1
|
Alpay B, Cimen B, Akaydin E, Onat F, Bolay H, Sara Y. Extrasynaptic δGABAA receptors mediate resistance to migraine-like phenotype in rats. J Headache Pain 2024; 25:75. [PMID: 38724972 PMCID: PMC11083752 DOI: 10.1186/s10194-024-01777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND GABA, a key inhibitory neurotransmitter, has synaptic and extrasynaptic receptors on the postsynaptic neuron. Background GABA, which spills over from the synaptic cleft, acts on extrasynaptic delta subunit containing GABAA receptors. The role of extrasynaptic GABAergic input in migraine is unknown. We investigated the susceptibility to valid migraine-provoking substances with clinically relevant behavioral readouts in Genetic Absence Epilepsy of Rats Strasbourg (GAERS), in which the GABAergic tonus was altered. Subsequently, we screened relevant GABAergic mechanisms in Wistar rats by pharmacological means to identify the mechanisms. METHODS Wistar and GAERS rats were administered nitroglycerin (10 mg/kg) or levcromakalim (1 mg/kg). Mechanical allodynia and photophobia were assessed using von Frey monofilaments and a dark-light box. Effects of GAT-1 blocker tiagabine (5 mg/kg), GABAB receptor agonist baclofen (2 mg/kg), synaptic GABAA receptor agonist diazepam (1 mg/kg), extrasynaptic GABAA receptor agonists gaboxadol (4 mg/kg), and muscimol (0.75 mg/kg), T-type calcium channel blocker ethosuximide (100 mg/kg) or synaptic GABAA receptor antagonist flumazenil (15 mg/kg) on levcromakalim-induced migraine phenotype were screened. RESULTS Unlike Wistar rats, GAERS exhibited no reduction in mechanical pain thresholds or light aversion following nitroglycerin or levcromakalim injection. Ethosuximide did not reverse the resistant phenotype in GAERS, excluding the role of T-type calcium channel dysfunction in this phenomenon. Tiagabine prevented levcromakalim-induced mechanical allodynia in Wistar rats, suggesting a key role in enhanced GABA spillover. Baclofen did not alleviate mechanical allodynia. Diazepam failed to mitigate levcromakalim-induced migraine phenotype. Additionally, the resistant phenotype in GAERS was not affected by flumazenil. Extrasynaptic GABAA receptor agonists gaboxadol and muscimol inhibited periorbital allodynia in Wistar rats. CONCLUSION Our study introduced a rat strain resistant to migraine-provoking agents and signified a critical involvement of extrasynaptic δGABAergic receptors. Extrasynaptic δ GABAA receptors, by mediating constant background inhibition on the excitability of neurons, stand as a novel drug target with a therapeutic potential in migraine.
Collapse
Affiliation(s)
- Berkay Alpay
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06320, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, 06560, Türkiye
| | - Bariscan Cimen
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06320, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, 06560, Türkiye
| | - Elif Akaydin
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06320, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, 06560, Türkiye
| | - Filiz Onat
- Department of Medical Pharmacology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, 34752, Türkiye
| | - Hayrunnisa Bolay
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, 06560, Türkiye.
- Department of Neurology and Algology, Faculty of Medicine, Gazi University, Besevler, Ankara, 06560, Türkiye.
| | - Yildirim Sara
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06320, Türkiye.
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, 06560, Türkiye.
| |
Collapse
|
2
|
Puledda F, Silva EM, Suwanlaong K, Goadsby PJ. Migraine: from pathophysiology to treatment. J Neurol 2023:10.1007/s00415-023-11706-1. [PMID: 37029836 DOI: 10.1007/s00415-023-11706-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Migraine is an extremely disabling, common neurological disorder characterized by a complex neurobiology, involving a series of central and peripheral nervous system areas and networks. A growing increase in the understanding of migraine pathophysiology in recent years has facilitated translation of that knowledge into novel treatments, which are currently becoming available to patients in many parts of the world and are substantially changing the clinical approach to the disease. In the first part of this review, we will provide an up to date overview of migraine pathophysiology by analyzing the anatomy and function of the main regions involved in the disease, focusing on how these give rise to the plethora of symptoms characterizing the attacks and overall disease. The second part of the paper will discuss the novel therapeutic agents that have emerged for the treatment of migraine, including molecules targeting calcitonin gene-related peptide (gepants and monoclonal antibodies), serotonin 5-HT1F receptor agonists (ditans) and non-invasive neuromodulation, as well as providing a brief overview of new evidence for classic migraine treatments.
Collapse
Affiliation(s)
- Francesca Puledda
- Headache Group, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, and National Institute for Health Research (NIHR) SLaM Clinical Research Facility at King's, Wellcome Foundation Building, King's College Hospital, London, SE5 9PJ, UK
| | | | - Kanokrat Suwanlaong
- Division of Neurology, Department of Medicine, Songkhla Medical Education Center, Songkhla, Thailand
| | - Peter J Goadsby
- Headache Group, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, and National Institute for Health Research (NIHR) SLaM Clinical Research Facility at King's, Wellcome Foundation Building, King's College Hospital, London, SE5 9PJ, UK.
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Chong CD, Nikolova S, Dumkrieger G, Wu T, Berisha V, Li J, Ross K, Schwedt TJ. Thalamic subfield iron accumulation after acute mild traumatic brain injury as a marker of future post-traumatic headache intensity. Headache 2023; 63:156-164. [PMID: 36651577 PMCID: PMC10184776 DOI: 10.1111/head.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To explore alterations in thalamic subfield volume and iron accumulation in individuals with post-traumatic headache (PTH) relative to healthy controls. BACKGROUND The thalamus plays a pivotal role in the pathomechanism of pain and headache, yet the role of the thalamus in PTH attributed to mild traumatic brain injury (mTBI) remains unclear. METHODS A total of 107 participants underwent multimodal T1-weighted and T2* brain magnetic resonance imaging. Using a clinic-based observational study, thalamic subfield volume and thalamic iron accumulation were explored in 52 individuals with acute PTH (mean age = 41.3; standard deviation [SD] = 13.5), imaged on average 24 days post mTBI, and compared to 55 healthy controls (mean age = 38.3; SD = 11.7) without history of mTBI or migraine. Symptoms of mTBI and headache characteristics were assessed at baseline (0-59 days post mTBI) (n = 52) and 3 months later (n = 46) using the Symptom Evaluation of the Sports Concussion Assessment Tool (SCAT-5) and a detailed headache history questionnaire. RESULTS Relative to controls, individuals with acute PTH had significantly less volume in the lateral geniculate nucleus (LGN) (mean volume: PTH = 254.1, SD = 43.4 vs. controls = 278.2, SD = 39.8; p = 0.003) as well as more iron deposition in the left LGN (PTH: T2* signal = 38.6, SD = 6.5 vs. controls: T2* signal = 45.3, SD = 2.3; p = 0.048). Correlations in individuals with PTH revealed a positive relationship between left LGN T2* iron deposition and SCAT-5 symptom severity score at baseline (r = -0.29, p = 0.019) and maximum headache intensity at the 3-month follow-up (r = -0.47, p = 0.002). CONCLUSION Relative to healthy controls, individuals with acute PTH had less volume and higher iron deposition in the left LGN. Higher iron deposition in the left LGN might reflect mTBI severity and poor headache recovery.
Collapse
Affiliation(s)
- Catherine D Chong
- Department of Neurology, Mayo Clinic, Phoenix, Arizona, USA.,ASU-Mayo Center for Innovative Imaging, Phoenix, Arizona, USA
| | | | | | - Teresa Wu
- ASU-Mayo Center for Innovative Imaging, Phoenix, Arizona, USA.,School of Computing and Augmented Intelligence, Arizona State University, Tempe, Arizona, USA
| | - Visar Berisha
- ASU-Mayo Center for Innovative Imaging, Phoenix, Arizona, USA.,School of Electrical, Computer and Energy Engineering and College of Health Solutions, Arizona State University, Tempe, Arizona, USA.,College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - Jing Li
- School of Industrial and Systems Engineering, Georgia Tech, Atlanta, Georgia, USA
| | | | - Todd J Schwedt
- Department of Neurology, Mayo Clinic, Phoenix, Arizona, USA.,ASU-Mayo Center for Innovative Imaging, Phoenix, Arizona, USA
| |
Collapse
|
4
|
Ferrante E, Trimboli M, Erminio C, Martino I, Tiraboschi P. Acute confusional migraine in CADASIL: A case report and literature review. Clin Neurol Neurosurg 2022; 216:107239. [PMID: 35413636 DOI: 10.1016/j.clineuro.2022.107239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Acute confusional state associated with migraine in adults is an infrequent entity. Around 30-60% of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) patients get affected by migraine attacks-the majority with aura-often as the first symptom of the disease. Acute confusional state during migraine has been rarely described in CADASIL patients and a complete neuropsychological assessment during the acute phase has never been conducted so far. CASE SUMMARY We here describe the clinical and neuropsychological features of two distinct episodes of ACM in a 54-year-old female with CADASIL. EEG recording during acute confusional migraine and after attack resolution and neuroimaging has been reported. DISCUSSION AND LITERATURE REVIEW This paper also reports a literature review on the topic of ACM in CADASIL highlighting a lack of adequate knowledge about this entity among clinicians and prompting further larger studies to explore its incidence and characteristics.
