208) (S.I.R.-P.); +52-999-341-0860 (ext. 7631) (R.Z.-B.)
| | - Rene Calderón-Chagoya
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, INIFAP, Ajuchitlán Colón, Querétaro 76280, Mexico;
| | - Roberto Zamora-Bustillos
- TecNM/Instituto Tecnológico de Conkal, Av. Tecnológico S/N, Conkal, Yucatán 97345, Mexico; (W.H.-M.); (J.P.R.-U.)
- Correspondence: (S.I.R.-P.); (R.Z.-B.); Tel.: +52-5538718700 (ext. 80208) (S.I.R.-P.); +52-999-341-0860 (ext. 7631) (R.Z.-B.)
| |
Collapse
|
2
|
Jiang L, Liu JY, Shi Y, Tang B, He T, Liu JJ, Fan JY, Wu B, Xu XH, Zhao YL, Qian F, Cui YH, Yu PW. MTMR2 promotes invasion and metastasis of gastric cancer via inactivating IFNγ/STAT1 signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:206. [PMID: 31113461 PMCID: PMC6528261 DOI: 10.1186/s13046-019-1186-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/22/2019] [Indexed: 12/24/2022]
Abstract
Background The aberrant expression of myotubularin-related protein 2 (MTMR2) has been found in some cancers, but little is known about the roles and clinical relevance. The present study aimed to investigate the roles and clinical relevance of MTMR2 as well as the underlying mechanisms in gastric cancer (GC). Methods MTMR2 expression was examined in 295 GC samples by using immunohistochemistry (IHC). The correlation between MTMR2 expression and clinicopathological features and outcomes of the patients was analyzed. The roles of MTMR2 in regulating the invasive and metastatic capabilities of GC cells were observed using gain-and loss-of-function assays both in vitro and in vivo. The pathways involved in MTMR2-regulating invasion and metastasis were selected and identified by using mRNA expression profiling. Functions and underlying mechanisms of MTMR2-mediated invasion and metastasis were further investigated in a series of in vitro studies. Results MTMR2 was highly expressed in human GC tissues compared to adjacent normal tissues and its expression levels were significantly correlated with depth of invasion, lymph node metastasis, and TNM stage. Patients with MTMR2high had significantly shorter lifespan than those with MTMR2low. Cox regression analysis showed that MTMR2 was an independent prognostic indicator for GC patients. Knockdown of MTMR2 significantly reduced migratory and invasive capabilities in vitro and metastases in vivo in GC cells, while overexpressing MTMR2 achieved the opposite results. MTMR2 knockdown and overexpression markedly inhibited and promoted the epithelial-mesenchymal transition (EMT), respectively. MTMR2 mediated EMT through the IFNγ/STAT1/IRF1 pathway to promote GC invasion and metastasis. Phosphorylation of STAT1 and IRF1 was increased by MTMR2 knockdown and decreased by MTMR2 overexpression accompanying with ZEB1 down-regulation and up-regulation, respectively. Silencing IRF1 upregulated ZEB1, which induced EMT and consequently enhanced invasion and metastasis in GC cells. Conclusions Our findings suggest that MTMR2 is an important promoter in GC invasion and metastasis by inactivating IFNγ/STAT1 signaling and may act as a new prognostic indicator and a potential therapeutic target for GC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1186-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Jiang
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Jun-Yan Liu
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Yan Shi
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Bo Tang
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Tao He
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Jia-Jia Liu
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Jun-Yan Fan
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Bin Wu
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Xian-Hui Xu
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Yong-Liang Zhao
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Feng Qian
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - You-Hong Cui
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China. .,Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China.
| | - Pei-Wu Yu
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China.
