1
|
Wang Y, Wu S, Li Q, Sun H, Wang H. Pharmacological Inhibition of Ferroptosis as a Therapeutic Target for Neurodegenerative Diseases and Strokes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300325. [PMID: 37341302 PMCID: PMC10460905 DOI: 10.1002/advs.202300325] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/23/2023] [Indexed: 06/22/2023]
Abstract
Emerging evidence suggests that ferroptosis, a unique regulated cell death modality that is morphologically and mechanistically different from other forms of cell death, plays a vital role in the pathophysiological process of neurodegenerative diseases, and strokes. Accumulating evidence supports ferroptosis as a critical factor of neurodegenerative diseases and strokes, and pharmacological inhibition of ferroptosis as a therapeutic target for these diseases. In this review article, the core mechanisms of ferroptosis are overviewed and the roles of ferroptosis in neurodegenerative diseases and strokes are described. Finally, the emerging findings in treating neurodegenerative diseases and strokes through pharmacological inhibition of ferroptosis are described. This review demonstrates that pharmacological inhibition of ferroptosis by bioactive small-molecule compounds (ferroptosis inhibitors) could be effective for treatments of these diseases, and highlights a potential promising therapeutic avenue that could be used to prevent neurodegenerative diseases and strokes. This review article will shed light on developing novel therapeutic regimens by pharmacological inhibition of ferroptosis to slow down the progression of these diseases in the future.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care MedicineAerospace Center HospitalPeking University Aerospace School of Clinical MedicineBeijing100049P. R. China
| | - Shuang Wu
- Department of NeurologyZhongnan Hospital of Wuhan UniversityWuhan430000P. R. China
| | - Qiang Li
- Department of NeurologyThe Affiliated Hospital of Chifeng UniversityChifeng024005P. R. China
| | - Huiyan Sun
- Chifeng University Health Science CenterChifeng024000P. R. China
| | - Hongquan Wang
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060P. R. China
| |
Collapse
|
2
|
Suárez-Rivero JM, López-Pérez J, Muela-Zarzuela I, Pastor-Maldonado C, Cilleros-Holgado P, Gómez-Fernández D, Álvarez-Córdoba M, Munuera-Cabeza M, Talaverón-Rey M, Povea-Cabello S, Suárez-Carrillo A, Piñero-Pérez R, Reche-López D, Romero-Domínguez JM, Sánchez-Alcázar JA. Neurodegeneration, Mitochondria, and Antibiotics. Metabolites 2023; 13:metabo13030416. [PMID: 36984858 PMCID: PMC10056573 DOI: 10.3390/metabo13030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Neurodegenerative diseases are characterized by the progressive loss of neurons, synapses, dendrites, and myelin in the central and/or peripheral nervous system. Actual therapeutic options for patients are scarce and merely palliative. Although they affect millions of patients worldwide, the molecular mechanisms underlying these conditions remain unclear. Mitochondrial dysfunction is generally found in neurodegenerative diseases and is believed to be involved in the pathomechanisms of these disorders. Therefore, therapies aiming to improve mitochondrial function are promising approaches for neurodegeneration. Although mitochondrial-targeted treatments are limited, new research findings have unraveled the therapeutic potential of several groups of antibiotics. These drugs possess pleiotropic effects beyond their anti-microbial activity, such as anti-inflammatory or mitochondrial enhancer function. In this review, we will discuss the controversial use of antibiotics as potential therapies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Juan M. Suárez-Rivero
- Institute for Biomedical Researching and Innovation of Cádiz (INiBICA) University Hospital Puerta del Mar, 11009 Cádiz, Spain
| | - Juan López-Pérez
- Institute for Biomedical Researching and Innovation of Cádiz (INiBICA) University Hospital Puerta del Mar, 11009 Cádiz, Spain
| | - Inés Muela-Zarzuela
- Institute for Biomedical Researching and Innovation of Cádiz (INiBICA) University Hospital Puerta del Mar, 11009 Cádiz, Spain
| | - Carmen Pastor-Maldonado
- Department of Molecular Biology Interfaculty Institute for Cell Biology, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Paula Cilleros-Holgado
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - David Gómez-Fernández
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Mónica Álvarez-Córdoba
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Manuel Munuera-Cabeza
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Marta Talaverón-Rey
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Suleva Povea-Cabello
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Alejandra Suárez-Carrillo
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Rocío Piñero-Pérez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Diana Reche-López
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - José M. Romero-Domínguez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - José Antonio Sánchez-Alcázar
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
- Correspondence: ; Tel.: +34-954978071
| |
Collapse
|
3
|
Ren S, Chen Y, Wang L, Wu G. Neuronal ferroptosis after intracerebral hemorrhage. Front Mol Biosci 2022; 9:966478. [PMID: 35992267 PMCID: PMC9388724 DOI: 10.3389/fmolb.2022.966478] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating form of stroke with high rates of morbidity, mortality, and disability. It induces cell death that is responsible for the secondary brain injury (SBI). The underlying mechanism of SBI after ICH is still unclear, and whether it is related to iron overload is worthy to be discussed. Ferroptosis is an iron-dependent non-apoptotic modes of cell death and plays a particularly important role in the occurrence and progression of ICH. Many ICH-induced regulators and signalling pathways of ferroptosis have been reported as promising targets for treating ICH. In this article, we review the definition, characteristics, and inhibition methods of neuronal ferroptosis caused by iron deposition after ICH, and review the biomarkers for ferroptosis.