Collapse
Affiliation(s)
- Enrico Ferrante
- Department of Neurology, Alto Vicentino Hospital - AULSS 7 Pedemontana, Santorso (IT), Italy; Department of Neurology, AOR San Carlo, Potenza, Italy; Department of Neuroradiology, Niguarda Ca Granda Hospital-Milan (IT), Italy.
| | - Michele Trimboli
- Department of Neurology, AOR San Carlo, Potenza, Italy; Institute of Neurology, Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro (IT), Italy.
| | - Cristina Erminio
- Department of Neuroradiology, Niguarda Ca Granda Hospital-Milan (IT), Italy
| | - Iolanda Martino
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro (IT), Italy
| | - Pietro Tiraboschi
- Division of Neurology, Scientific Institute for Research, Hospitalization, and Care (IRCCS) Foundation "Carlo Besta" Neurological Institute, Milan, Italy
| |
Collapse
|
5
|
Kim YE, Kim MK, Suh SI, Kim JH. Altered trigeminothalamic spontaneous low-frequency oscillations in migraine without aura: a resting-state fMRI study. BMC Neurol 2021; 21:342. [PMID: 34493235 PMCID: PMC8422747 DOI: 10.1186/s12883-021-02374-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Background Recent resting-state fMRI studies demonstrated functional dysconnectivity within the central pain matrix in migraineurs. This study aimed to investigate the spatial distribution and amplitude of low-frequency oscillations (LFOs) using fractional amplitude of low-frequency fluctuation (fALFF) analysis in migraine patients without aura, and to examine relationships between regional LFOs and clinical variables. Methods Resting-state fMRI data were obtained and preprocessed in 44 migraine patients without aura and 31 matched controls. fALFF was computed according to the original method, z-transformed for standardization, and compared between migraineurs and controls. Correlation analysis between regional fALFF and clinical variables was performed in migraineurs as well. Results Compared with controls, migraineurs had significant fALFF increases in bilateral ventral posteromedial (VPM) thalamus and brainstem encompassing rostral ventromedial medulla (RVM) and trigeminocervical complex (TCC). Regional fALFF values of bilateral VPM thalamus and brainstem positively correlated with disease duration, but not with migraine attack frequency or Migraine Disability Assessment Scale score. Conclusions We have provided evidence for abnormal LFOs in the brainstem including RVM/TCC and thalamic VPM nucleus in migraine without aura, implicating trigeminothalamic network oscillations in migraine pathophysiology. Our results suggest that enhanced LFO activity may underpin the interictal trigeminothalamic dysrhythmia that could contribute to the impairments of pain transmission and modulation in migraine. Given our finding of increasing fALFF in relation to increasing disease duration, the observed trigeminothalamic dysrhythmia may indicate either an inherent pathology leading to migraine headaches or a consequence of repeated attacks on the brain.
Collapse
Affiliation(s)
- Ye Eun Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 152-703, Guro-dong gil 97, Guro-dong, Guro-gu, Seoul, Republic of Korea
| | - Min Kyung Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 152-703, Guro-dong gil 97, Guro-dong, Guro-gu, Seoul, Republic of Korea
| | - Sang-Il Suh
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Ji Hyun Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 152-703, Guro-dong gil 97, Guro-dong, Guro-gu, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Valenzuela-Fuenzalida JJ, Suazo-Santibañez A, Semmler MG, Cariseo-Avila C, Santana-Machuca E, Orellana-Donoso M. The structural and functional importance of the thalamus in migraine processes with and without aura. A literature review. TRANSLATIONAL RESEARCH IN ANATOMY 2021. [DOI: 10.1016/j.tria.2021.100130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
7
|
Lloyd J, Biloshytska M, Andreou AP, Lambru G. Noninvasive Neuromodulation in Headache: An Update. Neurol India 2021; 69:S183-S193. [PMID: 34003164 DOI: 10.4103/0028-3886.315998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Migraine is a common disabling primary headache condition. Although strives have been made in treatment, there remains an unmet need for safe, effective acute, and preventative treatments. The promising concept of neuromodulation of relevant neuronal targets in a noninvasive fashion for the treatment of primary headache disorders has led to the trial of numerous devices over the years. Objective We aimed to review the evidence on current neuromodulation treatments available for the management of primary headache disorders. Methods Randomized controlled trial as well as open-label and real-world studies on central and peripheral cephalic and noncephalic neuromodulation modalities in primary headaches were critically reviewed. Results The current evidence suggests a role of single-pulse transcranial magnetic stimulation, supraorbital nerve stimulation, and remote noncephalic electrical stimulation as migraine abortive treatments, with stronger evidence in episodic rather than in chronic migraine. Single-pulse transcranial magnetic stimulation and supraorbital nerve stimulation also hold promising evidence in episodic migraine prevention and initial positive evidence in chronic migraine prevention. More evidence should clarify the therapeutic role of the external vagus nerve stimulation and transcranial direct current stimulation in migraine. However, external vagus nerve stimulation may be effective in the acute treatment of episodic but not chronic cluster headache, in the prevention of hemicrania continua and paroxysmal hemicrania but not of short-lasting neuralgiform headache attacks. The difficulty in setting up sham-controlled studies has thus far prevented the publication of robust trials. This limitation along with the cost of these therapies has meant that their use is limited in most countries. Conclusion Neuromodulation is a promising nonpharmacological treatment approach for primary headaches. More studies with appropriate blinding strategies and reduction of device cost may allow more widespread approval of these treatments and in turn increase clinician's experience in neuromodulation.
Collapse
Affiliation(s)
- Joseph Lloyd
- Headache Research-Wolfson CARD, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
| | - Maryna Biloshytska
- Headache Research-Wolfson CARD, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
| | - Anna P Andreou
- Department of Functional Neurosurgery and Neuromodulation, Romodanov Neurosurgery Institute, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine; The Headache Service, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Giorgio Lambru
- The Headache Service, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
8
|
Alves-Ferreira M, Quintas M, Sequeiros J, Sousa A, Pereira-Monteiro J, Alonso I, Neto JL, Lemos C. A genetic interaction of NRXN2 with GABRE, SYT1 and CASK in migraine patients: a case-control study. J Headache Pain 2021; 22:57. [PMID: 34126933 PMCID: PMC8201896 DOI: 10.1186/s10194-021-01266-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Migraine is a multifactorial disorder that is more frequent (two to four times) in women than in men. In recent years, our research group has focused on the role of neurotransmitter release and its regulation. Neurexin (NRXN2) is one of the components of the synaptic vesicle machinery, responsible for connecting intracellular fusion proteins and synaptic vesicles. Our aim was to continue exploring the role and interaction of proteins involved in the control and promotion of neurotransmission in migraine susceptibility. METHODS A case-control study was performed comprising 183 migraineurs (148 females and 35 males) and 265 migraine-free controls (202 females and 63 males). Tagging single nucleotide polymorphisms of NRXN2 were genotyped to assess the association between NRXN2 and migraine susceptibility. The χ2 test was used to compare allele frequencies in cases and controls and odds ratios were estimated with 95% confidence intervals. Haplotype frequencies were compared between groups. Gene-gene interactions were analysed using the Multifactor Dimensionality Reduction v2.0. RESULTS We found a statistically significant interaction model (p = 0.009) in the female group between the genotypes CG of rs477138 (NRXN2) and CT of rs1158605 (GABRE). This interaction was validated by logistic regression, showing a significant risk effect [OR = 4.78 (95%CI: 1.76-12.97)] after a Bonferroni correction. Our data also supports a statistically significant interaction model (p = 0.011) in the female group between the GG of rs477138 in NRXN2 and, the rs2244325's GG genotype and rs2998250's CC genotype of CASK. This interaction was also validated by logistic regression, with a protective effect [OR = 0.08 (95%CI: 0.01-0.75)]. A weak interaction model was found between NRXN2-SYT1. We have not found any statistically significant allelic or haplotypic associations between NRXN2 and migraine susceptibility. CONCLUSIONS This study unravels, for the first time, the gene-gene interactions between NRXN2, GABRE - a GABAA-receptor - and CASK, importantly it shows the synergetic effect between those genes and its relation with migraine susceptibility. These gene interactions, which may be a part of a larger network, can potentially help us in better understanding migraine aetiology and in development of new therapeutic approaches.
Collapse
Affiliation(s)
- Miguel Alves-Ferreira
- UnIGENe, IBMC - Institute for Molecular and Cell Biology; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Marlene Quintas
- UnIGENe, IBMC - Institute for Molecular and Cell Biology; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Jorge Sequeiros
- UnIGENe, IBMC - Institute for Molecular and Cell Biology; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Alda Sousa
- UnIGENe, IBMC - Institute for Molecular and Cell Biology; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - José Pereira-Monteiro
- UnIGENe, IBMC - Institute for Molecular and Cell Biology; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Isabel Alonso
- UnIGENe, IBMC - Institute for Molecular and Cell Biology; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - João Luís Neto
- UnIGENe, IBMC - Institute for Molecular and Cell Biology; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carolina Lemos
- UnIGENe, IBMC - Institute for Molecular and Cell Biology; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
9
|
Andreou AP, Edvinsson L. Mechanisms of migraine as a chronic evolutive condition. J Headache Pain 2019; 20:117. [PMID: 31870279 PMCID: PMC6929435 DOI: 10.1186/s10194-019-1066-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
Understanding the mechanisms of migraine remains challenging as migraine is not a static disorder, and even in its episodic form migraine remains an "evolutive" chronic condition. Considerable progress has been made in elucidating the pathophysiological mechanisms of migraine, associated genetic factors that may influence susceptibility to the disease, and functional and anatomical changes during the progression of a migraine attack or the transformation of episodic to chronic migraine. Migraine is a life span neurological disorder that follows an evolutive age-dependent change in its prevalence and even clinical presentations. As a disorder, migraine involves recurrent intense head pain and associated unpleasant symptoms. Migraine attacks evolve over different phases with specific neural mechanisms and symptoms being involved during each phase. In some patients, migraine can be transformed into a chronic form with daily or almost daily headaches. The mechanisms behind this evolutive process remain unknown, but genetic and epigenetic factors, inflammatory processes and central sensitization may play an important role.
Collapse
Affiliation(s)
- Anna P Andreou
- Headache Research, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- The Headache Centre, Guy's and St Thomas', NHS Foundation Trust, London, UK.
| | - Lars Edvinsson
- Department of Medicine, Lund University, 22185, Lund, Sweden
| |
Collapse
|
10
|
Wen W, Chen H, Fu K, Wei J, Qin L, Pan T, Xu S. Fructus Viticis methanolic extract attenuates trigeminal hyperalgesia in migraine by regulating injury signal transmission. Exp Ther Med 2019; 19:85-94. [PMID: 31853276 PMCID: PMC6909769 DOI: 10.3892/etm.2019.8201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/07/2019] [Indexed: 11/14/2022] Open
Abstract
Migraine, characterized by hyperalgesia of the trigeminovascular system, is a severe condition that leads to severe reductions in the quality of life. Upon external stimulation, the levels of various neurotransmitters, including aspartic acid (Asp), glutamic acid (Glu), γ-amino butyric acid (GABA), norepinephrine (NE) and 5-hydroxytryptamine (5-HT), are significantly altered; this directly or indirectly promotes trigeminal hypersensitivity. Fructus Viticis is a Traditional Chinese Medicine with analgesic properties to provide efficient relief of migraine. In the present study, the underlying mechanisms of the analgesic effect of Fructus Viticis methanolic extract were assessed in rats with nitroglycerin-induced migraine. The plasma levels of the neurotransmitters calcitonin gene-related peptide (CGRP) and substance P (SP), as well as the amount of c-fos immunoreactive cells (c-fos IR cells) in the brain, were detected. The analgesic effect was obvious, as Fructus Viticis methanolic extract ameliorated migraine-like behaviours in nitroglycerin-induced rats. The levels of 5-HT, GABA and NE in the brain of migraine model rats was lower compared with that of control rats, whereas opposite observations were made in the contents of excitatory amino acids. Pre-treatment with Fructus Viticis methanolic extract elevated the levels of 5-HT, GABA and NE, and also lowered the levels of excitatory amino acids, including Glu and Asp. In addition, treatment with Fructus Viticis methanolic extract lowered the plasma levels of CGRP and SP and decreased the c-fos IR cells in the brainstem. The present study provided a further scientific basis for the anti-migraine effects of Fructus Viticis.
