1
|
Conte E, Boccanegra B, Dinoi G, Pusch M, De Luca A, Liantonio A, Imbrici P. Therapeutic Approaches to Tuberous Sclerosis Complex: From Available Therapies to Promising Drug Targets. Biomolecules 2024; 14:1190. [PMID: 39334956 PMCID: PMC11429992 DOI: 10.3390/biom14091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/29/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare multisystem disorder caused by heterozygous loss-of-function pathogenic variants in the tumour suppressor genes TSC1 and TSC2 encoding the tuberin and hamartin proteins, respectively. Both TSC1 and TSC2 inhibit the mammalian target of rapamycin (mTOR) complexes pathway, which is crucial for cell proliferation, growth, and differentiation, and is stimulated by various energy sources and hormonal signaling pathways. Pathogenic variants in TSC1 and TSC2 lead to mTORC1 hyperactivation, producing benign tumours in multiple organs, including the brain and kidneys, and drug-resistant epilepsy, a typical sign of TSC. Brain tumours, sudden unexpected death from epilepsy, and respiratory conditions are the three leading causes of morbidity and mortality. Even though several therapeutic options are available for the treatment of TSC, there is further need for a better understanding of the pathophysiological basis of the neurologic and other manifestations seen in TSC, and for novel therapeutic approaches. This review provides an overview of the main current therapies for TSC and discusses recent studies highlighting the repurposing of approved drugs and the emerging role of novel targets for future drug design.
Collapse
Affiliation(s)
- Elena Conte
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (B.B.); (G.D.); (A.D.L.); (A.L.)
| | - Brigida Boccanegra
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (B.B.); (G.D.); (A.D.L.); (A.L.)
| | - Giorgia Dinoi
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (B.B.); (G.D.); (A.D.L.); (A.L.)
| | - Michael Pusch
- Institute of Biophysics, National Research Council, 16149 Genova, Italy;
| | - Annamaria De Luca
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (B.B.); (G.D.); (A.D.L.); (A.L.)
| | - Antonella Liantonio
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (B.B.); (G.D.); (A.D.L.); (A.L.)
| | - Paola Imbrici
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (B.B.); (G.D.); (A.D.L.); (A.L.)
| |
Collapse
|
2
|
Corominas J, Smeekens SP, Nelen MR, Yntema HG, Kamsteeg EJ, Pfundt R, Gilissen C. Clinical exome sequencing - mistakes and caveats. Hum Mutat 2022; 43:1041-1055. [PMID: 35191116 PMCID: PMC9541396 DOI: 10.1002/humu.24360] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 01/11/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022]
Abstract
Massive parallel sequencing technology has become the predominant technique for genetic diagnostics and research. Many genetic laboratories have wrestled with the challenges of setting up genetic testing workflows based on a completely new technology. The learning curve we went through as a laboratory was accompanied by growing pains while we gained new knowledge and expertise. Here we discuss some important mistakes that have been made in our laboratory through 10 years of clinical exome sequencing but that have given us important new insights on how to adapt our working methods. We provide these examples and the lessons that we learned to help other laboratories avoid to make the same mistakes.
Collapse
Affiliation(s)
- Jordi Corominas
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sanne P Smeekens
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel R Nelen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helger G Yntema
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Jaudon F, Baldassari S, Musante I, Thalhammer A, Zara F, Cingolani LA. Targeting Alternative Splicing as a Potential Therapy for Episodic Ataxia Type 2. Biomedicines 2020; 8:E332. [PMID: 32899500 PMCID: PMC7555146 DOI: 10.3390/biomedicines8090332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022] Open
Abstract
Episodic ataxia type 2 (EA2) is an autosomal dominant neurological disorder characterized by paroxysmal attacks of ataxia, vertigo, and nausea that usually last hours to days. It is caused by loss-of-function mutations in CACNA1A, the gene encoding the pore-forming α1 subunit of P/Q-type voltage-gated Ca2+ channels. Although pharmacological treatments, such as acetazolamide and 4-aminopyridine, exist for EA2, they do not reduce or control the symptoms in all patients. CACNA1A is heavily spliced and some of the identified EA2 mutations are predicted to disrupt selective isoforms of this gene. Modulating splicing of CACNA1A may therefore represent a promising new strategy to develop improved EA2 therapies. Because RNA splicing is dysregulated in many other genetic diseases, several tools, such as antisense oligonucleotides, trans-splicing, and CRISPR-based strategies, have been developed for medical purposes. Here, we review splicing-based strategies used for genetic disorders, including those for Duchenne muscular dystrophy, spinal muscular dystrophy, and frontotemporal dementia with Parkinsonism linked to chromosome 17, and discuss their potential applicability to EA2.
