1
|
Zhang Y, Zeuthen C, Zhu C, Wu F, Mezzell AT, Whitlow TJ, Choo HJ, Vest KE. Pharyngeal pathology in a mouse model of oculopharyngeal muscular dystrophy is associated with impaired basal autophagy in myoblasts. Front Cell Dev Biol 2022; 10:986930. [PMID: 36313551 PMCID: PMC9614327 DOI: 10.3389/fcell.2022.986930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2023] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset dominant disease that primarily affects craniofacial muscles. Despite the fact that the genetic cause of OPMD is known to be expansion mutations in the gene encoding the nuclear polyadenosine RNA binding protein PABPN1, the molecular mechanisms of pathology are unknown and no pharmacologic treatments are available. Due to the limited availability of patient tissues, several animal models have been employed to study the pathology of OPMD. However, none of these models have demonstrated functional deficits in the muscles of the pharynx, which are predominantly affected by OPMD. Here, we used a knock-in mouse model of OPMD, Pabpn1 +/A17 , that closely genocopies patients. In Pabpn1 +/A17 mice, we detected impaired pharyngeal muscle function, and impaired pharyngeal satellite cell proliferation and fusion. Molecular studies revealed that basal autophagy, which is required for normal satellite cell function, is higher in pharynx-derived myoblasts than in myoblasts derived from limb muscles. Interestingly, basal autophagy is impaired in cells derived from Pabpn1 +/A17 mice. Pabpn1 knockdown in pharyngeal myoblasts failed to recapitulate the autophagy defect detected in Pabpn1 +/A17 myoblasts suggesting that loss of PABPN1 function does not contribute to the basal autophagy defect. Taken together, these studies provide the first evidence for pharyngeal muscle and satellite cell pathology in a mouse model of OPMD and suggest that aberrant gain of PABPN1 function contributes to the craniofacial pathology in OPMD.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Christopher Zeuthen
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Carol Zhu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Fang Wu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Allison T. Mezzell
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Thomas J. Whitlow
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Hyojung J. Choo
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine E. Vest
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
2
|
Pathak P, Blech-Hermoni Y, Subedi K, Mpamugo J, Obeng-Nyarko C, Ohman R, Molloy I, Kates M, Hale J, Stauffer S, Sharan SK, Mankodi A. Myopathy associated LDB3 mutation causes Z-disc disassembly and protein aggregation through PKCα and TSC2-mTOR downregulation. Commun Biol 2021; 4:355. [PMID: 33742095 PMCID: PMC7979776 DOI: 10.1038/s42003-021-01864-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Mechanical stress induced by contractions constantly threatens the integrity of muscle Z-disc, a crucial force-bearing structure in striated muscle. The PDZ-LIM proteins have been proposed to function as adaptors in transducing mechanical signals to preserve the Z-disc structure, however the underlying mechanisms remain poorly understood. Here, we show that LDB3, a well-characterized striated muscle PDZ-LIM protein, modulates mechanical stress signaling through interactions with the mechanosensing domain in filamin C, its chaperone HSPA8, and PKCα in the Z-disc of skeletal muscle. Studies of Ldb3Ala165Val/+ mice indicate that the myopathy-associated LDB3 p.Ala165Val mutation triggers early aggregation of filamin C and its chaperones at muscle Z-disc before aggregation of the mutant protein. The mutation causes protein aggregation and eventually Z-disc myofibrillar disruption by impairing PKCα and TSC2-mTOR, two important signaling pathways regulating protein stability and disposal of damaged cytoskeletal components at a major mechanosensor hub in the Z-disc of skeletal muscle.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Animals
- Autophagy
- Disease Models, Animal
- Down-Regulation
- Filamins/metabolism
- HSC70 Heat-Shock Proteins/metabolism
- LIM Domain Proteins/genetics
- Mechanotransduction, Cellular
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle Contraction
- Muscle Strength
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Myopathies, Structural, Congenital/enzymology
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/pathology
- Myopathies, Structural, Congenital/physiopathology
- Point Mutation
- Protein Aggregates
- Protein Aggregation, Pathological
- Protein Kinase C-alpha/genetics
- Protein Kinase C-alpha/metabolism
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Tuberous Sclerosis Complex 2 Protein/genetics
- Tuberous Sclerosis Complex 2 Protein/metabolism
- Mice
Collapse
Affiliation(s)
- Pankaj Pathak
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Yotam Blech-Hermoni
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Kalpana Subedi
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Jessica Mpamugo
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Charissa Obeng-Nyarko
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Rachel Ohman
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ilda Molloy
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Malcolm Kates
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Jessica Hale
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Stacey Stauffer
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Ami Mankodi
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
3
|
Regulation of Kv11.1 Isoform Expression by Polyadenylate Binding Protein Nuclear 1. Int J Mol Sci 2021; 22:ijms22020863. [PMID: 33467093 PMCID: PMC7829756 DOI: 10.3390/ijms22020863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/03/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
The Kv11.1 voltage-gated potassium channel, encoded by the KCNH2 gene, conducts the rapidly activating delayed rectifier current in the heart. KCNH2 pre-mRNA undergoes alternative polyadenylation to generate two C-terminal Kv11.1 isoforms in the heart. Utilization of a poly(A) signal in exon 15 produces the full-length, functional Kv11.1a isoform, while intron 9 polyadenylation generates the C-terminally truncated, nonfunctional Kv11.1a-USO isoform. The relative expression of Kv11.1a and Kv11.1a-USO isoforms plays an important role in the regulation of Kv11.1 channel function. In this study, we tested the hypothesis that the RNA polyadenylate binding protein nuclear 1 (PABPN1) interacts with a unique 22 nt adenosine stretch adjacent to the intron 9 poly(A) signal and regulates KCNH2 pre-mRNA alternative polyadenylation and the relative expression of Kv11.1a C-terminal isoforms. We showed that PABPN1 inhibited intron 9 poly(A) activity using luciferase reporter assays, tandem poly(A) reporter assays, and RNA pulldown assays. We also showed that PABPN1 increased the relative expression level of the functional Kv11.1a isoform using RNase protection assays, immunoblot analyses, and patch clamp recordings. Our present findings suggest a novel role for the RNA-binding protein PABPN1 in the regulation of functional and nonfunctional Kv11.1 isoform expression.