Collapse
Affiliation(s)
- Siying Ren
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yue Chen
- Graduate School of Guizhou Medical University, Guiyang, China
| | - Likun Wang
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guofeng Wu
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
4
|
David S, Jhelum P, Ryan F, Jeong SY, Kroner A. Dysregulation of Iron Homeostasis in the Central Nervous System and the Role of Ferroptosis in Neurodegenerative Disorders. Antioxid Redox Signal 2022; 37:150-170. [PMID: 34569265 DOI: 10.1089/ars.2021.0218] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Iron accumulation occurs in the central nervous system (CNS) in a variety of neurological conditions as diverse as spinal cord injury, stroke, multiple sclerosis, Parkinson's disease, and others. Iron is a redox-active metal that gives rise to damaging free radicals if its intracellular levels are not controlled or if it is not properly sequestered within cells. The accumulation of iron occurs due to dysregulation of mechanisms that control cellular iron homeostasis. Recent Advances: The molecular mechanisms that regulate cellular iron homeostasis have been revealed in much detail in the past three decades, and new advances continue to be made. Understanding which aspects of iron homeostasis are dysregulated in different conditions will provide insights into the causes of iron accumulation and iron-mediated tissue damage. Recent advances in iron-dependent lipid peroxidation leading to cell death, called ferroptosis, has provided useful insights that are highly relevant for the lipid-rich environment of the CNS. Critical Issues: This review examines the mechanisms that control normal cellular iron homeostasis, the dysregulation of these mechanisms in neurological disorders, and more recent work on how iron can induce tissue damage via ferroptosis. Future Directions: Quick and reliable tests are needed to determine if and when ferroptosis contributes to the pathogenesis of neurological disorders. In addition, there is need to develop better druggable agents to scavenge lipid radicals and reduce CNS damage for neurological conditions for which there are currently few effective treatments. Antioxid. Redox Signal. 37, 150-170.
Collapse
Affiliation(s)
- Samuel David
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Priya Jhelum
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Fari Ryan
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Suh Young Jeong
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Antje Kroner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
5
|
Ou M, Jiang Y, Ji Y, Zhou Q, Du Z, Zhu H, Zhou Z. Role and Mechanism of Ferroptosis in Neurological Diseases. Mol Metab 2022; 61:101502. [PMID: 35447365 PMCID: PMC9170779 DOI: 10.1016/j.molmet.2022.101502] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/08/2023] Open
Abstract
Background Ferroptosis, as a new form of cell death, is different from other cell deaths such as autophagy or senescence. Ferroptosis involves in the pathophysiological progress of several diseases, including cancers, cardiovascular diseases, nervous system diseases, and kidney damage. Since oxidative stress and iron deposition are the broad pathological features of neurological diseases, the role of ferroptosis in neurological diseases has been widely explored. Scope of review Ferroptosis is mainly characterized by changes in iron homeostasis, iron-dependent lipid peroxidation, and glutamate toxicity accumulation, of which can be specifically reversed by ferroptosis inducers or inhibitors. The ferroptosis is mainly regulated by the metabolism of iron, lipids and amino acids through System Xc−, voltage-dependent anion channels, p53, p62-Keap1-Nrf2, mevalonate and other pathways. This review also focus on the regulatory pathways of ferroptosis and its research progress in neurological diseases. Major conclusions The current researches of ferroptosis in neurological diseases mostly focus on the key pathways of ferroptosis. At the same time, ferroptosis was found playing a bidirectional regulation role in neurological diseases. Therefore, the specific regulatory mechanisms of ferroptosis in neurological diseases still need to be further explored to provide new perspectives for the application of ferroptosis in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Mengmeng Ou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Ying Jiang
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Yingying Ji
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Qin Zhou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Zhiqiang Du
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Haohao Zhu
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| | - Zhenhe Zhou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| |
Collapse
|
6
|
Peng D, Chen CA, Ruhela D, Li Y, Regan RF. Deferoxamine deconditioning increases neuronal vulnerability to hemoglobin. Exp Cell Res 2020; 390:111926. [DOI: https:/doi.org/10.1016/j.yexcr.2020.111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
7
|
Chen X, Li D, Sun H, Wang W, Wu H, Kong W, Kong W. Relieving ferroptosis may partially reverse neurodegeneration of the auditory cortex. FEBS J 2020; 287:4747-4766. [PMID: 32112499 DOI: 10.1111/febs.15266] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/31/2019] [Accepted: 02/26/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Xi Chen
- Department of Otorhinolaryngology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Dan Li
- Department of Otorhinolaryngology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Hai‐Ying Sun
- Department of Otorhinolaryngology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Wen‐Wen Wang
- Department of Otorhinolaryngology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Han Wu
- Department of Otorhinolaryngology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Wen Kong
- Department of Endocrinology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Wei‐Jia Kong
- Department of Otorhinolaryngology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
8
|
Peng D, Chen CA, Ruhela D, Li Y, Regan RF. Deferoxamine deconditioning increases neuronal vulnerability to hemoglobin. Exp Cell Res 2020; 390:111926. [PMID: 32112801 DOI: 10.1016/j.yexcr.2020.111926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 01/23/2023]
Abstract
Concomitant treatment with deferoxamine (DFO) protects neural cells from iron and heme-mediated oxidative injury, but also disrupts cell responses to iron loading that may be protective. We hypothesized that DFO treatment and withdrawal would subsequently increase neuronal vulnerability to hemoglobin. Pretreatment with DFO followed by its washout increased neuronal loss after subsequent hemoglobin exposure by 3-4-fold compared with control vehicle-pretreated cultures. This was associated with reduced ferritin induction by hemoglobin; expression of heme oxygenase-1, which catalyzes iron release from heme, was not altered. Increased neuronal loss was prevented by exogenous apoferritin or by continuing DFO or antioxidants throughout the experimental course. Cell nonheme iron levels after hemoglobin treatment were similar in DFO-pretreated and control cultures. These results indicate that DFO deconditions neurons and subsequently increases their vulnerability to heme-mediated injury. Its net effect after CNS hemorrhage may be highly dependent on the timing and duration of its administration. Withdrawal of DFO while heme or iron levels remain elevated may be deleterious, and may negate any benefit of prior concomitant therapy.