Collapse
Affiliation(s)
- Wen Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Huan Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Kun Fu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Department of Pharmacy, The Third People's Hospital of Chengdu, The Second Affiliated Chengdu Clinical College of Chongqing Medical University, Chengdu, Sichuan 610031, P.R. China
| | - Jiangping Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Lixia Qin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Ting Pan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Shijun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.,Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| |
Collapse
|
11
|
Wei HL, Zhou X, Chen YC, Yu YS, Guo X, Zhou GP, Zhou QQ, Qu LJ, Yin X, Li J, Zhang H. Impaired intrinsic functional connectivity between the thalamus and visual cortex in migraine without aura. J Headache Pain 2019; 20:116. [PMID: 31856703 PMCID: PMC6924083 DOI: 10.1186/s10194-019-1065-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/03/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Resting-state functional magnetic resonance imaging (fMRI) has confirmed disrupted visual network connectivity in migraine without aura (MwoA). The thalamus plays a pivotal role in a number of pain conditions, including migraine. However, the significance of altered thalamo-visual functional connectivity (FC) in migraine remains unknown. The goal of this study was to explore thalamo-visual FC integrity in patients with MwoA and investigate its clinical significance. METHODS Resting-state fMRI data were acquired from 33 patients with MwoA and 22 well-matched healthy controls. After identifying the visual network by independent component analysis, we compared neural activation in the visual network and thalamo-visual FC and assessed whether these changes were linked to clinical characteristics. We used voxel-based morphometry to determine whether functional differences were dependent on structural differences. RESULTS The visual network exhibited significant differences in regions (bilateral cunei, right lingual gyrus and left calcarine sulcus) by inter-group comparison. The patients with MwoA showed significantly increased FC between the left thalami and bilateral cunei and between the right thalamus and the contralateral calcarine sulcus and right cuneus. Furthermore, the neural activation of the left calcarine sulcus was positively correlated with visual analogue scale scores (r = 0.319, p = 0.043), and enhanced FC between the left thalamus and right cuneus in migraine patients was negatively correlated with Generalized Anxiety Disorder scores (r = - 0.617, p = 0.005). CONCLUSION Our data suggest that migraine distress is exacerbated by aberrant feedback projections to the visual network, playing a crucial role in migraine physiological mechanisms. The current study provides further insights into the complex scenario of migraine mechanisms.
Collapse
Affiliation(s)
- Heng-Le Wei
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, Jiangsu Province, 211100 China
| | - Xin Zhou
- Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, Jiangsu Province, 211100 China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006 China
| | - Yu-Sheng Yu
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, Jiangsu Province, 211100 China
| | - Xi Guo
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, Jiangsu Province, 211100 China
| | - Gang-Ping Zhou
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, Jiangsu Province, 211100 China
| | - Qing-Qing Zhou
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, Jiangsu Province, 211100 China
| | - Li-Jie Qu
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, Jiangsu Province, 211100 China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006 China
| | - Junrong Li
- Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, Jiangsu Province, 211100 China
| | - Hong Zhang
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, Hushan Road, Nanjing, Jiangsu Province, 211100 China
| |
Collapse
|
12
|
Alstadhaug KB, Andreou AP. Caffeine and Primary (Migraine) Headaches-Friend or Foe? Front Neurol 2019; 10:1275. [PMID: 31849829 PMCID: PMC6901704 DOI: 10.3389/fneur.2019.01275] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022] Open
Abstract
Background: The actions of caffeine as an antagonist of adenosine receptors have been extensively studied, and there is no doubt that both daily and sporadic dietary consumption of caffeine has substantial biological effects on the nervous system. Caffeine influences headaches, the migraine syndrome in particular, but how is unclear. Materials and Methods: This is a narrative review based on selected articles from an extensive literature search. The aim of this study is to elucidate and discuss how caffeine may affect the migraine syndrome and discuss the potential pathophysiological pathways involved. Results: Whether caffeine has any significant analgesic and/or prophylactic effect in migraine remains elusive. Neither is it clear whether caffeine withdrawal is an important trigger for migraine. However, withdrawal after chronic exposure of caffeine may cause migraine-like headache and a syndrome similar to that experienced in the prodromal phase of migraine. Sensory hypersensitivity however, does not seem to be a part of the caffeine withdrawal syndrome. Whether it is among migraineurs is unknown. From a modern viewpoint, the traditional vascular explanation of the withdrawal headache is too simplistic and partly not conceivable. Peripheral mechanisms can hardly explain prodromal symptoms and non-headache withdrawal symptoms. Several lines of evidence point at the hypothalamus as a locus where pivotal actions take place. Conclusion: In general, chronic consumption of caffeine seems to increase the burden of migraine, but a protective effect as an acute treatment or in severely affected patients cannot be excluded. Future clinical trials should explore the relationship between caffeine withdrawal and migraine, and investigate the effects of long-term elimination.
Collapse
Affiliation(s)
- Karl B. Alstadhaug
- Nordland Hospital Trust, Bodø, Norway
- Institute of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
| | - Anna P. Andreou
- Headache Research, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- The Headache Centre, Guy's and St Thomas', NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
13
|
Harriott AM, Strother LC, Vila-Pueyo M, Holland PR. Animal models of migraine and experimental techniques used to examine trigeminal sensory processing. J Headache Pain 2019; 20:91. [PMID: 31464579 PMCID: PMC6734323 DOI: 10.1186/s10194-019-1043-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Background Migraine is a common debilitating condition whose main attributes are severe recurrent headaches with accompanying sensitivity to light and sound, nausea and vomiting. Migraine-related pain is a major cause of its accompanying disability and can encumber almost every aspect of daily life. Main body Advancements in our understanding of the neurobiology of migraine headache have come in large from basic science research utilizing small animal models of migraine-related pain. In this current review, we aim to describe several commonly utilized preclinical models of migraine. We will discuss the diverse array of methodologies for triggering and measuring migraine-related pain phenotypes and highlight briefly specific advantages and limitations therein. Finally, we will address potential future challenges/opportunities to refine existing and develop novel preclinical models of migraine that move beyond migraine-related pain and expand into alternate migraine-related phenotypes. Conclusion Several well validated animal models of pain relevant for headache exist, the researcher should consider the advantages and limitations of each model before selecting the most appropriate to answer the specific research question. Further, we should continually strive to refine existing and generate new animal and non-animal models that have the ability to advance our understanding of head pain as well as non-pain symptoms of primary headache disorders.
Collapse
Affiliation(s)
- Andrea M Harriott
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Lauren C Strother
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Marta Vila-Pueyo
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Philip R Holland
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
14
|
Ong JJY, Wei DYT, Goadsby PJ. Recent Advances in Pharmacotherapy for Migraine Prevention: From Pathophysiology to New Drugs. Drugs 2019; 78:411-437. [PMID: 29396834 DOI: 10.1007/s40265-018-0865-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Migraine is a common and disabling neurological disorder, with a significant socioeconomic burden. Its pathophysiology involves abnormalities in complex neuronal networks, interacting at different levels of the central and peripheral nervous system, resulting in the constellation of symptoms characteristic of a migraine attack. Management of migraine is individualised and often necessitates the commencement of preventive medication. Recent advancements in the understanding of the neurobiology of migraine have begun to account for some parts of the symptomatology, which has led to the development of novel target-based therapies that may revolutionise how migraine is treated in the future. This review will explore recent advances in the understanding of migraine pathophysiology, and pharmacotherapeutic developments for migraine prevention, with particular emphasis on novel treatments targeted at the calcitonin gene-related peptide (CGRP) pathway.
Collapse
Affiliation(s)
- Jonathan Jia Yuan Ong
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, Wellcome Foundation Building, London, SE5 9PJ, UK.,Division of Neurology, Department of Medicine, National University Health System, University Medicine Cluster, Singapore, Singapore
| | - Diana Yi-Ting Wei
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, Wellcome Foundation Building, London, SE5 9PJ, UK
| | - Peter J Goadsby
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. .,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, Wellcome Foundation Building, London, SE5 9PJ, UK.
| |
Collapse
|
15
|
Akerman S, Romero-Reyes M. Targeting the central projection of the dural trigeminovascular system for migraine prophylaxis. J Cereb Blood Flow Metab 2019; 39:704-717. [PMID: 28885085 PMCID: PMC6446423 DOI: 10.1177/0271678x17729280] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Migraine abortives likely target both peripheral-dural and central trigeminovascular mechanisms in mediating their therapeutic effects. However, in preclinical assays, many migraine preventives have little success at inhibiting similar trigeminovascular-mediated peripheral changes within the dural microenvironment. In addition, their effects on central trigeminovascular neuronal responses are largely unknown. Using a validated preclinical model of acute dural-intracranial (migraine-like) head pain, using Sprague Dawley rats, we tested whether migraine preventives suppress ongoing firing of central trigeminocervical neurons, and evoked responses to cranial neurovascular activation. Flunarizine, sodium valproate, propranolol, and amitriptyline, all dose-dependently inhibited ongoing spontaneous firing of dural trigeminovascular neurons, and differentially affected neuronal responses to intracranial-dural and extracranial-cutaneous somatosensory stimulation. Lamotrigine, only effective in the treatment of migraine aura, did not affect responses. These data provide a mechanistic rationale for the clinical effects of migraine preventives in the treatment of migraine, via the modulation of dural-responsive central trigeminovascular neurons. Also, given their limited effect on peripheral dural vasdilatory responses, these data also suggest that migraine preventives specifically target central, rather than peripheral, components of trigeminal neurovascular mechanisms involved in migraine pathophysiology, to mediate their preventive action. Finally, these data further validate this preclinical model of central trigeminovascular activation to screen migraine preventives.
Collapse
Affiliation(s)
- Simon Akerman
- 1 Department of Oral and Maxillofacial Pathology, Radiology and Medicine, New York University College of Dentistry, NY, USA.,2 Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.,3 Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, USA
| | - Marcela Romero-Reyes
- 1 Department of Oral and Maxillofacial Pathology, Radiology and Medicine, New York University College of Dentistry, NY, USA.,3 Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, USA
| |
Collapse
|
16
|
Younis S, Hougaard A, Noseda R, Ashina M. Current understanding of thalamic structure and function in migraine. Cephalalgia 2018; 39:1675-1682. [PMID: 30079744 DOI: 10.1177/0333102418791595] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To review and discuss the literature on the role of thalamic structure and function in migraine. DISCUSSION The thalamus holds an important position in our understanding of allodynia, central sensitization and photophobia in migraine. Structural and functional findings suggest abnormal functional connectivity between the thalamus and various cortical regions pointing towards an altered pain processing in migraine. Pharmacological nociceptive modulation suggests that the thalamus is a potential drug target. CONCLUSION A critical role for the thalamus in migraine-related allodynia and photophobia is well established. Additionally, the thalamus is most likely involved in the dysfunctional pain modulation and processing in migraine, but further research is needed to clarify the exact clinical implications of these findings.