| |
Collapse
|
3
|
Fogarty EA, Brewer MH, Rodriguez-Molina JF, Law WD, Ma KH, Steinberg NM, Svaren J, Antonellis A. SOX10 regulates an alternative promoter at the Charcot-Marie-Tooth disease locus MTMR2. Hum Mol Genet 2016; 25:3925-3936. [PMID: 27466180 DOI: 10.1093/hmg/ddw233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/21/2016] [Accepted: 07/11/2016] [Indexed: 11/13/2022] Open
Abstract
Schwann cells are the myelinating glia of the peripheral nervous system and dysfunction of these cells causes motor and sensory peripheral neuropathy. The transcription factor SOX10 is critical for Schwann cell development and maintenance, and many SOX10 target genes encode proteins required for Schwann cell function. Loss-of-function mutations in the gene encoding myotubularin-related protein 2 (MTMR2) cause Charcot-Marie-Tooth disease type 4B1 (CMT4B1), a severe demyelinating peripheral neuropathy characterized by myelin outfoldings along peripheral nerves. Previous reports indicate that MTMR2 is ubiquitously expressed making it unclear how loss of this gene causes a Schwann cell-specific phenotype. To address this, we performed computational and functional analyses at MTMR2 to identify transcriptional regulatory elements important for Schwann cell expression. Through these efforts, we identified an alternative, SOX10-responsive promoter at MTMR2 that displays strong regulatory activity in immortalized rat Schwann (S16) cells. This promoter directs transcription of a previously unidentified MTMR2 transcript that is enriched in mouse Schwann cells compared to immortalized mouse motor neurons (MN-1), and is predicted to encode an N-terminally truncated protein isoform. The expression of the endogenous transcript is induced in a heterologous cell line by ectopically expressing SOX10, and is nearly ablated in Schwann cells by impairing SOX10 function. Intriguingly, overexpressing the two MTMR2 protein isoforms in HeLa cells revealed that both localize to nuclear puncta and the shorter isoform displays higher nuclear localization compared to the longer isoform. Combined, our data warrant further investigation of the truncated MTMR2 protein isoform in Schwann cells and in CMT4B1 pathogenesis.
Collapse
Affiliation(s)
| | - Megan H Brewer
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - William D Law
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ki H Ma
- Cellular and Molecular Pathology (CMP) Program
| | - Noah M Steinberg
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - John Svaren
- Waisman Center.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Anthony Antonellis
- Neuroscience Graduate Program .,Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Ng AA, Logan AM, Schmidt EJ, Robinson FL. The CMT4B disease-causing phosphatases Mtmr2 and Mtmr13 localize to the Schwann cell cytoplasm and endomembrane compartments, where they depend upon each other to achieve wild-type levels of protein expression. Hum Mol Genet 2013; 22:1493-506. [PMID: 23297362 DOI: 10.1093/hmg/dds562] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The demyelinating peripheral neuropathy Charcot-Marie-Tooth type 4B (CMT4B) is characterized by axonal degeneration and myelin outfoldings. CMT4B results from mutations in either myotubularin-related protein 2 (MTMR2; CMT4B1) or MTMR13 (CMT4B2), phosphoinositide (PI) 3-phosphatases that dephosphorylate phosphatidylinositol 3-phosphate (PtdIns3P) and PtdIns(3,5)P2, lipids which regulate endo-lysosomal membrane traffic. The catalytically active MTMR2 and catalytically inactive MTMR13 physically associate, although the significance of this association is not well understood. Here we show that Mtmr13 loss leads to axonal degeneration in sciatic nerves of older mice. In addition, CMT4B2-like myelin outfoldings are present in Mtmr13(-/-) nerves at postnatal day 3. Thus, Mtmr13(-/-) mice show both the initial dysmyelination and later degenerative pathology of CMT4B2. Given the key role of PI 3-kinase-Akt signaling in myelination, we investigated the state of the pathway in nerves of CMT4B models. We found that Akt activation is unaltered in Mtmr13(-/-) and Mtmr2(-/-) mice. Mtmr2 and Mtmr13 are found within the Schwann cell cytoplasm, where the proteins are partially localized to punctate compartments, suggesting that Mtmr2-Mtmr13 may dephosphorylate their substrates on specific intracellular compartments. Mtmr2-Mtmr13 substrates play essential roles in endo-lysosomal membrane traffic. However, endosomes and lysosomes of Mtmr13(-/-) and Mtmr2(-/-) Schwann cells are morphologically indistinguishable from those of controls, indicating that loss of these proteins does not cause wholesale dysregulation of the endo-lysosomal system. Notably, Mtmr2 and Mtmr13 depend upon each other to achieve wild-type levels of protein expression. Mtmr2 stabilizes Mtmr13 on membranes, indicating that the Mtmr13 pseudophosphatase is regulated by its catalytically active binding partner.