Collapse
Affiliation(s)
- Denggao Peng
- Department of Emergency Medicine, University of Maryland, School of Medicine, USA
| | - Cindy Acon Chen
- Department of Emergency Medicine, University of Maryland, School of Medicine, USA
| | - Deepa Ruhela
- Department of Emergency Medicine, University of Maryland, School of Medicine, USA
| | - Yang Li
- Department of Emergency Medicine, University of Maryland, School of Medicine, USA
| | - Raymond F Regan
- Department of Emergency Medicine, University of Maryland, School of Medicine, USA.
| |
Collapse
|
9
|
Chen-Roetling J, Regan KA, Regan RF. Protective effect of vitreous against hemoglobin neurotoxicity. Biochem Biophys Res Commun 2018; 503:152-156. [PMID: 29859185 DOI: 10.1016/j.bbrc.2018.05.202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 11/25/2022]
Abstract
Hemorrhage into the brain parenchyma or subarachnoid space is associated with edema and vascular injury that is likely mediated at least in part by the toxicity of hemoglobin. In contrast, extravascular blood appears to be less neurotoxic when localized to the retina or adjacent vitreous, the gel filling the posterior segment of the eye. In this study, the hypothesis that vitreous protects neurons from hemoglobin toxicity was investigated in a primary cortical cell culture model. Consistent with prior observations, hemoglobin exposure for 24 h resulted in death of most neurons without injury to co-cultured glia. Neuronal loss was reduced in a concentration-dependent fashion by bovine vitreous, with complete protection produced by 3% vitreous solutions. This effect was associated with a reduction in malondialdehyde but an increase in cell iron. At low vitreous concentrations, its ascorbate content was sufficient to account for most neuroprotection, as equivalent concentrations of ascorbate alone had a similar effect. However, other vitreous antioxidants provided significant protection when applied at concentrations present in undiluted vitreous, and prevented all neuronal loss when combined in the absence of ascorbate. These results indicate that vitreous is an antioxidant cocktail that robustly protects neurons from hemoglobin toxicity, and may contribute to the relative resistance of retinal neurons to hemorrhagic injury.
Collapse
Affiliation(s)
- Jing Chen-Roetling
- Department of Emergency Medicine, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | - Kathleen A Regan
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Raymond F Regan
- Department of Emergency Medicine, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Chen-Roetling J, Regan RF. Targeting the Nrf2-Heme Oxygenase-1 Axis after Intracerebral Hemorrhage. Curr Pharm Des 2018; 23:2226-2237. [PMID: 27799046 DOI: 10.2174/1381612822666161027150616] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/16/2016] [Accepted: 10/22/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND Injury to cells adjacent to an intracerebral hemorrhage (ICH) is likely mediated at least in part by toxins released from the hematoma that initiate complex and interacting injury cascades. Pharmacotherapies targeting a single toxin or pathway, even if consistently effective in controlled experimental models, have a high likelihood of failure in a variable clinical setting. Nuclear factor erythroid-2 related factor 2 (Nrf2) regulates the expression of heme oxygenase-1 (HO-1) and multiple other proteins with antioxidant and antiinflammatory effects, and may be a target of interest after ICH. METHODS Studies that tested the effect of HO and Nrf2 in models relevant to ICH are summarized, with an effort to reconcile conflicting data by consideration of methodological limitations. RESULTS In vitro studies demonstrated that Nrf2 activators rapidly increased HO-1 expression in astrocytes, and reduced their vulnerability to hemoglobin or hemin. Modulating HO-1 expression via genetic approaches yielded similar results. Systemic treatment with small molecule Nrf2 activators increased HO-1 expression in perivascular cells, particularly astrocytes. When tested in mouse or rat ICH models, Nrf2 activators were consistently protective, improving barrier function and attenuating edema, inflammation, neuronal loss and neurological deficits. These effects were mimicked by selective astrocyte HO-1 overexpression in transgenic mice. CONCLUSION Systemic treatment with Nrf2 activators after ICH is protective in rodents. Two compounds, dimethyl fumarate and hemin, are currently approved for treatment of multiple sclerosis and acute porphyria, respectively, and have acceptable safety profiles over years of clinical use. Further development of these drugs as ICH therapeutics seems warranted.
Collapse
Affiliation(s)
- Jing Chen-Roetling
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, College Building Room 813, Philadelphia, PA 19107, United States
| | - Raymond F Regan
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, College Building Room 813, Philadelphia, PA 19107, United States
| |
Collapse
|
11
|
Chen-Roetling J, Ma SK, Cao Y, Shah A, Regan RF. Hemopexin increases the neurotoxicity of hemoglobin when haptoglobin is absent. J Neurochem 2018; 145:464-473. [PMID: 29500821 DOI: 10.1111/jnc.14328] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 12/24/2022]
Abstract
Hemopexin (Hpx) binds heme with extraordinary affinity, and after haptoglobin may provide a second line of defense against the toxicity of extracellular hemoglobin (Hb). In this series of experiments, the hypothesis that Hpx protects neurons from Hb neurotoxicity was evaluated in murine primary cultures containing neurons and glial cells. Contrary to hypothesis, Hpx increased neuronal loss due to micromolar concentrations of Hb by 4- to 12-fold, as measured by LDH release assay; conversely, the neurotoxicity of hemin was completely prevented. The endogenous fluorescence of Hpx was quenched by Hb, consistent with transfer of Hb-bound heme to Hpx. This was associated with precipitation of globin chains, as detected by immunostaining and fluorescent Hb labeling. A portion of this precipitate attached firmly to cells and could not be removed by multiple washes. Concomitant treatment with haptoglobin (Hp) prevented globin precipitation and most of the increase in neuronal loss. Hpx weakly attenuated the increase in culture non-heme iron produced by Hb treatment, quantified by ferrozine assay. However, Hb-Hpx toxicity was iron-dependent, and was blocked by deferoxamine and ferrostatin-1. Up-regulation of cell ferritin expression, a primary cell defense against Hb toxicity, was not observed on western blots of culture lysates that had been concomitantly treated with Hpx. These results suggest that Hpx destabilizes Hb in the absence of haptoglobin, leading to globin precipitation and exacerbation of iron-dependent oxidative cell injury. Combined therapy with hemopexin plus haptoglobin may be preferable to hemopexin alone after CNS hemorrhage.