Collapse
Affiliation(s)
- Samaira Younis
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Hougaard
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Acute Confusional Migraine: Distinct Clinical Entity or Spectrum of Migraine Biology? Brain Sci 2018; 8:brainsci8020029. [PMID: 29414874 PMCID: PMC5836048 DOI: 10.3390/brainsci8020029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/22/2018] [Accepted: 02/01/2018] [Indexed: 01/03/2023] Open
Abstract
The goal of this review is to explore the literature reports of acute confusional migraine (ACM) including patient characteristics, migraine symptomatology, and proposed diagnostic criteria. A literature review was conducted using PubMed, Scopus and Web of Science using the terms “confusional migraine” and “confusional state in migraine”. All the relevant articles from 1970 to 2016 were included. A total of 120 patients were found in the literature. Most of the cases were seen in the pediatric population with a slight male predominance. Personal or family history of migraine was common. Most patients had a headache prior to the confusional state. In addition to confusion and agitation, some developed visual (32.5%) and/or sensory symptoms (19%) and/or speech problems (39%) either prior to or during the confusional state. Data on treatment outcomes is lacking. Patients with most common forms of migraine report attention and cognitive disturbances but awareness remains intact as opposed to patients with ACM. ACM is a distinct entity and should be included as part of the appendix of International Classification of Headache Disoders-3 beta version (ICHD-3β) criteria. Prospective studies are needed to further study this disorder and its association with other migraine forms.
Collapse
|
18
|
Liu Y, Li S, Zhang Z, Lv Z, Jiang H, Tan X, Liu F. Effects of valproic acid on sympathetic activity and left ventricularmyocardial remodelling in rats during pressure overload. Turk J Med Sci 2017; 47:1651-1660. [PMID: 29152949 DOI: 10.3906/sag-1704-142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Background/aim: Pressure overload induces cardiac remodelling and results in heart failure. Enhanced sympathetic outflow participates in the development of cardiac remodelling for the duration of pressure overload as an independent factor. Valproic acid has recently been shown to reduce neuronal injury and have antiinflammatory and antiapoptotic effects as a histone deacetylase inhibitor. We speculate that the drug plays a specific role in alleviating cardiac remodelling by inhibiting sympathetic activity. Materials and methods: Surgery of partial abdominal aortic constriction was performed on male Sprague-Dawley rats. After 4 weeks, animal models of pressure overload were validated and then valproic acid (300 mg/kg) was administrated to rats once a day for the next 4 weeks. Experimental parameters were detected 4 weeks after validation. Results: The administration of valproic acid alleviated cardiomyocyte hypertrophy, myocardial interstitial fibrosis and left ventricular diastolic dysfunction caused by partial abdominal aortic constriction. Valproic acid reduced the levels of plasma and local norepinephrine, augmented concentrations of hypothalamic gamma-aminobutyric acid, and had no side effects on the hepatic and renal function of the animals. Conclusion: These results suggest that valproic acid may be a safe and effective therapeutic strategy for the inhibition of sympathetic outflow and cardiac remodelling.
Collapse
|
19
|
Topiramate modulates trigeminal pain processing in thalamo-cortical networks in humans after single dose administration. PLoS One 2017; 12:e0184406. [PMID: 28991914 PMCID: PMC5633146 DOI: 10.1371/journal.pone.0184406] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/23/2017] [Indexed: 11/19/2022] Open
Abstract
Migraine is the sixth most common cause of disability in the world. Preventive migraine treatment is used to reduce frequency, severity and duration of attacks and therefore lightens the burden on the patients' quality of life and reduces disability. Topiramate is one of the preventive migraine treatments of proven efficacy. The mechanism of action underlying the preventive effect of topiramate in migraine remains largely unknown. Using functional magnetic resonance imaging (fMRI) we examined the central effects of a single dose of topiramate (100mg) on trigeminal pain in humans, compared to placebo (mannitol). In this prospective, within subject, randomized, placebo-controlled and double-blind study, 23 healthy participants received a standardized nociceptive trigeminal stimulation and control stimuli whilst being in the scanner. No differences in the subjective intensity ratings of the painful stimuli were observed between topiramate and placebo sessions. In contrast, topiramate significantly decreased the activity in the thalamus and other pain processing areas. Additionally, topiramate increased functional coupling between the thalamus and several brain regions such as the bilateral precuneus, posterior cingulate cortex and secondary somatosensory cortex. These data suggest that topiramate exhibits modulating effects on nociceptive processing in thalamo-cortical networks during trigeminal pain and that the preventive effect of topiramate on frequent migraine is probably mediated by an effect on thalamo-cortical networks.
Collapse
|
20
|
Puledda F, Messina R, Goadsby PJ. An update on migraine: current understanding and future directions. J Neurol 2017; 264:2031-2039. [PMID: 28321564 PMCID: PMC5587613 DOI: 10.1007/s00415-017-8434-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/20/2017] [Indexed: 01/16/2023]
Abstract
Migraine is a common brain disorder with high disability rates which involves a series of abnormal neuronal networks, interacting at different levels of the central and peripheral nervous system. An increase in the interest around migraine pathophysiology has allowed researchers to unravel certain neurophysiological mechanisms and neurotransmitter involvement culminating in the recent development of novel therapies, which might substantially change the clinical approach to migraine patients. The present review will highlight the current aspects of migraine pathophysiology, covering an understanding of the complex workings of the migraine state and the brain regions responsible for them. We will further discuss the therapeutic agents which have appeared in the most recent years for migraine care, from calcitonin gene-related peptide (CGRP) receptor antagonists, gepants; through serotonin 5-HT1F receptor agonists, ditans, and CGRP or CGRP receptor monoclonal antibodies to invasive and non-invasive neuromodulation techniques.
Collapse
Affiliation(s)
- Francesca Puledda
- Headache Group, Department of Basic and Clinical Neuroscience, King's College London, London, UK
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, UK
| | - Roberta Messina
- Headache Group, Department of Basic and Clinical Neuroscience, King's College London, London, UK
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, UK
| | - Peter J Goadsby
- Headache Group, Department of Basic and Clinical Neuroscience, King's College London, London, UK.
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, UK.
| |
Collapse
|
21
|
Increased Amplitude of Thalamocortical Low-Frequency Oscillations in Patients with Migraine. J Neurosci 2017; 36:8026-36. [PMID: 27466345 DOI: 10.1523/jneurosci.1038-16.2016] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/16/2016] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED For many years, neurobiological theories have emphasized the importance of neuronal oscillations in the emergence of brain function. At the same time, clinical studies have shown that disturbances or irregularities in brain rhythms may relate to various common neurological conditions, including migraine. Increasing evidence suggests that the CNS plays a fundamental role in the predisposition to develop different forms of headache. Here, we present human imaging data that strongly support the presence of abnormal low-frequency oscillations (LFOs) in thalamocortical networks of patients in the interictal phase of migraine. Our results show that the main source of arrhythmic activity was localized to the higher-order thalamic relays of the medial dorsal nucleus. In addition, spontaneous LFOs in the thalamus were selectively associated with the headache attack frequency, meaning that the varying amplitude of dysrhythmia could predispose patients to recurrent attacks. Rhythmic cortical feedback to the thalamus is a major factor in the amplification of thalamocortical oscillations, making it a strong candidate for influencing neuronal excitability. We further speculate that the intrinsic dynamics of thalamocortical network oscillations are crucial for early sensory processing and therefore could underlie important pathophysiological processes involved in multisensory integration. SIGNIFICANCE STATEMENT In many cases, migraine attacks are thought to begin centrally. A major obstacle to studying intrinsic brain activity has been the identification of the precise anatomical structures and functional networks that are involved in migraine. Here, we present imaging data that strongly support the presence of abnormal low-frequency oscillations in thalamocortical networks of patients in the interictal phase of migraine. This arrhythmic activity was localized to the higher-order thalamic relays of the medial dorsal nucleus and was selectively associated with headache attack frequency. Rhythmic cortical feedback to the thalamus is a major factor in the amplification of thalamocortical oscillations, making it a strong candidate for influencing neuronal excitability and higher-level processes involved in multisensory integration.