Collapse
Affiliation(s)
- Aubree A Ng
- The Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
5
|
Myotubularin phosphoinositide phosphatases: cellular functions and disease pathophysiology. Trends Mol Med 2012; 18:317-27. [DOI: 10.1016/j.molmed.2012.04.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 11/23/2022]
|
6
|
Tronchère H, Bolino A, Laporte J, Payrastre B. Myotubularins and associated neuromuscular diseases. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/clp.12.7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Davies EM, Sheffield DA, Tibarewal P, Fedele CG, Mitchell CA, Leslie NR. The PTEN and Myotubularin phosphoinositide 3-phosphatases: linking lipid signalling to human disease. Subcell Biochem 2012; 58:281-336. [PMID: 22403079 DOI: 10.1007/978-94-007-3012-0_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two classes of lipid phosphatases selectively dephosphorylate the 3 position of the inositol ring of phosphoinositide signaling molecules: the PTEN and the Myotubularin families. PTEN dephosphorylates PtdIns(3,4,5)P(3), acting in direct opposition to the Class I PI3K enzymes in the regulation of cell growth, proliferation and polarity and is an important tumor suppressor. Although there are several PTEN-related proteins encoded by the human genome, none of these appear to fulfill the same functions. In contrast, the Myotubularins dephosphorylate both PtdIns(3)P and PtdIns(3,5)P(2), making them antagonists of the Class II and Class III PI 3-kinases and regulators of membrane traffic. Both phosphatase groups were originally identified through their causal mutation in human disease. Mutations in specific myotubularins result in myotubular myopathy and Charcot-Marie-Tooth peripheral neuropathy; and loss of PTEN function through mutation and other mechanisms is evident in as many as a third of all human tumors. This chapter will discuss these two classes of phosphatases, covering what is known about their biochemistry, their functions at the cellular and whole body level and their influence on human health.
Collapse
Affiliation(s)
- Elizabeth M Davies
- Division of Cell Signalling and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, Scotland, United Kingdom,
| | | | | | | | | | | |
Collapse
|
8
|
Razidlo GL, Katafiasz D, Taylor GS. Myotubularin regulates Akt-dependent survival signaling via phosphatidylinositol 3-phosphate. J Biol Chem 2011; 286:20005-19. [PMID: 21478156 DOI: 10.1074/jbc.m110.197749] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myotubularin is a 3-phosphoinositide phosphatase that is mutated in X-linked myotubular myopathy, a severe neonatal disorder in which skeletal muscle development and/or regeneration is impaired. In this report we provide evidence that siRNA-mediated silencing of myotubularin expression markedly inhibits growth factor-stimulated Akt phosphorylation, leading to activation of caspase-dependent pro-apoptotic signaling in HeLa cells and primary human skeletal muscle myotubes. Myotubularin silencing also inhibits Akt-dependent signaling through the mammalian target of rapamycin complex 1 as assessed by p70 S6-kinase and 4E-BP1 phosphorylation. Similarly, phosphorylation of FoxO transcription factors is also significantly reduced in myotubularin-deficient cells. Our data further suggest that inhibition of Akt activation and downstream survival signaling in myotubularin-deficient cells is caused by accumulation of the MTMR substrate lipid phosphatidylinositol 3-phosphate generated from the type II phosphatidylinositol 3-kinase PIK3C2B. Our findings are significant because they suggest that myotubularin regulates Akt activation via a cellular pool of phosphatidylinositol 3-phosphate that is distinct from that generated by the type III phosphatidylinositol 3-kinase hVps34. Because impaired Akt signaling has been tightly linked to skeletal muscle atrophy, we hypothesize that loss of Akt-dependent growth/survival cues due to impaired myotubularin function may be a critical factor underlying the severe skeletal muscle atrophy characteristic of muscle fibers in patients with X-linked myotubular myopathy.