Collapse
Affiliation(s)
- Jing Chen-Roetling
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sheng-Kai Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yang Cao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Aishwarya Shah
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Raymond F Regan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
12
|
Zhao H, Chen Y, Feng H. P2X7 Receptor-Associated Programmed Cell Death in the Pathophysiology of Hemorrhagic Stroke. Curr Neuropharmacol 2018; 16:1282-1295. [PMID: 29766811 PMCID: PMC6251042 DOI: 10.2174/1570159x16666180516094500] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 07/17/2017] [Accepted: 02/28/2018] [Indexed: 12/20/2022] Open
Abstract
Hemorrhagic stroke is a life-threatening disease characterized by a sudden rupture of cerebral blood vessels, and cell death is widely believed to occur after exposure to blood metabolites or subsequently damaged cells. Recently, programmed cell death, such as apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis, has been demonstrated to play crucial roles in the pathophysiology of stroke. However, the detailed mechanisms of these novel kinds of cell death are still unclear. The P2X7 receptor, previously known for its cytotoxic activity, is an ATP-gated, nonselective cation channel that belongs to the family of ionotropic P2X receptors. Evolving evidence indicates that the P2X7 receptor plays a pivotal role in central nervous system pathology; genetic deletion and pharmacological blockade of the P2X7 receptor provide neuroprotection in various neurological disorders, including intracerebral hemorrhage and subarachnoid hemorrhage. The P2X7 receptor may regulate programmed cell death via (I) exocytosis of secretory lysosomes, (II) exocytosis of autophagosomes or autophagolysosomes during formation of the initial autophagic isolation membrane or omegasome, and (III) direct release of cytosolic IL-1β secondary to regulated cell death by pyroptosis or necroptosis. In this review, we present an overview of P2X7 receptor- associated programmed cell death for further understanding of hemorrhagic stroke pathophysiology, as well as potential therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Hengli Zhao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| |
Collapse
|
13
|
Ferrosenescence: The iron age of neurodegeneration? Mech Ageing Dev 2017; 174:63-75. [PMID: 29180225 DOI: 10.1016/j.mad.2017.11.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022]
Abstract
Aging has been associated with iron retention in many cell types, including the neurons, promoting neurodegeneration by ferroptosis. Excess intracellular iron accelerates aging by damaging the DNA and blocking genomic repair systems, a process we define as ferrosenescence. Novel neuroimaging and proteomic techniques have pinpointed indicators of both iron retention and ferrosenescence, allowing for their early correction, potentially bringing prevention of neurodegenerative disorders within reach. In this review, we take a closer look at the early markers of iron dyshomeostasis in neurodegenerative disorders, focusing on preventive strategies based on nutritional and microbiome manipulations.
Collapse
|
14
|
Li Q, Han X, Lan X, Gao Y, Wan J, Durham F, Cheng T, Yang J, Wang Z, Jiang C, Ying M, Koehler RC, Stockwell BR, Wang J. Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight 2017; 2:e90777. [PMID: 28405617 DOI: 10.1172/jci.insight.90777] [Citation(s) in RCA: 474] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) causes high mortality and morbidity, but our knowledge of post-ICH neuronal death and related mechanisms is limited. In this study, we first demonstrated that ferroptosis, a newly identified form of cell death, occurs in the collagenase-induced ICH model in mice. We found that administration of ferrostatin-1, a specific inhibitor of ferroptosis, prevented neuronal death and reduced iron deposition induced by hemoglobin in organotypic hippocampal slice cultures (OHSCs). Mice treated with ferrostatin-1 after ICH exhibited marked brain protection and improved neurologic function. Additionally, we found that ferrostatin-1 reduced lipid reactive oxygen species production and attenuated the increased expression level of PTGS2 and its gene product cyclooxygenase-2 ex vivo and in vivo. Moreover, ferrostatin-1 in combination with other inhibitors that target different forms of cell death prevented hemoglobin-induced cell death in OHSCs and human induced pluripotent stem cell-derived neurons better than any inhibitor alone. These results indicate that ferroptosis contributes to neuronal death after ICH, that administration of ferrostatin-1 protects hemorrhagic brain, and that cyclooxygenase-2 could be a biomarker of ferroptosis. The insights gained from this study will advance our knowledge of the post-ICH cell death cascade and be essential for future preclinical studies.
Collapse
Affiliation(s)
- Qian Li
- Department of Anesthesiology and Critical Care Medicine
| | - Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine
| | - Xi Lan
- Department of Anesthesiology and Critical Care Medicine
| | - Yufeng Gao
- Department of Anesthesiology and Critical Care Medicine
| | - Jieru Wan
- Department of Anesthesiology and Critical Care Medicine
| | | | - Tian Cheng
- Department of Anesthesiology and Critical Care Medicine
| | - Jie Yang
- Department of Anesthesiology and Critical Care Medicine
| | - Zhongyu Wang
- Department of Anesthesiology and Critical Care Medicine
| | - Chao Jiang
- Department of Anesthesiology and Critical Care Medicine
| | - Mingyao Ying
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.,Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | | | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, New York, USA
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine
| |
Collapse
|
15
|
Garton T, Keep RF, Hua Y, Xi G. Brain iron overload following intracranial haemorrhage. Stroke Vasc Neurol 2016; 1:172-184. [PMID: 28959481 PMCID: PMC5435218 DOI: 10.1136/svn-2016-000042] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/15/2022] Open
Abstract
Intracranial haemorrhages, including intracerebral haemorrhage (ICH), intraventricular haemorrhage (IVH) and subarachnoid haemorrhage (SAH), are leading causes of morbidity and mortality worldwide. In addition, haemorrhage contributes to tissue damage in traumatic brain injury (TBI). To date, efforts to treat the long-term consequences of cerebral haemorrhage have been unsatisfactory. Incident rates and mortality have not showed significant improvement in recent years. In terms of secondary damage following haemorrhage, it is becoming increasingly apparent that blood components are of integral importance, with haemoglobin-derived iron playing a major role. However, the damage caused by iron is complex and varied, and therefore, increased investigation into the mechanisms by which iron causes brain injury is required. As ICH, IVH, SAH and TBI are related, this review will discuss the role of iron in each, so that similarities in injury pathologies can be more easily identified. It summarises important components of normal brain iron homeostasis and analyses the existing evidence on iron-related brain injury mechanisms. It further discusses treatment options of particular promise.