Collapse
|
22
|
García-Martín E, Martínez C, Serrador M, Alonso-Navarro H, Navacerrada F, Esguevillas G, García-Albea E, Agúndez JAG, Jiménez-Jiménez FJ. Gamma-Aminobutyric Acid (Gaba) Receptors Rho (Gabrr)
Gene Polymorphisms and Risk for Migraine. Headache 2017; 57:1118-1135. [DOI: 10.1111/head.13122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Elena García-Martín
- Department of Pharmacology; University of Extremadura; Cáceres Spain
- Red de Investigación de reacciones adversas a alergenos y fármacos; Instituto de Salud Carlos III; Madrid Spain
- AMGenomics, Edificio Tajo; Avda. de la Universidad s/n Cáceres Spain
| | - Carmen Martínez
- Red de Investigación de reacciones adversas a alergenos y fármacos; Instituto de Salud Carlos III; Madrid Spain
- Department of Pharmacology; University of Extremadura; Badajoz Spain
| | - Mercedes Serrador
- Department of Family Medicine; Hospital “Príncipe de Asturias,”, Universidad de Alcalá; Alcalá de Henares Madrid Spain
| | - Hortensia Alonso-Navarro
- Section of Neurology; Hospital Universitario del Sureste; Arganda del Rey Madrid Spain
- Department of Medicine-Neurology; Hospital “Príncipe de Asturias,” Universidad de Alcalá; Alcalá de Henares Madrid Spain
| | - Francisco Navacerrada
- Section of Neurology; Hospital Universitario del Sureste; Arganda del Rey Madrid Spain
- Service of Neurology; Hospital “Ramón y Cajal,”, Universidad de Alcalá; Madrid Spain
| | - Gara Esguevillas
- Department of Pharmacology; University of Extremadura; Cáceres Spain
| | - Esteban García-Albea
- Department of Medicine-Neurology; Hospital “Príncipe de Asturias,” Universidad de Alcalá; Alcalá de Henares Madrid Spain
| | - José A. G. Agúndez
- Department of Pharmacology; University of Extremadura; Cáceres Spain
- Red de Investigación de reacciones adversas a alergenos y fármacos; Instituto de Salud Carlos III; Madrid Spain
- AMGenomics, Edificio Tajo; Avda. de la Universidad s/n Cáceres Spain
| | - Félix Javier Jiménez-Jiménez
- Section of Neurology; Hospital Universitario del Sureste; Arganda del Rey Madrid Spain
- Department of Medicine-Neurology; Hospital “Príncipe de Asturias,” Universidad de Alcalá; Alcalá de Henares Madrid Spain
| |
Collapse
|
23
|
Akerman S, Romero-Reyes M, Holland PR. Current and novel insights into the neurophysiology of migraine and its implications for therapeutics. Pharmacol Ther 2017; 172:151-170. [PMID: 27919795 DOI: 10.1016/j.pharmthera.2016.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Migraine headache and its associated symptoms have plagued humans for two millennia. It is manifest throughout the world, and affects more than 1/6 of the global population. It is the most common brain disorder, and is characterized by moderate to severe unilateral headache that is accompanied by vomiting, nausea, photophobia, phonophobia, and other hypersensitive symptoms of the senses. While there is still a clear lack of understanding of its neurophysiology, it is beginning to be understood, and it seems to suggest migraine is a disorder of brain sensory processing, characterized by a generalized neuronal hyperexcitability. The complex symptomatology of migraine indicates that multiple neuronal systems are involved, including brainstem and diencephalic systems, which function abnormally, resulting in premonitory symptoms, ultimately evolving to affect the dural trigeminovascular system, and the pain phase of migraine. The migraineur also seems to be particularly sensitive to fluctuations in homeostasis, such as sleep, feeding and stress, reflecting the abnormality of functioning in these brainstem and diencephalic systems. Implications for therapeutic development have grown out of our understanding of migraine neurophysiology, leading to major drug classes, such as triptans, calcitonin gene-related peptide receptor antagonists, and 5-HT1F receptor agonists, as well as neuromodulatory approaches, with the promise of more to come. The present review will discuss the current understanding of the neurophysiology of migraine, particularly migraine headache, and novel insights into the complex neural networks responsible for associated neurological symptoms, and how interaction of these networks with migraine pain pathways has implications for the development of novel therapeutics.
Collapse
Affiliation(s)
- Simon Akerman
- Department of Oral and Maxillofacial Pathology, Radiology and Medicine, New York University College of Dentistry, New York, NY 10010, USA.
| | - Marcela Romero-Reyes
- Department of Oral and Maxillofacial Pathology, Radiology and Medicine, New York University College of Dentistry, New York, NY 10010, USA
| | - Philip R Holland
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
24
|
Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol Rev 2017; 97:553-622. [PMID: 28179394 PMCID: PMC5539409 DOI: 10.1152/physrev.00034.2015] [Citation(s) in RCA: 1071] [Impact Index Per Article: 153.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plaguing humans for more than two millennia, manifest on every continent studied, and with more than one billion patients having an attack in any year, migraine stands as the sixth most common cause of disability on the planet. The pathophysiology of migraine has emerged from a historical consideration of the "humors" through mid-20th century distraction of the now defunct Vascular Theory to a clear place as a neurological disorder. It could be said there are three questions: why, how, and when? Why: migraine is largely accepted to be an inherited tendency for the brain to lose control of its inputs. How: the now classical trigeminal durovascular afferent pathway has been explored in laboratory and clinic; interrogated with immunohistochemistry to functional brain imaging to offer a roadmap of the attack. When: migraine attacks emerge due to a disorder of brain sensory processing that itself likely cycles, influenced by genetics and the environment. In the first, premonitory, phase that precedes headache, brain stem and diencephalic systems modulating afferent signals, light-photophobia or sound-phonophobia, begin to dysfunction and eventually to evolve to the pain phase and with time the resolution or postdromal phase. Understanding the biology of migraine through careful bench-based research has led to major classes of therapeutics being identified: triptans, serotonin 5-HT1B/1D receptor agonists; gepants, calcitonin gene-related peptide (CGRP) receptor antagonists; ditans, 5-HT1F receptor agonists, CGRP mechanisms monoclonal antibodies; and glurants, mGlu5 modulators; with the promise of more to come. Investment in understanding migraine has been very successful and leaves us at a new dawn, able to transform its impact on a global scale, as well as understand fundamental aspects of human biology.
Collapse
Affiliation(s)
- Peter J Goadsby
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Philip R Holland
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Margarida Martins-Oliveira
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Jan Hoffmann
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Christoph Schankin
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Simon Akerman
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
25
|
Kaufmann D, Bates EA, Yagen B, Bialer M, Saunders GH, Wilcox K, White HS, Brennan KC. sec-Butylpropylacetamide (SPD) has antimigraine properties. Cephalalgia 2016; 36:924-35. [PMID: 26568161 PMCID: PMC4887413 DOI: 10.1177/0333102415612773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 08/30/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Though migraine is disabling and affects 12%-15% of the population, there are few drugs that have been developed specifically for migraine prevention. Valproic acid (VPA) is a broad-spectrum antiepileptic drug (AED) that is also used for migraine prophylaxis, but its clinical use is limited by its side effect profile. sec-Butylpropylacetamide (SPD) is a novel VPA derivative, designed to be more potent and tolerable than VPA, that has shown efficacy in animal seizure and pain models. METHODS We evaluated SPD's antimigraine potential in the cortical spreading depression (CSD) and nitroglycerin (NTG) models of migraine. To evaluate SPD's mechanism of action, we performed whole-cell recordings on cultured cortical neurons and neuroblastoma cells. RESULTS In the CSD model, the SPD-treated group showed a significantly lower median number of CSDs compared to controls. In the NTG-induced mechanical allodynia model, SPD dose-dependently reduced mechanical sensitivity compared to controls. SPD showed both a significant potentiation of GABA-mediated currents and a smaller but significant decrease in NMDA currents in cultured cortical neurons. Kainic acid-evoked currents and voltage-dependent sodium channel currents were not changed by SPD. CONCLUSIONS These results demonstrate SPD's potential as a promising novel antimigraine compound, and suggest a GABAergic mechanism of action.
Collapse
Affiliation(s)
- Dan Kaufmann
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, University of Utah, USA Department of Neurology, University of Utah, USA
| | - Emily A Bates
- Department of Pediatrics, University of Colorado Denver School of Medicine, USA
| | - Boris Yagen
- Institute for Drug Research, School of Pharmacy, Hebrew University of Jerusalem, Israel David R. Bloom Center for Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Meir Bialer
- Institute for Drug Research, School of Pharmacy, Hebrew University of Jerusalem, Israel David R. Bloom Center for Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Gerald H Saunders
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, University of Utah, USA
| | - Karen Wilcox
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, University of Utah, USA
| | - H Steve White
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, University of Utah, USA
| | - K C Brennan
- Department of Neurology, University of Utah, USA
| |
Collapse
|
26
|
Abstract
Chronic migraine has a great detrimental influence on a patient's life, with a severe impact on socioeconomic functioning and quality of life. Chronic migraine affects 1-2% of the general population, and about 8% of patients with migraine; it usually develops from episodic migraine at an annual conversion rate of about 3%. The chronification is reversible: about 26% of patients with chronic migraine go into remission within 2 years of chronification. The most important modifiable risk factors for chronic migraine include overuse of acute migraine medication, ineffective acute treatment, obesity, depression and stressful life events. Moreover, age, female sex and low educational status increase the risk of chronic migraine. The pathophysiology of migraine chronification can be understood as a threshold problem: certain predisposing factors, combined with frequent headache pain, lower the threshold of migraine attacks, thereby increasing the risk of chronic migraine. Treatment options include oral medications, nerve blockade with local anaesthetics or corticoids, and neuromodulation. Well-defined diagnostic criteria are crucial for the identification of chronic migraine. The International Headache Society classification of chronic migraine was recently updated, and now allows co-diagnosis of chronic migraine and medication overuse headache. This Review provides an up-to-date overview of the classification of chronic migraine, basic mechanisms and risk factors of migraine chronification, and the currently established treatment options.
Collapse
Affiliation(s)
- Arne May
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany
| | - Laura H Schulte
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany
| |
Collapse
|
27
|
Andreou AP, Holland PR, Akerman S, Summ O, Fredrick J, Goadsby PJ. Transcranial magnetic stimulation and potential cortical and trigeminothalamic mechanisms in migraine. Brain 2016; 139:2002-14. [PMID: 27246325 PMCID: PMC4939700 DOI: 10.1093/brain/aww118] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/27/2016] [Accepted: 03/27/2016] [Indexed: 01/03/2023] Open
Abstract
A single pulse of transcranial magnetic stimulation has been shown to be effective for the acute treatment of migraine with and without aura. Here we aimed to investigate the potential mechanisms of action of transcranial magnetic stimulation, using a transcortical approach, in preclinical migraine models. We tested the susceptibility of cortical spreading depression, the experimental correlate of migraine aura, and further evaluated the response of spontaneous and evoked trigeminovascular activity of second order trigemontothalamic and third order thalamocortical neurons in rats. Single pulse transcranial magnetic stimulation significantly inhibited both mechanical and chemically-induced cortical spreading depression when administered immediately post-induction in rats, but not when administered preinduction, and when controlled by a sham stimulation. Additionally transcranial magnetic stimulation significantly inhibited the spontaneous and evoked firing rate of third order thalamocortical projection neurons, but not second order neurons in the trigeminocervical complex, suggesting a potential modulatory effect that may underlie its utility in migraine. In gyrencephalic cat cortices, when administered post-cortical spreading depression, transcranial magnetic stimulation blocked the propagation of cortical spreading depression in two of eight animals. These results are the first to demonstrate that cortical spreading depression can be blocked in vivo using single pulse transcranial magnetic stimulation and further highlight a novel thalamocortical modulatory capacity that may explain the efficacy of magnetic stimulation in the treatment of migraine with and without aura.