Collapse
Affiliation(s)
- Fanny Jaudon
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.B.); (I.M.); (F.Z.)
| | - Ilaria Musante
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.B.); (I.M.); (F.Z.)
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16126 Genoa, Italy
| | - Agnes Thalhammer
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.B.); (I.M.); (F.Z.)
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16126 Genoa, Italy
| | - Lorenzo A. Cingolani
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), 16132 Genoa, Italy;
| |
Collapse
|
4
|
Stendel C, D’Adamo MC, Wiessner M, Dusl M, Cenciarini M, Belia S, Nematian-Ardestani E, Bauer P, Senderek J, Klopstock T, Pessia M. Association of A Novel Splice Site Mutation in P/Q-Type Calcium Channels with Childhood Epilepsy and Late-Onset Slowly Progressive Non-Episodic Cerebellar Ataxia. Int J Mol Sci 2020; 21:E3810. [PMID: 32471306 PMCID: PMC7312673 DOI: 10.3390/ijms21113810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/20/2023] Open
Abstract
Episodic ataxia type 2 (EA2) is characterized by paroxysmal attacks of ataxia with typical onset in childhood or early adolescence. The disease is associated with mutations in the voltage-gated calcium channel alpha 1A subunit (Cav2.1) that is encoded by the CACNA1A gene. However, previously unrecognized atypical symptoms and the genetic overlap existing between EA2, spinocerebellar ataxia type 6, familial hemiplegic migraine type 1, and other neurological diseases blur the genotype/phenotype correlations, making a differential diagnosis difficult to formulate correctly and delaying early therapeutic intervention. Here we report a new clinical phenotype of a CACNA1A-associated disease characterized by absence epilepsy occurring during childhood. However, much later in life the patient displayed non-episodic, slowly progressive gait ataxia. Gene panel sequencing for hereditary ataxias led to the identification of a novel heterozygous CACNA1A mutation (c.1913 + 2T > G), altering the donor splice site of intron 14. This genetic defect was predicted to result in an in-frame deletion removing 44 amino acids from the voltage-gated calcium channel Cav2.1. An RT-PCR analysis of cDNA derived from patient skin fibroblasts confirmed the skipping of the entire exon 14. Furthermore, two-electrode voltage-clamp recordings performed from Xenopus laevis oocytes expressing a wild-type versus mutant channel showed that the genetic defect caused a complete loss of channel function. This represents the first description of distinct clinical manifestations that remarkably expand the genetic and phenotypic spectrum of CACNA1A-related diseases and should be considered for an early diagnosis and effective therapeutic intervention.
Collapse
Affiliation(s)
- Claudia Stendel
- Friedrich Baur Institute at the Department of Neurology, University Hospital, Ludwig–Maximilians–University Munich, 80336 Munich, Germany; (C.S.); (M.W.); (M.D.); (J.S.); (T.K.)
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Maria Cristina D’Adamo
- Faculty of Medicine, Department of Physiology & Biochemistry, University of Malta, MSD 2080 Msida, Malta; (M.C.D.); (E.N.-A.)
| | - Manuela Wiessner
- Friedrich Baur Institute at the Department of Neurology, University Hospital, Ludwig–Maximilians–University Munich, 80336 Munich, Germany; (C.S.); (M.W.); (M.D.); (J.S.); (T.K.)
| | - Marina Dusl
- Friedrich Baur Institute at the Department of Neurology, University Hospital, Ludwig–Maximilians–University Munich, 80336 Munich, Germany; (C.S.); (M.W.); (M.D.); (J.S.); (T.K.)
| | - Marta Cenciarini
- Section of Physiology & Biochemistry, Department of Experimental Medicine, University of Perugia School of Medicine, 06132 Perugia, Italy;
| | - Silvia Belia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06132 Perugia, Italy;
| | - Ehsan Nematian-Ardestani
- Faculty of Medicine, Department of Physiology & Biochemistry, University of Malta, MSD 2080 Msida, Malta; (M.C.D.); (E.N.-A.)