Collapse
Affiliation(s)
- Thomas Garton
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Chen-Roetling J, Regan RF. Haptoglobin increases the vulnerability of CD163-expressing neurons to hemoglobin. J Neurochem 2016; 139:586-595. [PMID: 27364920 DOI: 10.1111/jnc.13720] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/14/2016] [Accepted: 06/27/2016] [Indexed: 02/06/2023]
Abstract
Haptoglobin (Hp) binds hemoglobin (Hb) with high affinity and provides the primary defense against its toxicity after intravascular hemolysis. Neurons are exposed to extracellular Hb after CNS hemorrhage, and a therapeutic effect of Hp via Hb sequestration has been hypothesized. In this study, we tested the hypothesis that Hp protects neurons from Hb in primary mixed cortical cell cultures. Treatment with low micromolar concentrations of human Hb for 24 h resulted in loss of 10-20% of neurons without injuring glia. Concomitant treatment with Hp surprisingly increased neuronal loss five-sevenfold, with similar results produced by Hp 1-1 and 2-2 phenotypes. Consistent with a recent in vivo observation, neurons expressed the CD163 receptor for Hb and the Hb-Hp complex in these cultures. Hp reduced overall Hb uptake, directed it away from the astrocyte-rich CD163-negative glial monolayer, and decreased induction of the iron-binding protein ferritin. Hb-Hp complex neuronal toxicity, like that of Hb per se, was iron-dependent and reduced by deferoxamine and 2,2' bipyridyl. These results suggest that Hp increases the vulnerability of CD163+ neurons to Hb by permitting Hb uptake while attenuating the protective response of ferritin induction by glial cells. Cover Image for this issue: doi: 10.1111/jnc.13342.
Collapse
Affiliation(s)
- Jing Chen-Roetling
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Raymond F Regan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
The Injury and Therapy of Reactive Oxygen Species in Intracerebral Hemorrhage Looking at Mitochondria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2592935. [PMID: 27293511 PMCID: PMC4880716 DOI: 10.1155/2016/2592935] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/20/2016] [Accepted: 04/17/2016] [Indexed: 01/12/2023]
Abstract
Intracerebral hemorrhage is an emerging major health problem often resulting in death or disability. Reactive oxygen species (ROS) have been identified as one of the major damaging factors in ischemic stroke. However, there is less discussion about ROS in hemorrhage stroke. Metabolic products of hemoglobin, excitatory amino acids, and inflammatory cells are all sources of ROS, and ROS harm the central nervous system through cell death and structural damage, especially disruption of the blood-brain barrier. We have considered the antioxidant system of the CNS itself and the drugs aiming to decrease ROS after ICH, and we find that mitochondria are key players in all of these aspects. Moreover, when the mitochondrial permeability transition pore opens, ROS-induced ROS release, which leads to extensive liberation of ROS and mitochondrial failure, occurs. Therefore, the mitochondrion may be a significant target for elucidating the problem of ROS in ICH; however, additional experimental support is required.
Collapse
|
18
|
Ghosh MC, Zhang DL, Rouault TA. Iron misregulation and neurodegenerative disease in mouse models that lack iron regulatory proteins. Neurobiol Dis 2015; 81:66-75. [PMID: 25771171 DOI: 10.1016/j.nbd.2015.02.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/14/2015] [Accepted: 02/03/2015] [Indexed: 01/01/2023] Open
Abstract
Iron regulatory proteins 1 and 2 (IRP1 and IRP2) are two cytosolic proteins that maintain cellular iron homeostasis by binding to RNA stem loops known as iron responsive elements (IREs) that are found in the untranslated regions of target mRNAs that encode proteins involved in iron metabolism. IRPs modify the expression of iron metabolism genes, and global and tissue-specific knockout mice have been made to evaluate the physiological significance of these iron regulatory proteins (Irps). Here, we will discuss the results of the studies that have been performed with mice engineered to lack the expression of one or both Irps and made in different strains using different methodologies. Both Irp1 and Irp2 knockout mice are viable, but the double knockout (Irp1(-/-)Irp2(-/-)) mice die before birth, indicating that these Irps play a crucial role in maintaining iron homeostasis. Irp1(-/-) mice develop polycythemia and pulmonary hypertension, and when these mice are challenged with a low iron diet, they die early of abdominal hemorrhages, suggesting that Irp1 plays an essential role in erythropoiesis and in the pulmonary and cardiovascular systems. Irp2(-/-) mice develop microcytic anemia, erythropoietic protoporphyria and a progressive neurological disorder, indicating that Irp2 has important functions in the nervous system and erythropoietic homeostasis. Several excellent review articles have recently been published on Irp knockout mice that mainly focus on Irp1(-/-) mice (referenced in the introduction). In this review, we will briefly describe the phenotypes and physiological implications of Irp1(-/-) mice and discuss the phenotypes observed for Irp2(-/-) mice in detail with a particular emphasis on the neurological problems of these mice.