Collapse
|
4
|
Mitochondrial localization of PABPN1 in oculopharyngeal muscular dystrophy. J Transl Med 2019; 99:1728-1740. [PMID: 30894671 DOI: 10.1038/s41374-019-0243-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/09/2019] [Accepted: 02/16/2019] [Indexed: 11/09/2022] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset disorder characterized by ptosis, dysphagia, and weakness of proximal limbs. OPMD is caused by the expansion of polyalanine in poly(A)-binding protein, nuclear 1 (PABPN1). Although mitochondrial abnormality has been proposed as the possible etiology, the molecular pathogenesis is still poorly understood. The aim of the study was to specify the mechanism by which expanded PABPN1 causes mitochondrial dysfunction in OPMD. We evaluated whether transgenic mouse model of OPMD, by expressing expanded PABPN1, indeed causes mitochondrial abnormality associated with muscle degeneration. We also investigated the mechanism by which expanded PABPN1 would cause mitochondrial dysfunction in the mouse and cell models of OPMD. Mitochondrial localization of PABPN1 was observed in the muscle fibers of patients with OPMD. Moreover, abnormal accumulation of PABPN1 on the inner membrane of mitochondria and reduced expression of OXPHOS complexes were detected in the muscle fibers of the transgenic mice expressing expanded human PABPN1 with a 13-alanine stretch. In cells expressing PABPN1 with a 10-alanine or 18-alanine stretch, both types of PABPN1 accumulated in the mitochondria and interacted with TIM23 mitochondrial protein import complex, but PABPN1 with 18-alanine stretch decreased the cell viability and aggresome formation. We proposed that the abnormal accumulation of expanded PABPN1 in mitochondria may be associated with mitochondrial abnormality in OPMD.
Collapse
|
5
|
Deodato D, Asad N, Dore TM. Photorearrangement of Quinoline-Protected Dialkylanilines and the Photorelease of Aniline-Containing Biological Effectors. J Org Chem 2019; 84:7342-7353. [PMID: 31095378 DOI: 10.1021/acs.joc.9b01031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The direct release of dialkylanilines was achieved by controlling the outcome of a photorearrangement reaction promoted by the (8-cyano-7-hydroxyquinolin-2-yl)methyl (CyHQ) photoremovable protecting group. The substrate scope was investigated to obtain structure-activity relationships and to propose a reaction mechanism. Introducing a methyl substituent at the 2-methyl position of the CyHQ core enabled the bypass of the photorearrangement and significantly improved the aniline release efficiency. We successfully applied the strategy to the photoactivation of mifepristone (RU-486), an antiprogestin drug that is also used to induce the LexPR gene expression system in zebrafish and the gene-switch regulatory system based on the pGL-VP chimeric regulator in mammals.
Collapse
Affiliation(s)
- Davide Deodato
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi , United Arab Emirates
| | - Naeem Asad
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi , United Arab Emirates
| | - Timothy M Dore
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi , United Arab Emirates.,Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| |
Collapse
|
6
|
Banerjee A, Phillips BL, Deng Q, Seyfried NT, Pavlath GK, Vest KE, Corbett AH. Proteomic analysis reveals that wildtype and alanine-expanded nuclear poly(A)-binding protein exhibit differential interactions in skeletal muscle. J Biol Chem 2019; 294:7360-7376. [PMID: 30837270 DOI: 10.1074/jbc.ra118.007287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset, primarily autosomal dominant disease caused by a short GCN expansion in the PABPN1 (polyadenylate-binding protein nuclear 1) gene that results in an alanine expansion at the N terminus of the PABPN1 protein. Expression of alanine-expanded PABPN1 is linked to the formation of nuclear aggregates in tissues from individuals with OPMD. However, as with other nuclear aggregate-associated diseases, controversy exists over whether these aggregates are the direct cause of pathology. An emerging hypothesis is that a loss of PABPN1 function and/or aberrant protein interactions contribute to pathology in OPMD. Here, we present the first global proteomic analysis of the protein interactions of WT and alanine-expanded PABPN1 in skeletal muscle tissue. These data provide both insight into the function of PABPN1 in muscle and evidence that the alanine expansion alters the protein-protein interactions of PABPN1. We extended this analysis to demonstrate altered complex formation with and loss of function of TDP-43 (TAR DNA-binding protein 43), which we show interacts with alanine-expanded but not WT PABPN1. The results from our study support a model where altered protein interactions with alanine-expanded PABPN1 that lead to loss or gain of function could contribute to pathology in OPMD.