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany;
| | - Jan Senderek
- Friedrich Baur Institute at the Department of Neurology, University Hospital, Ludwig–Maximilians–University Munich, 80336 Munich, Germany; (C.S.); (M.W.); (M.D.); (J.S.); (T.K.)
| | - Thomas Klopstock
- Friedrich Baur Institute at the Department of Neurology, University Hospital, Ludwig–Maximilians–University Munich, 80336 Munich, Germany; (C.S.); (M.W.); (M.D.); (J.S.); (T.K.)
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Mauro Pessia
- Faculty of Medicine, Department of Physiology & Biochemistry, University of Malta, MSD 2080 Msida, Malta; (M.C.D.); (E.N.-A.)
- Department of Physiology, United Arab Emirates University, Al Ain Po Box 17666, UAE
| |
Collapse
|
5
|
Thalhammer A, Jaudon F, Cingolani LA. Emerging Roles of Activity-Dependent Alternative Splicing in Homeostatic Plasticity. Front Cell Neurosci 2020; 14:104. [PMID: 32477067 PMCID: PMC7235277 DOI: 10.3389/fncel.2020.00104] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022] Open
Abstract
Homeostatic plasticity refers to the ability of neuronal networks to stabilize their activity in the face of external perturbations. Most forms of homeostatic plasticity ultimately depend on changes in the expression or activity of ion channels and synaptic proteins, which may occur at the gene, transcript, or protein level. The most extensively investigated homeostatic mechanisms entail adaptations in protein function or localization following activity-dependent posttranslational modifications. Numerous studies have also highlighted how homeostatic plasticity can be achieved by adjusting local protein translation at synapses or transcription of specific genes in the nucleus. In comparison, little attention has been devoted to whether and how alternative splicing (AS) of pre-mRNAs underlies some forms of homeostatic plasticity. AS not only expands proteome diversity but also contributes to the spatiotemporal dynamics of mRNA transcripts. Prominent in the brain where it can be regulated by neuronal activity, it is a flexible process, tightly controlled by a multitude of factors. Given its extensive use and versatility in optimizing the function of ion channels and synaptic proteins, we argue that AS is ideally suited to achieve homeostatic control of neuronal output. We support this thesis by reviewing emerging evidence linking AS to various forms of homeostatic plasticity: homeostatic intrinsic plasticity, synaptic scaling, and presynaptic homeostatic plasticity. Further, we highlight the relevance of this connection for brain pathologies.
Collapse
Affiliation(s)
- Agnes Thalhammer
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fanny Jaudon
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorenzo A Cingolani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
6
|
Cisplatin-Induced Skeletal Muscle Dysfunction: Mechanisms and Counteracting Therapeutic Strategies. Int J Mol Sci 2020; 21:ijms21041242. [PMID: 32069876 PMCID: PMC7072891 DOI: 10.3390/ijms21041242] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 12/17/2022] Open
Abstract
Among the severe side effects induced by cisplatin chemotherapy, muscle wasting is the most relevant one. This effect is a major cause for a clinical decline of cancer patients, since it is a negative predictor of treatment outcome and associated to increased mortality. However, despite its toxicity even at low doses, cisplatin remains the first-line therapy for several types of solid tumors. Thus, effective pharmacological treatments counteracting or minimizing cisplatin-induced muscle wasting are urgently needed. The dissection of the molecular pathways responsible for cisplatin-induced muscle dysfunction gives the possibility to identify novel promising therapeutic targets. In this context, the use of animal model of cisplatin-induced cachexia is very useful. Here, we report an update of the most relevant researches on the mechanisms underlying cisplatin-induced muscle wasting and on the most promising potential therapeutic options to preserve muscle mass and function.