Collapse
Affiliation(s)
- Manik C Ghosh
- Section on Human Iron Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - De-Liang Zhang
- Section on Human Iron Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tracey A Rouault
- Section on Human Iron Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
Chang CF, Cho S, Wang J. (-)-Epicatechin protects hemorrhagic brain via synergistic Nrf2 pathways. Ann Clin Transl Neurol 2014; 1:258-271. [PMID: 24741667 PMCID: PMC3984761 DOI: 10.1002/acn3.54] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective In the wake of intracerebral hemorrhage (ICH), a devastating stroke with no effective treatment, hemoglobin/iron-induced oxidative injury leads to neuronal loss and poor neurologic outcomes. (-)-Epicatechin (EC), a brain-permeable flavanol that modulates redox/oxidative stress via the NF-E2–related factor (Nrf) 2 pathway, has been shown to be beneficial for vascular and cognitive function in humans. Here, we examined whether EC can reduce early brain injury in ICH mouse models and investigated the underlying mechanisms. Methods ICH was induced by injecting collagenase, autologous blood, or thrombin into mouse striatum. EC was administered orally at 3 h after ICH and then every 24 h. Lesion volume, neurologic deficits, brain edema, reactive oxygen species, and protein expression and activity were evaluated. Results EC significantly reduced lesion volume and ameliorated neurologic deficits in both male and female ICH mice. Cell death and neuronal degeneration were decreased in the perihematomal area and were associated with reductions in caspase-3 activity and high-mobility group protein B1 (HMGB-1) level. These changes were accompanied by attenuation of oxidative insults, increased phase II enzyme expression, and increased Nrf2 nuclear accumulation. Interestingly, in addition to providing neuroprotection via Nrf2 signaling, EC diminished heme oxygenase-1 induction and brain iron deposition via an Nrf2-independent pathway that downregulated ICH-induced activating protein-1 activation and decreased matrix metalloproteinase 9 activity, lipocalin-2 levels, iron-dependent cell death, and ferroptosis-related gene expression. Interpretation Collectively, our data show that EC protects against ICH by activation of Nrf2-dependent and -independent pathways and may serve as a potential intervention for patients with ICH.
Collapse
Affiliation(s)
- Che-Feng Chang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Suzy Cho
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
20
|
Iron and intracerebral hemorrhage: from mechanism to translation. Transl Stroke Res 2013; 5:429-41. [PMID: 24362931 DOI: 10.1007/s12975-013-0317-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/27/2013] [Accepted: 12/09/2013] [Indexed: 02/08/2023]
Abstract
Intracerebral hemorrhage (ICH) is a leading cause of morbidity and mortality around the world. Currently, there is no effective medical treatment available to improve functional outcomes in patients with ICH due to its unknown mechanisms of damage. Increasing evidence has shown that the metabolic products of erythrocytes are the key contributor of ICH-induced secondary brain injury. Iron, an important metabolic product that accumulates in the brain parenchyma, has a detrimental effect on secondary injury following ICH. Because the damage mechanism of iron during ICH-induced secondary injury is clear, iron removal therapy research on animal models is effective. Although many animal and clinical studies have been conducted, the exact metabolic pathways of iron and the mechanisms of iron removal treatments are still not clear. This review summarizes recent progress concerning the iron metabolism mechanisms underlying ICH-induced injury. We focus on iron, brain iron metabolism, the role of iron in oxidative injury, and iron removal therapy following ICH, and we suggest that further studies focus on brain iron metabolism after ICH and the mechanism for iron removal therapy.
Collapse
|
21
|
Abstract
Hemin accumulates in intracerebral hematomas and may contribute to cell injury in adjacent tissue. Despite its relevance to hemorrhagic CNS insults, very little is known about hemin trafficking by neural cells. In the present study, hemin uptake and release were quantified in primary murine cortical cultures, and the effect of the hemin-binding compound deferoxamine (DFO) was assessed. Net uptake of (55)Fe-hemin was similar in mixed neuron-glia, neuron, and glia cultures, but was 2.6-3.6-fold greater in microglia cultures. After washout, 40-60% of the isotope signal was released by mixed neuron-glia cultures into albumin-containing medium within 24 h. Inhibiting hemin breakdown with tin protoporphyrin IX (SnPPIX) had minimal effect, while release of the fluorescent hemin analog zinc mesoporphyrin was quantitatively similar to that of (55)Fe-hemin. Isotope was released most rapidly by neurons (52.2 ± 7.2% at 2 h), compared with glia (15.6 ± 1.3%) and microglia (17.6 ± 0.54%). DFO did not alter (55)Fe-hemin uptake, but significantly increased its release. Mixed cultures treated with 10 μM hemin for 24 h sustained widespread neuronal loss that was attenuated by DFO. Concomitant treatment with SnPPIX had no effect on either enhancement of isotope release by DFO or neuroprotection. These results suggest that in the presence of a physiologic albumin concentration, hemin uptake by neural cells is followed by considerable extracellular release. Enhancement of this release by DFO may contribute to its protective effect against hemin toxicity.
Collapse
Affiliation(s)
- J Chen-Roetling
- Department of Emergency Medicine, Thomas Jefferson University , Philadelphia, PA , USA
| | | | | | | |
Collapse
|
22
|
What sequences on high-field MR best depict temporal resolution of experimental ICH and edema formation in mice? J Biomed Biotechnol 2012; 2012:961461. [PMID: 22619500 PMCID: PMC3351132 DOI: 10.1155/2012/961461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/27/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Pilot study to examine the use of T1-, T2-, and T2*-weighted images for evaluating hematoma size and extent of edema in mouse brain at high field. METHODS Following collagenase-induced intracerebral hemorrhage, nine mice were imaged at 4.7 T using T1-, T2-, and T2*-weighted images for hematoma and edema quantitation on days 1, 3, 10, and 21 after surgery. Values were compared with morphometric analysis of cryosections at the time of final MR imaging. RESULTS For hematoma quantitation, the Spearman correlation coefficient (r) between T1 signal change and histology was 0.70 (P < 0.04) compared with r = 0.61 (P < 0.09) for T2*. The extent of perihematomal edema formation on cryosections was well reflected on T2 with r = 0.73 (P < 0.03). CONCLUSIONS Within the limits of our pilot study, MR imaging on 4.7 T appears to approximate the temporal changes in hematoma and edema sizes in murine ICH well, thus laying the groundwork for longitudinal studies on hematoma resorption and edema formation.