Collapse
Affiliation(s)
- Gina L Razidlo
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | | | | |
Collapse
|
9
|
Cooperation of Mtmr8 with PI3K regulates actin filament modeling and muscle development in zebrafish. PLoS One 2009; 4:e4979. [PMID: 19325702 PMCID: PMC2656612 DOI: 10.1371/journal.pone.0004979] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 02/28/2009] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND It has been shown that mutations in at least four myotubularin family genes (MTM1, MTMR1, 2 and 13) are causative for human neuromuscular disorders. However, the pathway and regulative mechanism remain unknown. METHODOLOGY/PRINCIPAL FINDINGS Here, we reported a new role for Mtmr8 in neuromuscular development of zebrafish. Firstly, we cloned and characterized zebrafish Mtmr8, and revealed the expression pattern predominantly in the eye field and somites during early somitogenesis. Using morpholino knockdown, then, we observed that loss-of-function of Mtmr8 led to defects in somitogenesis. Subsequently, the possible underlying mechanism and signal pathway were examined. We first checked the Akt phosphorylation, and observed an increase of Akt phosphorylation in the morphant embryos. Furthermore, we studied the PH/G domain function within Mtmr8. Although the PH/G domain deletion by itself did not result in embryonic defect, addition of PI3K inhibitor LY294002 did give a defective phenotype in the PH/G deletion morphants, indicating that the PH/G domain was essential for Mtmr8's function. Moreover, we investigated the cooperation of Mtmr8 with PI3K in actin filament modeling and muscle development, and found that both Mtmr8-MO1 and Mtmr8-MO2+LY294002 led to the disorganization of the actin cytoskeleton. In addition, we revealed a possible participation of Mtmr8 in the Hedgehog pathway, and cell transplantation experiments showed that Mtmr8 worked in a non-cell autonomous manner in actin modeling. CONCLUSION/SIGNIFICANCE The above data indicate that a conserved functional cooperation of Mtmr8 with PI3K regulates actin filament modeling and muscle development in zebrafish, and reveal a possible participation of Mtmr8 in the Hedgehog pathway. Therefore, this work provides a new clue to study the physiological function of MTM family members.
Collapse
|
10
|
Abstract
Phosphoinositides (PIs) are lipid second messengers implicated in signal transduction and membrane trafficking. Seven distinct PIs can be synthesized by phosphorylation of the inositol ring of phosphatidylinositol (PtdIns), and their metabolism is accurately regulated by PI kinases and phosphatases. Two of the PIs, PtdIns3P and PtdIns(3,5)P2, are present on intracellular endosomal compartments, and several studies suggest that they have a role in membrane remodeling and trafficking. We refer to them as ‘endosomal PIs’. An increasing number of human genetic diseases including myopathy and neuropathies are associated to mutations in enzymes regulating the turnover of these endosomal PIs. The PtdIns3P and PtdIns(3,5)P2 3-phosphatase myotubularin gene is mutated in X-linked centronuclear myopathy, whereas its homologs MTMR2 and MTMR13 and the PtdIns(3,5)P2 5-phosphatase SAC3/FIG4 are implicated in Charcot–Marie–Tooth peripheral neuropathies. Mutations in the gene encoding the PtdIns3P5-kinase PIP5K3/PIKfyve have been found in patients affected with François–Neetens fleck corneal dystrophy. This review presents the roles of the endosomal PIs and their regulators and proposes defects of membrane remodeling as a common pathological mechanism for the corresponding diseases.
Collapse
Affiliation(s)
- Anne-Sophie Nicot
- Department of Neurobiology and Genetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U596, CNRS UMR 7104, Université Louis Pasteur de Strasbourg, Collège de France, 67404 Illkirch, France
| | | |
Collapse
|