Collapse
|
7
|
Thalhammer A, Contestabile A, Ermolyuk YS, Ng T, Volynski KE, Soong TW, Goda Y, Cingolani LA. Alternative Splicing of P/Q-Type Ca 2+ Channels Shapes Presynaptic Plasticity. Cell Rep 2018; 20:333-343. [PMID: 28700936 DOI: 10.1016/j.celrep.2017.06.055] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/04/2017] [Accepted: 06/21/2017] [Indexed: 12/26/2022] Open
Abstract
Alternative splicing of pre-mRNAs is prominent in the mammalian brain, where it is thought to expand proteome diversity. For example, alternative splicing of voltage-gated Ca2+ channel (VGCC) α1 subunits can generate thousands of isoforms with differential properties and expression patterns. However, the impact of this molecular diversity on brain function, particularly on synaptic transmission, which crucially depends on VGCCs, is unclear. Here, we investigate how two major splice isoforms of P/Q-type VGCCs (Cav2.1[EFa/b]) regulate presynaptic plasticity in hippocampal neurons. We find that the efficacy of P/Q-type VGCC isoforms in supporting synaptic transmission is markedly different, with Cav2.1[EFa] promoting synaptic depression and Cav2.1[EFb] synaptic facilitation. Following a reduction in network activity, hippocampal neurons upregulate selectively Cav2.1[EFa], the isoform exhibiting the higher synaptic efficacy, thus effectively supporting presynaptic homeostatic plasticity. Therefore, the balance between VGCC splice variants at the synapse is a key factor in controlling neurotransmitter release and presynaptic plasticity.
Collapse
Affiliation(s)
- Agnes Thalhammer
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy
| | - Andrea Contestabile
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | | | - Teclise Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore; National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | | | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore; National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Yukiko Goda
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Lorenzo A Cingolani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy.
| |
Collapse
|
8
|
Mutation Spectrum in the CACNA1A Gene in 49 Patients with Episodic Ataxia. Sci Rep 2017; 7:2514. [PMID: 28566750 PMCID: PMC5451382 DOI: 10.1038/s41598-017-02554-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/13/2017] [Indexed: 11/08/2022] Open
Abstract
Episodic ataxia is an autosomal dominant ion channel disorder characterized by episodes of imbalance and incoordination. The disease is genetically heterogeneous and is classified as episodic ataxia type 2 (EA2) when it is caused by a mutation in the CACNA1A gene, encoding the α1A subunit of the P/Q-type voltage-gated calcium channel Cav2.1. The vast majority of EA2 disease-causing variants are loss-of-function (LoF) point changes leading to decreased channel currents. CACNA1A exonic deletions have also been reported in EA2 using quantitative approaches. We performed a mutational screening of the CACNA1A gene, including the promoter and 3'UTR regions, in 49 unrelated patients diagnosed with episodic ataxia. When pathogenic variants were not found by sequencing, we performed a copy number variant (CNV) analysis to screen for duplications or deletions. Overall, sequencing screening allowed identification of six different point variants (three nonsense and three missense changes) and two coding indels, one of them found in two unrelated patients. Additionally, CNV analysis identified a deletion in a patient spanning exon 35 as a result of a recombination event between flanking intronic Alu sequences. This study allowed identification of potentially pathogenic alterations in our sample, five of them novel, which cover 20% of the patients (10/49). Our data suggest that most of these variants are disease-causing, although functional studies are required.
Collapse
|
9
|
Ubiquitin Ligase RNF138 Promotes Episodic Ataxia Type 2-Associated Aberrant Degradation of Human Ca v2.1 (P/Q-Type) Calcium Channels. J Neurosci 2017; 37:2485-2503. [PMID: 28167673 DOI: 10.1523/jneurosci.3070-16.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/09/2017] [Accepted: 01/31/2017] [Indexed: 11/21/2022] Open
Abstract
Voltage-gated CaV2.1 channels comprise a pore-forming α1A subunit with auxiliary α2δ and β subunits. CaV2.1 channels play an essential role in regulating synaptic signaling. Mutations in the human gene encoding the CaV2.1 subunit are associated with the cerebellar disease episodic ataxia type 2 (EA2). Several EA2-causing mutants exhibit impaired protein stability and exert dominant-negative suppression of CaV2.1 wild-type (WT) protein expression via aberrant proteasomal degradation. Here, we set out to delineate the protein degradation mechanism of human CaV2.1 subunit by identifying RNF138, an E3 ubiquitin ligase, as a novel CaV2.1-binding partner. In neurons, RNF138 and CaV2.1 coexist in the same protein complex and display notable subcellular colocalization at presynaptic and postsynaptic regions. Overexpression of RNF138 promotes polyubiquitination and accelerates protein turnover of CaV2.1. Disrupting endogenous RNF138 function with a mutant (RNF138-H36E) or shRNA infection significantly upregulates the