Collapse
|
23
|
Chen-Roetling J, Liu W, Regan RF. Iron accumulation and neurotoxicity in cortical cultures treated with holotransferrin. Free Radic Biol Med 2011; 51:1966-74. [PMID: 21939754 PMCID: PMC3345563 DOI: 10.1016/j.freeradbiomed.2011.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 01/13/2023]
Abstract
Nonheme iron accumulates in CNS tissue after ischemic and hemorrhagic insults and may contribute to cell loss. The source of this iron has not been precisely defined. After blood-brain barrier disruption, CNS cells may be exposed to plasma concentrations of transferrin-bound iron (TBI), which exceed that in the CSF by over 50-fold. In this study, the hypothesis that these concentrations of TBI produce cell iron accumulation and neurotoxicity was tested in primary cortical cultures. Treatment with 0.5-3mg/ml holotransferrin for 24h resulted in the loss of 20-40% of neurons, associated with increases in malondialdehyde, ferritin, heme oxygenase-1, and iron; transferrin receptor-1 expression was reduced by about 50%. Deferoxamine, 2,2'-bipyridyl, Trolox, and ascorbate prevented all injury, but apotransferrin was ineffective. Cell TBI accumulation was significantly reduced by deferoxamine, 2,2'-bipyridyl, and apotransferrin, but not by ascorbate or Trolox. After treatment with (55)Fe-transferrin, approximately 40% of cell iron was exported within 16h. Net export was increased by deferoxamine and 2,2'-bipyridyl, but not by apotransferrin. These results suggest that downregulation of transferrin receptor-1 expression is insufficient to prevent iron-mediated death when neurons are exposed to plasma concentrations of TBI. Chelator therapy may be beneficial for acute CNS injuries associated with loss of blood-brain barrier integrity.
Collapse
Affiliation(s)
| | | | - Raymond F. Regan
- Corresponding Author: Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, College Building Room 813, Philadelphia, PA 19107, Telephone: 215-955-2695; FAX: 215-923-6225
| |
Collapse
|
24
|
Apotransferrin protects cortical neurons from hemoglobin toxicity. Neuropharmacology 2010; 60:423-31. [PMID: 21034753 DOI: 10.1016/j.neuropharm.2010.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 11/23/2022]
Abstract
The protective effect of iron chelators in experimental models of intracerebral hemorrhage suggests that nonheme iron may contribute to injury to perihematomal cells. Therapy with high affinity iron chelators is limited by their toxicity, which may be due in part to sequestration of metals in an inaccessible complex. Transferrin is unique in chelating iron with very high affinity while delivering it to cells as needed via receptor-mediated endocytosis. However, its efficacy against iron-mediated neuronal injury has never been described, and was therefore evaluated in this study using an established cell culture model of hemoglobin neurotoxicity. At concentrations similar to that of CSF transferrin (50-100 micrograms/ml), both iron-saturated holotransferrin and apotransferrin were nontoxic per se. Overnight exposure to 3 μM purified human hemoglobin in serum-free culture medium resulted in death, as measured by lactate dehydrogenase release assay, of about three-quarters of neurons. Significant increases in culture iron, malondialdehyde, protein carbonyls, ferritin and heme oxygenase-1 were also observed. Holotransferrin had no effect on these parameters, but all were attenuated by 50-100 micrograms/ml apotransferrin. The effect of apotransferrin was very similar to that of deferoxamine at a concentration that provided equivalent iron binding capacity, and was not antagonized by concomitant treatment with holotransferrin. Transferrin receptor-1 expression was localized to neurons and was not altered by hemoglobin or transferrin treatment. These results suggest that apotransferrin may mitigate the neurotoxicity of hemoglobin after intracerebral hemorrhage. Increasing its concentration in perihematomal tissue may be beneficial.
Collapse
|
25
|
Chen M, Awe OO, Chen-Roetling J, Regan RF. Iron regulatory protein-2 knockout increases perihematomal ferritin expression and cell viability after intracerebral hemorrhage. Brain Res 2010; 1337:95-103. [PMID: 20399759 DOI: 10.1016/j.brainres.2010.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
Abstract
Iron is deposited in perihematomal tissue after an intracerebral hemorrhage (ICH), and may contribute to oxidative injury. Cell culture studies have demonstrated that enhancing ferritin expression by targeting iron regulatory protein (IRP) binding activity reduces cellular vulnerability to iron and hemoglobin. In order to assess the therapeutic potential of this approach after striatal ICH, the effect of IRP1 or IRP2 gene knockout on ferritin expression and injury was quantified. Striatal ferritin in IRP1 knockout mice was similar to that in wild-type controls 3 days after stereotactic injection of artificial CSF or autologous blood. Corresponding levels in IRP2 knockouts were increased by 11-fold and 8.4-fold, respectively, compared with wild-type. Protein carbonylation, a sensitive marker of hemoglobin neurotoxicity, was increased by 2.4-fold in blood-injected wild-type striata, was not altered by IRP1 knockout, but was reduced by approximately 60% by IRP2 knockout. Perihematomal cell viability in wild-type mice, assessed by MTT assay, was approximately half of that in contralateral striata at 3 days, and was significantly increased in IRP2 knockouts but not in IRP1 knockouts. Protection was also observed when hemorrhage was induced by collagenase injection. These results suggest that IRP2 binding activity reduces ferritin expression in the striatum after ICH, preventing an optimal response to elevated local iron concentrations. IRP2 binding activity may be a novel therapeutic target after hemorrhagic CNS injuries.