Collapse
Affiliation(s)
- Anna P Andreou
- 1 Department of Neurology, University of California, San Francisco, San Francisco CA, USA 2 Wolfson CARD, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
| | - Philip R Holland
- 3 Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Simon Akerman
- 1 Department of Neurology, University of California, San Francisco, San Francisco CA, USA
| | - Oliver Summ
- 1 Department of Neurology, University of California, San Francisco, San Francisco CA, USA
| | | | - Peter J Goadsby
- 1 Department of Neurology, University of California, San Francisco, San Francisco CA, USA 3 Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
28
|
Andreou AP, Holland PR, Lasalandra MP, Goadsby PJ. Modulation of nociceptive dural input to the trigeminocervical complex through GluK1 kainate receptors. Pain 2015; 156:439-450. [PMID: 25679470 DOI: 10.1097/01.j.pain.0000460325.25762.c0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Migraine is a common and disabling neurologic disorder, with important psychiatric comorbidities. Its pathophysiology involves activation of neurons in the trigeminocervical complex (TCC). Kainate receptors carrying the glutamate receptor subunit 5 (GluK1) are present in key brain areas involved in migraine pathophysiology. To study the influence of kainate receptors on trigeminovascular neurotransmission, we determined the presence of GluK1 receptors within the trigeminal ganglion and TCC with immunohistochemistry. We performed in vivo electrophysiologic recordings from TCC neurons and investigated whether local or systemic application of GluK1 receptor antagonists modulated trigeminovascular transmission. Microiontophoretic application of a selective GluK1 receptor antagonist, but not of a nonspecific ionotropic glutamate receptor antagonist, markedly attenuated cell firing in a subpopulation of neurons activated in response to dural stimulation, consistent with selective inhibition of postsynaptic GluK1 receptor-evoked firing seen in all recorded neurons. In contrast, trigeminovascular activation was significantly facilitated in a different neuronal population. The clinically active kainate receptor antagonist LY466195 attenuated trigeminovascular activation in all neurons. In addition, LY466195 demonstrated an N-methyl-d-aspartate receptor-mediated effect. This study demonstrates a differential role of GluK1 receptors in the TCC, antagonism of which can inhibit trigeminovascular activation through postsynaptic mechanisms. Furthermore, the data suggest a novel, possibly presynaptic, modulatory role of trigeminocervical kainate receptors in vivo. Differential activation of kainate receptors suggests unique roles for this receptor in pro- and antinociceptive mechanisms in migraine pathophysiology.
Collapse
Affiliation(s)
- Anna P Andreou
- Headache Group, Department of Neurology, University of California, San Francisco, CA, USA Headache Research-Section of Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK, Headache Group, Basic and Clinical Neurosciences, King's College London, London, United Kingdom
| | | | | | | |
Collapse
|
29
|
He-min Z, Guo-Rong B, Qiu H, Xiang L, Suli L. Changes in plasma PPARs levels in migraine patients. Med Sci Monit 2015; 21:735-9. [PMID: 25758678 PMCID: PMC4365761 DOI: 10.12659/msm.893272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background The aim of this study was to observe the change in plasma PPARs (peroxisome proliferator-activated receptors) level during various periods and in different subtypes in migraine patients. Material/Methods We divided 227 patients with migraine into 2 main groups: the attack period group (n=98) and the attack-free period group (n=129). Patients were further divided into 4 subgroups according to whether they had aura symptoms. The control group consisted of 100 healthy subjects. We collected the clinical data of patients and measured the plasma levels of PPARs using enzyme-linked immunoassay (ELISA). We used SPSS software for statistical analysis. Results We found no significant difference in age, BMI, blood pressure, or blood lipid level among migraine patients during the headache attack period and during the headache-free period compared with the control group. The PPARα and PPARβ/δ levels during the headache attack period were significantly higher than during the headache free period and in healthy controls. The PPARγ levels during the headache attack period were significantly lower than those during the headache-free period and in the healthy control group. The PPARs levels during the headache attack period were significantly different from those during the headache-free period, regardless of presence or absence of aura. The PPARs levels during the headache-free period were not significantly different from those of the healthy control group. The level of PPARs has no significant differences between migraine with aura group and without aura group, regardless of whether headache attack. Conclusions PPARs involved in the pathogenesis of migraine. Presence of absence of aura had no obvious effect on PPARs level.
Collapse
Affiliation(s)
- Zhang He-min
- Department of Neurology, Sheng Jing Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Bi Guo-Rong
- Department of Neurology, Sheng Jing Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - He Qiu
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Lin Xiang
- Department of Neurology, Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Liu Suli
- Department of Neurology, Zhu Madian Center Hospital, Zhu Madian, Henan, China (mainland)
| |
Collapse
|
30
|
|
31
|
Tepe N, Filiz A, Dilekoz E, Akcali D, Sara Y, Charles A, Bolay H. The thalamic reticular nucleus is activated by cortical spreading depression in freely moving rats: prevention by acute valproate administration. Eur J Neurosci 2014; 41:120-8. [DOI: 10.1111/ejn.12753] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/01/2014] [Accepted: 09/15/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Nermin Tepe
- Department of Neurology & Algology; Gazi University Faculty of Medicine; Besevler 06510 Ankara Turkey
- Department of Neurology, Balıkesir University; Balıkesir Turkey
| | - Aslı Filiz
- Department of Neurology & Algology; Gazi University Faculty of Medicine; Besevler 06510 Ankara Turkey
| | - Ergin Dilekoz
- Department of Medical Pharmacology; Gazi University Faculty of Medicine; Besevler Ankara Turkey
| | - Didem Akcali
- Department of Anaesthesiology & Algology; Gazi University Faculty of Medicine; Besevler Ankara Turkey
- Neuropsychiatry Centre; Gazi University; Besevler 06510 Ankara Turkey
| | - Yildirim Sara
- Department of Medical Pharmacology; Hacettepe University Faculty of Medicine; Sihhiye Ankara Turkey
| | - Andrew Charles
- Department of Neurology; David Geffen School of Medicine; University of California; Los Angeles; CA, USA
| | - Hayrunnisa Bolay
- Department of Neurology & Algology; Gazi University Faculty of Medicine; Besevler 06510 Ankara Turkey
- Neuropsychiatry Centre; Gazi University; Besevler 06510 Ankara Turkey
| |
Collapse
|
32
|
Abstract
OBJECTIVE The objective of the current article is to review the shared pathophysiological mechanisms which may underlie the clinical association between headaches and sleep disorders. BACKGROUND The association between sleep and headache is well documented in terms of clinical phenotypes. Disrupted sleep-wake patterns appear to predispose individuals to headache attacks and increase the risk of chronification, while sleep is one of the longest established abortive strategies. In agreement, narcoleptic patients show an increased prevalence of migraine compared to the general population and specific familial sleep disorders have been identified to be comorbid with migraine with aura. CONCLUSION The pathophysiology and pharmacology of headache and sleep disorders involves an array of neural networks which likely underlie their shared clinical association. While it is difficult to differentiate between cause and effect, or simply a spurious relationship the striking brainstem, hypothalamic and thalamic convergence would suggest a bidirectional influence.
Collapse
Affiliation(s)
- Philip R Holland
- Department of Clinical Neuroscience, Institute of Psychiatry, King's College London, UK
| |
Collapse
|
33
|
Sokolov AY, Lyubashina OA, Amelin AV, Panteleev SS. The role of gamma-aminobutyric acid in migraine pathogenesis. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414020093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Differential trigeminovascular nociceptive responses in the thalamus in the familial hemiplegic migraine 1 knock-in mouse: A Fos protein study. Neurobiol Dis 2014; 64:1-7. [DOI: 10.1016/j.nbd.2013.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 11/15/2013] [Accepted: 12/08/2013] [Indexed: 11/16/2022] Open
|
35
|
Granziera C, Daducci A, Romascano D, Roche A, Helms G, Krueger G, Hadjikhani N. Structural abnormalities in the thalamus of migraineurs with aura: a multiparametric study at 3 T. Hum Brain Mapp 2014; 35:1461-8. [PMID: 23450507 PMCID: PMC6869319 DOI: 10.1002/hbm.22266] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 11/27/2012] [Accepted: 01/03/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The thalamus exerts a pivotal role in pain processing and cortical excitability control, and migraine is characterized by repeated pain attacks and abnormal cortical habituation to excitatory stimuli. This work aimed at studying the microstructure of the thalamus in migraine patients using an innovative multiparametric approach at high-field magnetic resonance imaging (MRI). DESIGN We examined 37 migraineurs (22 without aura, MWoA, and 15 with aura, MWA) as well as 20 healthy controls (HC) in a 3-T MRI equipped with a 32-channel coil. We acquired whole-brain T1 relaxation maps and computed magnetization transfer ratio (MTR), generalized fractional anisotropy, and T2* maps to probe microstructural and connectivity integrity and to assess iron deposition. We also correlated the obtained parametric values with the average monthly frequency of migraine attacks and disease duration. RESULTS T1 relaxation time was significantly shorter in the thalamus of MWA patients compared with MWoA (P < 0.001) and HC (P ≤ 0.01); in addition, MTR was higher and T2* relaxation time was shorter in MWA than in MWoA patients (P < 0.05, respectively). These data reveal broad microstructural alterations in the thalamus of MWA patients compared with MWoA and HC, suggesting increased iron deposition and myelin content/cellularity. However, MWA and MWoA patients did not show any differences in the thalamic nucleus involved in pain processing in migraine. CONCLUSIONS There are broad microstructural alterations in the thalamus of MWA patients that may underlie abnormal cortical excitability control leading to cortical spreading depression and visual aura.
Collapse
Affiliation(s)
- Cristina Granziera
- GRHAD, BMI, SV, EPFL, Lausanne, Switzerland; Laboratoire de Recherche en Neuroimagerie and Neuroimmunology Unit, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Advanced Clinical Imaging Technology Group, Siemens-CIBM, EPFL, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
36
|
Sokolov AY, Lyubashina OA, Sivachenko IB, Panteleev SS. Effects of intravenous metamizole on ongoing and evoked activity of dura-sensitive thalamic neurons in rats. Eur J Pharmacol 2014; 731:58-64. [PMID: 24650732 DOI: 10.1016/j.ejphar.2014.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/04/2014] [Accepted: 03/10/2014] [Indexed: 01/11/2023]
Abstract
Migraine and tension-type headache (TTH) are the most common forms of primary headaches. A general key mechanism underlying development of both the diseases is the trigeminal system activation associated with the ascending nociceptive transmission via the trigemino-thalamo-cortical pathway. The ventroposteromedial (VPM) nucleus is a key thalamic structure, receiving afferent inflow from the craniofacial region; it holds the third-order neurons responsible for conveying sensory information from the extra- and intracranial nociceptors to the cortex. The VPM is currently seen as a therapeutic target for various antimigraine medications, which is shown to reduce the VPM neuronal excitability. A non-opioid analgesic metamizole is widely used in some countries for acute treatment of migraine or TTH. However, the precise mechanisms underlying anticephalgic action of metamizole remain unclear. The objective of our study performed in the rat model of trigemino-durovascular nociception was to evaluate the effects of intravenously administered metamizole on ongoing and evoked firing of the dura-sensitive VPM neurons. The experiments were carried out on rats under urethane-chloralose anesthesia. Cumulative administration of metamizole (thrice-repeated intravenous infusion of 150 mg/kg performed 30 min apart) in 56% of cases produced a suppression of both the ongoing activity of the thalamic VPM neurons and their responses to dural electrical stimulation. Although the inhibitory effect was prevailing, a number of VPM neurons were indifferent to the administration of metamizole. These data suggest that one of the main components of neural mechanism underlying anticephalgic action of metamizole is suppression of the thalamo-cortical nociceptive transmission associated with trigemino-vascular activation.