CaV2.1 protein level and enhances CaV2.1 protein stability. Disrupting endogenous RNF138 function also effectively rescues the defective protein expression of EA2 mutants, as well as fully reversing EA2 mutant-induced excessive proteasomal degradation of CaV2.1 WT subunits. RNF138-H36E coexpression only partially restores the dominant-negative effect of EA2 mutants on CaV2.1 WT functional expression, which can be attributed to defective membrane trafficking of CaV2.1 WT in the presence of EA2 mutants. We propose that RNF138 plays a critical role in the homeostatic regulation of CaV2.1 protein level and functional expression and that RNF138 serves as the primary E3 ubiquitin ligase promoting EA2-associated aberrant degradation of human CaV2.1 subunits.SIGNIFICANCE STATEMENT Loss-of-function mutations in the human CaV2.1 subunit are linked to episodic ataxia type 2 (EA2), a dominantly inherited disease characterized by paroxysmal attacks of ataxia and nystagmus. EA2-causing mutants may exert dominant-negative effects on the CaV2.1 wild-type subunit via aberrant proteasomal degradation. The molecular nature of the CaV2.1 ubiquitin-proteasome degradation pathway is currently unknown. The present study reports the first identification of an E3 ubiquitin ligase for CaV2.1, RNF138. CaV2.1 protein stability is dynamically regulated by RNF138 and auxiliary α2δ and β subunits. We provide a proof of concept that protecting the human CaV2.1 subunit from excessive proteasomal degradation with specific interruption of endogenous RNF138 function may partially contribute to the future development of a novel therapeutic strategy for EA2 patients.
Collapse
|
10
|
Clinical exome sequencing for cerebellar ataxia and spastic paraplegia uncovers novel gene-disease associations and unanticipated rare disorders. Eur J Hum Genet 2016; 24:1460-6. [PMID: 27165006 PMCID: PMC5027687 DOI: 10.1038/ejhg.2016.42] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 03/25/2016] [Accepted: 04/12/2016] [Indexed: 12/13/2022] Open
Abstract
Cerebellar ataxia (CA) and hereditary spastic paraplegia (HSP) are two of the most prevalent motor disorders with extensive locus and allelic heterogeneity. We implemented clinical exome sequencing, followed by filtering data for a ‘movement disorders' gene panel, as a generic test to increase variant detection in 76 patients with these disorders. Segregation analysis or phenotypic re-evaluation was utilized to substantiate findings. Disease-causing variants were identified in 9 of 28 CA patients, and 8 of 48 HSP patients. In addition, possibly disease-causing variants were identified in 1 and 8 of the remaining CA and HSP patients, respectively. In 10 patients with CA, the total disease-causing or possibly disease-causing variants were detected in 8 different genes, whereas 16 HSP patients had such variants in 12 different genes. In the majority of cases, the identified variants were compatible with the patient phenotype. Interestingly, in some patients variants were identified in genes hitherto related to other movement disorders, such as TH variants in two siblings with HSP. In addition, rare disorders were uncovered, for example, a second case of HSP caused by a VCP variant. For some patients, exome sequencing results had implications for treatment, exemplified by the favorable L-DOPA treatment in a patient with HSP due to ATP13A2 variants (Parkinson type 9). Thus, clinical exome sequencing in this cohort of CA and HSP patients suggests broadening of disease spectra, revealed novel gene–disease associations, and uncovered unanticipated rare disorders. In addition, clinical exome sequencing results have shown their value in guiding practical patient management.
Collapse
|
11
|
Imbrici P, Liantonio A, Camerino GM, De Bellis M, Camerino C, Mele A, Giustino A, Pierno S, De Luca A, Tricarico D, Desaphy JF, Conte D. Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery. Front Pharmacol 2016; 7:121. [PMID: 27242528 PMCID: PMC4861771 DOI: 10.3389/fphar.2016.00121] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, disabling, or life-threatening. In spite of this, ion channels are the primary target of only about 5% of the marketed drugs suggesting their potential in drug discovery. The current review summarizes the therapeutic management of the principal ion channelopathies of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion channels. For most channelopathies the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a significant number of patients. Other channelopathies can exploit ion channel targeted drugs, such as marketed sodium channel blockers. Developing new and more specific therapeutic approaches is therefore required. To this aim, a major advancement in the pharmacotherapy of channelopathies has been the discovery that ion channel mutations lead to change in biophysics that can in turn specifically modify the sensitivity to drugs: this opens the way to a pharmacogenetics strategy, allowing the development of a personalized therapy with increased efficacy and reduced side effects. In addition, the identification of disease modifiers in ion channelopathies appears an alternative strategy to discover novel druggable targets.