Collapse
Affiliation(s)
- Mai Chen
- Department of Emergency Medicine, Thomas Jefferson University, 1020 Sansom Street, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
26
|
Up-regulation of divalent metal transporter 1 in 6-hydroxydopamine intoxication is IRE/IRP dependent. Cell Res 2010; 20:345-56. [PMID: 20125122 DOI: 10.1038/cr.2010.20] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Iron plays a key role in Parkinson's disease (PD). Increased iron content of the substantia nigra (SN) has been found in PD patients, and divalent metal transporter 1 (DMT1) has been shown to be up-regulated in the SN of both MPTP-induced PD models and PD patients. However, the mechanisms underlying DMT1 up-regulation are largely unknown. In the present study, we observed that in the SN of 6-hydroxydopamine (6-OHDA)-induced PD rats, DMT1 with the iron responsive element (IRE, DMT1+IRE), but not DMT1 without IRE (DMT1-IRE), was up-regulated, suggesting that increased DMT1+IRE expression might account for nigral iron accumulation in PD rats. This possibility was further assessed in an in vitro study using 6-OHDA-treated and DMT1+IRE-over-expressing MES23.5 cells. In 6-OHDA-treated MES23.5 cells, increased iron regulatory protein (IRP) 1 and IRP2 expression was observed, while silencing of IRPs dramatically diminished 6-OHDA-induced DMT1+IRE up-regulation. Pretreatment with N-acetyl-L-cysteine fully suppressed IRPs up-regulation by inhibition of 6-OHDA-induced oxidative stress. Increased DMT1+IRE expression resulted in increased iron influx by MES23.5 cells. Our data provide direct evidence that DMT1+IRE up-regulation can account for IRE/IRP-dependent 6-OHDA-induced iron accumulation initiated by 6-OHDA-induced intracellular oxidative stress and that increased levels of intracellular iron result in aggravated oxidative stress. The results of this study provide novel evidence supporting the use of anti-oxidants in the treatment of PD, with the goal of inhibiting iron accumulation by regulation of DMT1 expression.
Collapse
|
27
|
Li Z, Chen-Roetling J, Regan RF. Increasing expression of H- or L-ferritin protects cortical astrocytes from hemin toxicity. Free Radic Res 2009; 43:613-21. [PMID: 19513908 DOI: 10.1080/10715760902942808] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Iron toxicity may contribute to oxidative injury in cells surrounding an intracerebral haematoma. Cells detoxify iron by sequestering it in ferritin, a 24-mer heteropolymer constructed of H and L subunits. The relative antioxidant efficacy of H- and L-ferritin has not been defined and was tested in this study using an established model of hemin toxicity. Consistent with prior observations, cultures treated with 30 microM hemin sustained loss of approximately half of the cells by 6 h, as measured by LDH and MTT assays, and a 14-fold increase in protein carbonyls. Increasing expression of either ferritin by adenoviral gene transfer prior to hemin treatment had a similar protective effect. Quenching of calcein fluorescence, a marker of the labile iron pool, in hemin-treated cultures was also equally reduced by either subunit. These results suggest that over-expression of either H- or L-ferritin protects astrocytes from hemin and may be beneficial after CNS haemorrhage.
Collapse
Affiliation(s)
- Zhi Li
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
28
|
Chen-Roetling J, Chen L, Regan RF. Minocycline attenuates iron neurotoxicity in cortical cell cultures. Biochem Biophys Res Commun 2009; 386:322-6. [PMID: 19523448 DOI: 10.1016/j.bbrc.2009.06.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 06/06/2009] [Indexed: 11/29/2022]
Abstract
Iron neurotoxicity may contribute to the pathogenesis of intracerebral hemorrhage (ICH). The tetracycline derivative minocycline is protective in ICH models, due putatively to inhibition of microglial activation. Although minocycline also chelates iron, its effect on iron neurotoxicity has not been reported, and was examined in this study. Cortical cultures treated with 10 microM ferrous sulfate for 24h sustained loss of most neurons and an increase in malondialdehyde. Minocycline prevented this injury, with near-complete protection at 30 microM. Two other inhibitors of microglial activation, doxycycline and macrophage/microglia inhibitory factor, were ineffective. Oxidation of isolated culture membranes by iron was also inhibited by minocycline. Consistent with prior observations, minocycline chelated iron in a siderophore colorometric assay; at concentrations less than 100 microM, its activity exceeded that of deferoxamine. These results suggest that attenuation of iron neurotoxicity may contribute to the beneficial effect of minocycline in hemorrhagic stroke and other CNS injury models.
Collapse
Affiliation(s)
- Jing Chen-Roetling
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
29
|
Regan RF, Li Z, Chen M, Zhang X, Chen-Roetling J. Iron regulatory proteins increase neuronal vulnerability to hydrogen peroxide. Biochem Biophys Res Commun 2008; 375:6-10. [PMID: 18655771 DOI: 10.1016/j.bbrc.2008.07.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
Abstract
Iron regulatory protein (IRP)-1 and IRP2 inhibit ferritin synthesis by binding to an iron responsive element in the 5'-untranslated region of its mRNA. The present study tested the hypothesis that neurons lacking these proteins would be resistant to hydrogen peroxide (H(2)O(2)) toxicity. Wild-type cortical cultures treated with 100-300microM H(2)O(2) sustained widespread neuronal death, as measured by lactate dehydrogenase assay, and a significant increase in malondialdehyde. Both endpoints were reduced by over 85% in IRP2 knockout cultures. IRP1 gene deletion had a weaker and variable effect, with approximately 20% reduction in cell death at 300microM H(2)O(2). Ferritin expression after H(2)O(2) treatment was increased 1.9- and 6.7-fold in IRP1 and IRP2 knockout cultures, respectively, compared with wild-type. These results suggest that iron regulatory proteins, particularly IRP2, increase neuronal vulnerability to oxidative injury. Therapies targeting IRP2 binding to ferritin mRNA may attenuate neuronal loss due to oxidative stress.
Collapse
Affiliation(s)
- Raymond F Regan
- Department of Emergency Medicine, Thomas Jefferson University, 1020 Sansom Street, Thompson 239, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|