Collapse
Affiliation(s)
- Alexey Y Sokolov
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Nab. Makarova, St. Petersburg 199034, Russia; Department of Neuropharmacology, Valdman Institute of Pharmacology, First St. Petersburg Pavlov State Medical University, 6/8 Lev Tolstoy Street, St. Petersburg 197022, Russia.
| | - Olga A Lyubashina
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Nab. Makarova, St. Petersburg 199034, Russia; Department of Neuropharmacology, Valdman Institute of Pharmacology, First St. Petersburg Pavlov State Medical University, 6/8 Lev Tolstoy Street, St. Petersburg 197022, Russia.
| | - Ivan B Sivachenko
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Nab. Makarova, St. Petersburg 199034, Russia.
| | - Sergey S Panteleev
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Nab. Makarova, St. Petersburg 199034, Russia; Department of Neuropharmacology, Valdman Institute of Pharmacology, First St. Petersburg Pavlov State Medical University, 6/8 Lev Tolstoy Street, St. Petersburg 197022, Russia.
| |
Collapse
|
37
|
McCarson KE, Enna SJ. GABA pharmacology: the search for analgesics. Neurochem Res 2014; 39:1948-63. [PMID: 24532294 DOI: 10.1007/s11064-014-1254-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 12/28/2022]
Abstract
Decades of research have been devoted to defining the role of GABAergic transmission in nociceptive processing. Much of this work was performed using rigid, orthosteric GABA analogs created by Povl Krogsgaard-Larsen and his associates. A relationship between GABA and pain is suggested by the anatomical distribution of GABA receptors and the ability of some GABA agonists to alter nociceptive responsiveness. Outlined in this report are data supporting this proposition, with particular emphasis on the anatomical localization and function of GABA-containing neurons and the molecular and pharmacological properties of GABAA and GABAB receptor subtypes. Reference is made to changes in overall GABAergic tone, GABA receptor expression and activity as a function of the duration and intensity of a painful stimulus or exposure to GABAergic agents. Evidence is presented that the plasticity of this receptor system may be responsible for the variability in the antinociceptive effectiveness of compounds that influence GABA transmission. These findings demonstrate that at least some types of persistent pain are associated with a regionally selective decline in GABAergic tone, highlighting the need for agents that enhance GABA activity in the affected regions without compromising GABA function over the long-term. As subtype selective positive allosteric modulators may accomplish these goals, such compounds might represent a new class of analgesic drugs.
Collapse
Affiliation(s)
- Kenneth E McCarson
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 1018, Kansas City, KS, 66160, USA
| | | |
Collapse
|
38
|
Hoffmann J, Akerman S, Goadsby PJ. Efficacy and mechanism of anticonvulsant drugs in migraine. Expert Rev Clin Pharmacol 2014; 7:191-201. [PMID: 24494792 DOI: 10.1586/17512433.2014.885835] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anticonvulsants represent one of the main substance classes used for the preventive treatment of migraine. Efficacy has been demonstrated in randomized placebo-controlled trials for topiramate and valproic acid including divalproex sodium. In the case of topiramate, efficacy has recently been proven for chronic migraine and even medication overuse headache, questioning the established concept of medication withdrawal. However, preventive treatment with anticonvulsants is frequently hampered by side effects that occasionally require treatment discontinuation. In addition, these data indicate that some anticonvulsant drugs are effective in migraine, while a number are clearly not useful. Effective anticonvulsants, such as topiramate and valproate, target nociceptive trigeminovascular and trigeminothalamic dural pathways or mechanisms involved in cortical spreading depression. Dissecting out how the anticonvulsants that do not work differ mechanistically from those that do will almost certainly provide avenues through which one can develop new treatments to bring to patients with migraine.
Collapse
Affiliation(s)
- Jan Hoffmann
- Headache Group-Department of Neurology, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW The current review gives an overview about recent advances in neuroimaging studies with specific emphasis on pharmacological modulation of pain and headache. Further, we want to highlight how imaging methods have changed our understanding of chronic pain and discuss how pharmacological MRI could lead to new insights into underlying mechanisms of headache and pain. RECENT FINDINGS Several studies from different imaging laboratories have highlighted the outstanding role of imaging in getting a deeper insight regarding the central mechanisms of drugs. Neuroimaging techniques start to unravel how analgesic drugs, antidepressants or NSAIDs act on pain perception and in particular on central pain processes. Furthermore, the studies included in this review show how context dependent drugs act and how differently they reveal their action in the human brain. SUMMARY Imaging techniques give us the opportunity to gain a better understanding of drug processes in the central nervous system and help to understand where drugs reveal their therapeutic effect. While some substances work on the emotional-affective component of pain, others modulate sensory-discriminative pain pathways. Especially in the field of headache research, still a lot has to be done to understand how preventatives and acute medication modulate the human brain. Future studies should also replicate and extend recent findings.
Collapse
|
40
|
Abstract
Migraine is number seven in WHO's list of all diseases causing disability and the third most costly neurological disorder in Europe. Acute attacks are treatable by highly selective drugs such as the triptans but there is still a huge unmet therapeutic need. Unfortunately, drug development for headache has almost come to a standstill partly because of a lack of valid animal models. Here we review previous models with emphasis on optimal characteristics of a future model. In addition to selection of animal species, the method of induction of migraine-like changes and the method of recording responses elicited by such measures are crucial. The most naturalistic way of inducing attacks is by infusion of endogenous signaling molecules that are known to cause migraine in patients. The most valid response is recording of neural activity in the trigeminal system. The most useful headache related responses are likely to be behavioral, allowing multiple experiments in each individual animal. Distinction is made between acute and prophylactic models and how to validate each of them. Modern insight into neurobiological mechanisms of migraine is so good that it is only a question of resources and efforts that determine when valid models with ability to predict efficacy in migraine will be available.
Collapse
|
41
|
Coppola G, Tinelli E, Lepre C, Iacovelli E, Di Lorenzo C, Di Lorenzo G, Serrao M, Pauri F, Fiermonte G, Bianco F, Pierelli F. Dynamic changes in thalamic microstructure of migraine without aura patients: a diffusion tensor magnetic resonance imaging study. Eur J Neurol 2013; 21:287-e13. [DOI: 10.1111/ene.12296] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/23/2013] [Indexed: 12/12/2022]
Affiliation(s)
- G. Coppola
- Department of Neurophysiology of Vision and Neurophthalmology; G.B. Bietti Foundation IRCCS; Rome Italy
| | - E. Tinelli
- Neuroradiology Section; Department of Neurology and Psychiatry; ‘Sapienza’ University of Rome; Rome Italy
| | - C. Lepre
- Neurology Section; Department of Medico-Surgical Sciences and Biotechnologies; ‘Sapienza’ University of Rome; Rome Italy
| | - E. Iacovelli
- Neurology Section; Department of Medico-Surgical Sciences and Biotechnologies; ‘Sapienza’ University of Rome; Rome Italy
| | | | - G. Di Lorenzo
- Laboratory of Psychophysiology; Psychiatric Clinic; Department of Systems Medicine; University of Rome ‘Tor Vergata’; Rome Italy
| | - M. Serrao
- Department of Medico-Surgical Sciences and Biotechnologies; ‘Sapienza’ University of Rome Polo Pontino; Latina Italy
| | - F. Pauri
- Neurology Section; Department of Medico-Surgical Sciences and Biotechnologies; ‘Sapienza’ University of Rome; Rome Italy
| | - G. Fiermonte
- Neurology Section; Department of Medico-Surgical Sciences and Biotechnologies; ‘Sapienza’ University of Rome; Rome Italy
| | - F. Bianco
- Neurology Section; Department of Medico-Surgical Sciences and Biotechnologies; ‘Sapienza’ University of Rome; Rome Italy
| | | |
Collapse
|
42
|
Quintas M, Neto JL, Pereira-Monteiro J, Barros J, Sequeiros J, Sousa A, Alonso I, Lemos C. Interaction between γ-aminobutyric acid A receptor genes: new evidence in migraine susceptibility. PLoS One 2013; 8:e74087. [PMID: 24040174 PMCID: PMC3764027 DOI: 10.1371/journal.pone.0074087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/26/2013] [Indexed: 01/07/2023] Open
Abstract
Migraine is a common neurological episodic disorder with a female-to-male prevalence 3- to 4-fold higher, suggesting a possible X-linked genetic component. Our aims were to assess the role of common variants of gamma-aminobutyric acid A receptor (GABAAR) genes, located in the X-chromosome, in migraine susceptibility and the possible interaction between them. An association study with 188 unrelated cases and 286 migraine-free controls age- and ethnic matched was performed. Twenty-three tagging SNPs were selected in three genes (GABRE, GABRA3 and GABRQ). Allelic, genotypic and haplotypic frequencies were compared between cases and controls. We also focused on gene-gene interactions. The AT genotype of rs3810651 of GABRQ gene was associated with an increased risk for migraine (OR: 4.07; 95% CI: 1.71-9.73, p=0.002), while the CT genotype of rs3902802 (OR: 0.41; 95% CI: 0.21-0.78, p=0.006) and GA genotype of rs2131190 of GABRA3 gene (OR: 0.53; 95% CI: 0.32-0.88, p=0.013) seem to be protective factors. All associations were found in the female group and maintained significance after Bonferroni correction. We also found three nominal associations in the allelic analyses although there were no significant results in the haplotypic analyses. Strikingly, we found strong interactions between six SNPs encoding for different subunits of GABAAR, all significant after permutation correction. To our knowledge, we show for the first time, the putative involvement of polymorphisms in GABAAR genes in migraine susceptibility and more importantly we unraveled a role for novel gene-gene interactions opening new perspectives for the development of more effective treatments.