Collapse
Affiliation(s)
- Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Giulia M Camerino
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Michela De Bellis
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Claudia Camerino
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro" Bari, Italy
| | - Antonietta Mele
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Arcangela Giustino
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Bari, Italy
| | - Sabata Pierno
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Domenico Tricarico
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Bari, Italy
| | - Diana Conte
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| |
Collapse
|
12
|
Fujioka S, Rayaprolu S, Sundal C, Broderick DF, Langley WA, Shoffner J, Hyams LC, Rademakers R, Graff-Radford NR, Tatum W, Ross OA, Wszolek ZK. A novel de novo pathogenic mutation in the CACNA1A gene. Mov Disord 2012; 27:1578-9. [PMID: 23038654 DOI: 10.1002/mds.25198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
13
|
Rajakulendran S, Kaski D, Hanna MG. Neuronal P/Q-type calcium channel dysfunction in inherited disorders of the CNS. Nat Rev Neurol 2012; 8:86-96. [PMID: 22249839 DOI: 10.1038/nrneurol.2011.228] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The past two decades have witnessed the emergence of a new and expanding field of neurological diseases--the genetic ion channelopathies. These disorders arise from mutations in genes that encode ion channel subunits, and manifest as paroxysmal attacks involving the brain or spinal cord, and/or muscle. The voltage-gated P/Q-type calcium channel (P/Q channel) is highly expressed in the cerebellum, hippocampus and cortex of the mammalian brain. The P/Q channel has a fundamental role in mediating fast synaptic transmission at central and peripheral nerve terminals. Autosomal dominant mutations in the CACNA1A gene, which encodes voltage-gated P/Q-type calcium channel subunit α(1) (the principal pore-forming subunit of the P/Q channel) are associated with episodic and progressive forms of cerebellar ataxia, familial hemiplegic migraine, vertigo and epilepsy. This Review considers, from both a clinical and genetic perspective, the various neurological phenotypes arising from inherited P/Q channel dysfunction, with a focus on recent advances in the understanding of the pathogenetic mechanisms underlying these disorders.
Collapse
Affiliation(s)
- Sanjeev Rajakulendran
- Medical Research Council Center for Neuromuscular Diseases, Box 102, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | | | | |
Collapse
|
14
|
Gazquez I, Lopez-Escamez JA. Genetics of recurrent vertigo and vestibular disorders. Curr Genomics 2011; 12:443-50. [PMID: 22379397 PMCID: PMC3178912 DOI: 10.2174/138920211797248600] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 11/22/2022] Open
Abstract
We present recent advances in the genetics of recurrent vertigo, including familial episodic ataxias, migraneous vertigo, bilateral vestibular hypofunction and Meniere's disease.Although several vestibular disorders are more common within families, the genetics of vestibulopathies is largely not known. Genetic loci and clinical features of familial episodic ataxias have been defined in linkage disequilibrium studies with mutations in neuronal genes KCNA1 and CACNA1A. Migrainous vertigo is a clinical disorder with a high comorbidity within families much more common in females with overlapping features with episodic ataxia and migraine. Bilateral vestibular hypofunction is a heterogeneous clinical group defined by episodes of vertigo leading to progressive loss of vestibular function which also can include migraine. Meniere's disease is a clinical syndrome characterized by spontaneous episodes of recurrent vertigo, sensorineural hearing loss, tinnitus and aural fullness and familial Meniere's disease in around 10-20% of cases. An international collaborative effort to define the clinical phenotype and recruiting patients with migrainous vertigo and Meniere's disease is ongoing for genome-wide association studies.
Collapse
Affiliation(s)
- Irene Gazquez
- Otology & Neurotology Group, CTS495, Centro de Genómica e Investigación Oncológica –GENyO Pfizer-Universidad de Granada- Junta de Andalucia, Granada
| | - Jose A Lopez-Escamez
- Otology & Neurotology Group, CTS495, Centro de Genómica e Investigación Oncológica –GENyO Pfizer-Universidad de Granada- Junta de Andalucia, Granada
- Department of Otolaryngology, Hospital de Poniente, El Ejido, Almería, Spain
| |
Collapse
|
15
|
Helmich RC, Siebner HR, Giffin N, Bestmann S, Rothwell JC, Bloem BR. The dynamic regulation of cortical excitability is altered in episodic ataxia type 2. ACTA ACUST UNITED AC 2011; 133:3519-29. [PMID: 21126994 DOI: 10.1093/brain/awq315] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Episodic ataxia type 2 and familial hemiplegic migraine are two rare hereditary disorders that are linked to dysfunctional ion channels and are characterized clinically by paroxysmal neurological symptoms. Impaired regulation of cerebral excitability is thought to play a role in the occurrence of these paroxysms, but the underlying mechanisms are poorly understood. Normal ion channels are crucial for coordinating neuronal firing in response to facilitatory input. Thus, we hypothesized that channel dysfunction in episodic ataxia type 2 and familial hemiplegic migraine may impair the ability to adjust cerebral excitability after facilitatory events. We tested this hypothesis in patients with episodic ataxia type 2 (n = 6), patients with familial hemiplegic migraine (n = 7) and healthy controls (n = 13). All subjects received a high-frequency burst (10 pulses at 20 Hz) of transcranial magnetic stimulation to transiently increase the excitability of the motor cortex. Acute burst-induced excitability changes were probed at 50, 250, 500 and 1000 ms after the end of the burst. This was done using single-pulse transcranial magnetic stimulation to assess corticospinal excitability, and paired-pulse transcranial magnetic stimulation at an interstimulus interval of 2 and 10 ms to assess intracortical inhibition and facilitation, respectively. The time course of burst-induced excitability changes differed between groups. Healthy controls showed a short-lived increase in excitability that was only present 50 ms after the burst. In contrast, patients with episodic ataxia type 2 showed an abnormally prolonged increase in corticospinal excitability that was still present 250 ms after the transcranial magnetic stimulation burst. Furthermore, while controls showed a decrease in intracortical facilitation during the 1 s period following the transcranial magnetic stimulation burst, patients with episodic ataxia type 2 had increased intracortical facilitation 1000 ms after the burst. Intracortical inhibition was unaltered between groups. Patients with familial hemiplegic migraine were not significantly different from either controls or patients with episodic ataxia type 2. Together, these findings indicate that patients with episodic ataxia type 2 have an excessive increase in motor cortex excitability following a strong facilitatory input. We argue that this deficient control of cortical excitability may set the stage for the emergence of paroxysmal neural dysfunction in this disorder.
Collapse
Affiliation(s)
- Rick C Helmich
- Radboud University Nijmegen Medical Center, Department of Neurology, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
16
|
Allen SE, Darnell RB, Lipscombe D. The neuronal splicing factor Nova controls alternative splicing in N-type and P-type CaV2 calcium channels. Channels (Austin) 2010; 4:483-9. [PMID: 21150296 DOI: 10.4161/chan.4.6.12868] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Many cellular processes are involved in optimizing protein function for specific neuronal tasks; here we focus on alternative pre-mRNA splicing. Alternative pre-mRNA splicing gives cells the capacity to modify and selectively re-balance their existing pool of transcripts in a coordinated way across multiple mRNAs, thereby effecting relatively rapid and relatively stable changes in protein activity. Here we report on and discuss the coordinated regulation of two sites of alternative splicing, e24a and e31a, in P-type CaV2.1 and N-type CaV2.2 channels. These two exons encode 4 and 2 amino acids, respectively, in the extracellular linker regions between transmembrane spanning segments S3 and S4 in domains III and IV of each CaV2 subunit. Recent genome-wide screens of splicing factor-RNA binding events by Darnell and colleagues show that Nova-2 promotes inclusion of e24a in CaV2.2 mRNAs in brain. We review these studies and show that a homologous e24a is present in theCaV2 .1 gene, Cacna1a, and that it is expressed in different regions of the nervous system. Nova-2 enhances inclusion of e24a but represses e31a inclusion in CaV2.1 and CaV2.2 mRNAs in brain. It is likely that coordinated alternative pre-mRNA splicing across related CaV2 genes by common splicing factors, allows neurons to orchestrate changes in synaptic protein function while maintaining a balanced and functioning system.