Collapse
Affiliation(s)
- Marlene Quintas
- UnIGENe IBMC – Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal
| | - João Luís Neto
- UnIGENe IBMC – Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - José Pereira-Monteiro
- UnIGENe IBMC – Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Serviço de Neurologia, CHP-HSA, Centro Hospitalar do Porto, Hospital de Santo António. Abel Salazar, Porto, Portugal
| | - José Barros
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Serviço de Neurologia, CHP-HSA, Centro Hospitalar do Porto, Hospital de Santo António. Abel Salazar, Porto, Portugal
| | - Jorge Sequeiros
- UnIGENe IBMC – Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Alda Sousa
- UnIGENe IBMC – Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Isabel Alonso
- UnIGENe IBMC – Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Carolina Lemos
- UnIGENe IBMC – Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
43
|
Labruijere S, Ibrahimi K, Chan KY, MaassenVanDenBrink A. Discovery techniques for calcitonin gene-related peptide receptor antagonists for potential antimigraine therapies. Expert Opin Drug Discov 2013; 8:1309-23. [DOI: 10.1517/17460441.2013.826644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Sokolov AY, Lyubashina OA, Sivachenko IB, Berkovich RR, Panteleev SS. Intravenous valproate inhibits ongoing and evoked activity of dura-sensitive thalamic neurons in rats. Eur J Pharmacol 2013; 715:204-11. [PMID: 23732564 DOI: 10.1016/j.ejphar.2013.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/02/2013] [Accepted: 05/20/2013] [Indexed: 01/24/2023]
Abstract
Valproate is widely used for migraine treatments, although precise mechanisms of its anticephalgic action are poorly understood. Migraine attacks are thought to occur due to trigemino-vascular system activation, which in turn, stimulates nociceptive transmission in trigemino-thalamo-cortical pathway. The ventroposteromedial (VPM) nucleus of the thalamus is considered to play a prominent role in neurobiology of headaches by serving as the highest subcortical relay for conveying nociceptive information from intra- and extra-cranial structures to the cortex. While it has been demonstrated that valproate can modulate trigemino-vascular nociceptive neurotransmission in the VPM, its effects have been investigated using only intrathalamic ejection of the compound in pentobarbitone sodium anesthetized rats. The objective of our study was to evaluate the effects of intravenously administered valproate on both ongoing firing of the VPM neurons and their activity induced by electrical stimulation of the dura mater. The experiments were performed on rats under nonbarbiturate anesthesia. To define the dose-dependent properties and longevity of the studied effects of valproate, two distinguished dosing regiments were used: bolus (single infusion at a dose of 300 mg/kg) and cumulative (thrice-repeated administration of 100mg/kg performed 30 min apart). Intravenous administration of valproate produced the dose-dependent suppression of both the ongoing activity of the thalamic VPM neurons and their responses to electrical stimulation of the dura mater. This effect was fast-developing (within 5 min) and short-lasting (no longer than 30 min). These data suggest that intravenous administration of valproate could produce a reduction of the thalamo-cortical nociceptive transmission associated with trigemino-vascular activation.
Collapse
Affiliation(s)
- Alexey Y Sokolov
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Naberezhnaya Makarova, Saint Petersburg 199034, Russia.
| | | | | | | | | |
Collapse
|
45
|
Neuronal correlates of impaired habituation in response to repeated trigemino-nociceptive but not to olfactory input in migraineurs: An fMRI study. Cephalalgia 2012; 33:256-65. [DOI: 10.1177/0333102412470215] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Introduction: Using functional magnetic resonance imaging (fMRI), we aimed to explore the habituation behaviour to trigemino-nociceptive as well as olfactory stimuli in migraine patients. We exclusively focussed on intrasessional behavioural rating patterns and the related blood oxygen level dependent (BOLD) signal changes. Findings: We observed that groups significantly differ in the time course of pain intensity ratings during the stimulation session: whereas interictal migraineurs sensitized (increasing pain ratings), control subjects habituated (decreasing pain ratings). Pain ratings of ictal patients remained unchanged. This behaviour is accompanied by a similar time course of neuronal activity in the bilateral anterior insula, in the middle cingulate cortex and in the thalamus. In these areas, the brain activity increased in migraineurs but decreased in the control group during the session. In contrast to these findings, the rating patterns for the olfactory stimuli (rose odour) did not differ between patients and controls and a gradual decrease of perceived stimulus intensity was found in all three groups. This stimulus specific response may occur because the olfactory system is the only sensory system not passing the thalamus. Conclusion: Our data suggest that impaired habituation in functional brain systems in migraine is fundamental only to specific modalities including the trigemino-nociceptive, but, at least, excluding the olfactory system. Our findings further suggest that there is no single neuronal modulator responsible for the altered rating pattern in migraineurs.
Collapse
|
46
|
Diener HC, Dodick DW, Goadsby PJ, Lipton RB, Olesen J, Silberstein SD. Chronic migraine—classification, characteristics and treatment. Nat Rev Neurol 2012; 8:162-71. [DOI: 10.1038/nrneurol.2012.13] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Cooke JE, Mathers DA, Puil E. R-Isovaline: a subtype-specific agonist at GABA(B)-receptors? Neuroscience 2011; 201:85-95. [PMID: 22079439 DOI: 10.1016/j.neuroscience.2011.10.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 02/02/2023]
Abstract
The R-enantiomer of isovaline, an analgesic amino acid, has a chemical structure similar to glycine and GABA. Although its actions on thalamic neurons are strychnine-resistant and independent of the Cl(-) gradient, R-isovaline increases membrane conductance for K(+). The purpose of this study was to determine if R-isovaline activated metabotropic GABA(B) receptors. We used whole-cell voltage-clamp recordings to characterize the effects of R-isovaline applied by bath perfusion and local ejection from a micropipette to thalamic neurons in 250 μm thick slices of rat brain. The immunocytochemical methods that we employed to visualize GABA(B1) and GABA(B2) receptor subunits showed extensive staining for both subunits in ventrobasal nuclei, which were the recording sites. Bath or local application of R-isovaline caused a slowly developing increase in conductance and outward rectification in 70% (54/77) of neurons, both effects reversing near the K(+) Nernst potential. As with the GABA(B) agonist baclofen, G proteins likely mediated the R-isovaline effects because they were susceptible to blockade by non-hydrolyzable substrates of guanosine triphosphate. The GABA(B) antagonists CGP35348 and CGP52432 prevented the conductance increase induced by R-isovaline, applied by bath or local ejection. The GABA(B) allosteric modulator CGP7930 enhanced the R-isovaline induced increase in conductance. At high doses, antagonists of GABA(A), GABA(C), glycine(A), μ-opioid, and nicotinic receptors did not block R-isovaline responses. The observations establish that R-isovaline increases the conductance of K(+) channels coupled to metabotropic GABA(B) receptors. Remarkably, not all neurons that were responsive to baclofen responded to R-isovaline. The R-isovaline-induced currents outlasted the fast baclofen responses and persisted for a 1-2-h period. Despite some similar actions, R-isovaline and baclofen do not act at identical GABA(B) receptor sites. The binding of R-isovaline and baclofen to the GABA(B) receptor may not induce the same conformational changes in receptor proteins or components of the intracellular signaling pathways.
Collapse
Affiliation(s)
- J E Cooke
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
48
|
Akerman S, Holland PR, Goadsby PJ. Diencephalic and brainstem mechanisms in migraine. Nat Rev Neurosci 2011; 12:570-84. [DOI: 10.1038/nrn3057] [Citation(s) in RCA: 385] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Andreou AP, Goadsby PJ. Topiramate in the treatment of migraine: A kainate (glutamate) receptor antagonist within the trigeminothalamic pathway. Cephalalgia 2011; 31:1343-58. [DOI: 10.1177/0333102411418259] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: The development of new agents for the preventive treatment of migraine is the greatest unmet need in the therapeutics of primary headaches. Topiramate, an anticonvulsant drug, is an effective anti-migraine preventive whose mechanism of action is not fully elucidated. Since glutamate plays a major role in migraine pathophysiology, the potential action of topiramate through glutamatergic mechanisms is of considerable interest. Methods: Recordings of neurons in the trigeminocervical complex (TCC) and the ventroposteromedial thalamic nucleus (VPM) of anesthetized rats were made using electrophysiological techniques. The effects of intravenous or microiontophorezed topiramate on trigeminovascular activation of second- and third-order neurons in the trigeminothalamic pathway were characterized. The potential interactions of topiramate with the ionotropic glutamate receptors were studied using microiontophoresis. Results: Both intravenous and microiontophorized topiramate significantly inhibited trigeminovascular activity in the TCC and VPM. In both nuclei microiontophoretic application of topiramate significantly attenuated kainate receptor-evoked firing but had no effect on N-methyl-d-aspartic acid or α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor activation. Conclusion: The data demonstrate for the first time that topiramate modulates trigeminovascular transmission within the trigeminothalamic pathway with the kainate receptor being a potential target. Understanding the mechanism of action of topiramate may help in the design of new medications for migraine prevention, with the data pointing to glutamate-kainate receptors as a fruitful target to pursue.
Collapse
|
50
|
Bogdanov VB, Multon S, Chauvel V, Bogdanova OV, Prodanov D, Makarchuk MY, Schoenen J. Migraine preventive drugs differentially affect cortical spreading depression in rat. Neurobiol Dis 2010; 41:430-5. [PMID: 20977938 DOI: 10.1016/j.nbd.2010.10.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/10/2010] [Accepted: 10/15/2010] [Indexed: 10/18/2022] Open
Abstract
Cortical spreading depression (CSD) is the most likely cause of the migraine aura. Drugs with distinct pharmacological properties are effective in the preventive treatment of migraine. To test the hypothesis that their common denominator might be suppression of CSD we studied in rats the effect of three drugs used in migraine prevention: lamotrigine which is selectively effective on the aura but not on the headache, valproate and riboflavin which have a non-selective effect. Rats received for 4 weeks daily intraperitoneal injections of one of the three drugs. For valproate and riboflavin we used saline as control, for lamotrigine its vehicle dimethyl sulfoxide. After treatment, cortical spreading depressions were elicited for 2h by occipital KCl application. We measured CSD frequency, its propagation between a posterior (parieto-occipital) and an anterior (frontal) electrode, and number of Fos-immunoreactive nuclei in frontal cortex. Lamotrigine suppressed CSDs by 37% and 60% at posterior and anterior electrodes. Valproate had no effect on posterior CSDs, but reduced anterior ones by 32% and slowed propagation velocity. Riboflavin had no significant effect at neither recording site. Frontal Fos expression was decreased after lamotrigine and valproate, but not after riboflavin. Serum levels of administered drugs were within the range of those usually effective in patients. Our study shows that preventive anti-migraine drugs have differential effects on CSD. Lamotrigine has a marked suppressive effect which correlates with its rather selective action on the migraine aura. Valproate and riboflavin have no effect on the triggering of CSD, although they are effective in migraine without aura. Taken together, these results are compatible with a causal role of CSD in migraine with aura, but not in migraine without aura.
Collapse
Affiliation(s)
- Volodymyr Borysovych Bogdanov
- Headache Research Unit, GIGA-Neurosciences and Department of Neurology, Liège University, CHU Sart Tilman B36, T4, +1, B-4000, Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|