Collapse
Affiliation(s)
- Summer E Allen
- Department of Neuroscience, Brown University, Providence, RI, USA
| | | | | |
Collapse
|
17
|
Abstract
Mutations in the CACNA1A gene that encodes the pore-forming alpha1 subunit of human voltage-gated CaV2.1 (P/Q-type) Ca2+ channels cause several autosomal-dominant neurologic disorders, including familial hemiplegic migraine type 1 (FHM1), episodic ataxia type 2, and spinocerebellar ataxia type 6 (SCA6). For each channelopathy, the review describes the disease phenotype as well as the functional consequences of the disease-causing mutations on recombinant human CaV2.1 channels and, in the case of FHM1 and SCA6, on neuronal CaV2.1 channels expressed at the endogenous physiological level in knockin mouse models. The effects of FHM1 mutations on cortical spreading depression, the phenomenon underlying migraine aura, and on cortical excitatory and inhibitory synaptic transmission in FHM1 knockin mice are also described, and their implications for the disease mechanism discussed. Moreover, the review describes different ataxic spontaneous cacna1a mouse mutants and the important insights into the cerebellar mechanisms underlying motor dysfunction caused by mutant CaV2.1 channels that were obtained from their functional characterization.
Collapse
|
18
|
Mantuano E, Romano S, Veneziano L, Gellera C, Castellotti B, Caimi S, Testa D, Estienne M, Zorzi G, Bugiani M, Rajabally YA, Barcina MJG, Servidei S, Panico A, Frontali M, Mariotti C. Identification of novel and recurrent CACNA1A gene mutations in fifteen patients with episodic ataxia type 2. J Neurol Sci 2010; 291:30-6. [PMID: 20129625 DOI: 10.1016/j.jns.2010.01.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/02/2009] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
Abstract
Episodic ataxia type 2 is a rare autosomal dominant disease characterized by recurrent attacks of vertigo and cerebellar ataxia. The disease was caused by mutations in the CACNA1A gene, on chromosome 19p. We perform a mutational screening in a group of 43 unrelated patients. Forty-two patients presented episodes of disequilibrium and ataxia, and one child was studied because of the occurrence of episodic torticollis. The genetic analysis showed 15 mutated patients (35%). In 13 cases we found novel CACNA1A gene mutations, including missense, protein truncating, and aberrant splicing mutations. Two truncating mutations lead to the uppermost premature stop so far reported, challenging recent hypotheses on dominant negative effect. In patients without CACNA1A mutations, molecular testing for CACNB4 gene mutations excluded this genetic subtype. Clinical features of mutated subjects mostly confirmed previous sign and symptoms associated with EA2, including paroxysmal torticollis and mental retardation. CACNA1A mutated patients have an earlier age at onset, interictal nystagmus, and abnormalities of ocular movements. A review of all CACNA1A mutations so far reported showed that they are mainly located downstream exon 18. Our data substantially increase the number of the described CACNA1A mutations, and propose clinical and molecular criteria for a more focused genetic screening.
Collapse
Affiliation(s)
- Elide Mantuano
- Institute of Neurobiology and Molecular Medicine, CNR, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rajakulendran S, Schorge S, Kullmann DM, Hanna MG. Dysfunction of the Ca(V)2.1 calcium channel in cerebellar ataxias. F1000 BIOLOGY REPORTS 2010; 2. [PMID: 20948794 PMCID: PMC2948357 DOI: 10.3410/b2-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations in the CACNA1A gene are associated with episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6). CACNA1A encodes the α-subunit of the P/Q-type calcium channel or CaV2.1, which is highly enriched in the cerebellum. It is one of the main channels linked to synaptic transmission throughout the human central nervous system. Here, we compare recent advances in the understanding of the genetic changes that underlie EA2 and SCA6 and what these new findings suggest about the mechanism of the disease.
Collapse
Affiliation(s)
- Sanjeev Rajakulendran
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London Queen Square, London WC1N 3BG UK
| | | | | | | |
Collapse
|