Collapse
Affiliation(s)
| | - Brittany L Phillips
- From the Department of Biology and.,the Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia 30322
| | - Quidong Deng
- the Department of Biochemistry, Center for Neurodegenerative Diseases and
| | | | - Grace K Pavlath
- the Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Katherine E Vest
- the Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | | |
Collapse
|
7
|
Harish P, Dickson G, Malerba A. Advances in emerging therapeutics for oculopharyngeal muscular dystrophy. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1536542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Pradeep Harish
- School of Biological Sciences, Centres of Gene and Cell therapy and Biomedical sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - George Dickson
- School of Biological Sciences, Centres of Gene and Cell therapy and Biomedical sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Alberto Malerba
- School of Biological Sciences, Centres of Gene and Cell therapy and Biomedical sciences, Royal Holloway University of London, Egham, Surrey, UK
| |
Collapse
|
8
|
Vest KE, Phillips BL, Banerjee A, Apponi LH, Dammer EB, Xu W, Zheng D, Yu J, Tian B, Pavlath GK, Corbett AH. Novel mouse models of oculopharyngeal muscular dystrophy (OPMD) reveal early onset mitochondrial defects and suggest loss of PABPN1 may contribute to pathology. Hum Mol Genet 2017; 26:3235-3252. [PMID: 28575395 PMCID: PMC5886286 DOI: 10.1093/hmg/ddx206] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/14/2017] [Accepted: 05/23/2017] [Indexed: 01/09/2023] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late onset disease caused by polyalanine expansion in the poly(A) binding protein nuclear 1 (PABPN1). Several mouse models have been generated to study OPMD; however, most of these models have employed transgenic overexpression of alanine-expanded PABPN1. These models do not recapitulate the OPMD patient genotype and PABPN1 overexpression could confound molecular phenotypes. We have developed a knock-in mouse model of OPMD (Pabpn1+/A17) that contains one alanine-expanded Pabpn1 allele under the control of the native promoter and one wild-type Pabpn1 allele. This mouse is the closest available genocopy of OPMD patients. We show that Pabpn1+/A17 mice have a mild myopathic phenotype in adult and aged animals. We examined early molecular and biochemical phenotypes associated with expressing native levels of A17-PABPN1 and detected shorter poly(A) tails, modest changes in poly(A) signal (PAS) usage, and evidence of mitochondrial damage in these mice. Recent studies have suggested that a loss of PABPN1 function could contribute to muscle pathology in OPMD. To investigate a loss of function model of pathology, we generated a heterozygous Pabpn1 knock-out mouse model (Pabpn1+/Δ). Like the Pabpn1+/A17 mice, Pabpn1+/Δ mice have mild histologic defects, shorter poly(A) tails, and evidence of mitochondrial damage. However, the phenotypes detected in Pabpn1+/Δ mice only partially overlap with those detected in Pabpn1+/A17 mice. These results suggest that loss of PABPN1 function could contribute to but may not completely explain the pathology detected in Pabpn1+/A17 mice.
Collapse
Affiliation(s)
- Katherine E. Vest
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Brittany L. Phillips
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Ayan Banerjee
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Luciano H. Apponi
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric B. Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Weiting Xu
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Julia Yu
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Grace K. Pavlath
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
9
|
Richard P, Roth F, Stojkovic T, Trollet C. Distrofia muscolare oculofaringea. Neurologia 2017. [DOI: 10.1016/s1634-7072(16)81777-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Hjelm BE, Grunseich C, Gowing G, Avalos P, Tian J, Shelley BC, Mooney M, Narwani K, Shi Y, Svendsen CN, Wolfe JH, Fischbeck KH, Pierson TM. Mifepristone-inducible transgene expression in neural progenitor cells in vitro and in vivo. Gene Ther 2016; 23:424-37. [PMID: 26863047 DOI: 10.1038/gt.2016.13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 12/31/2022]
Abstract
Numerous gene and cell therapy strategies are being developed for the treatment of neurodegenerative disorders. Many of these strategies use constitutive expression of therapeutic transgenic proteins, and although functional in animal models of disease, this method is less likely to provide adequate flexibility for delivering therapy to humans. Ligand-inducible gene expression systems may be more appropriate for these conditions, especially within the central nervous system (CNS). Mifepristone's ability to cross the blood-brain barrier makes it an especially attractive ligand for this purpose. We describe the production of a mifepristone-inducible vector system for regulated expression of transgenes within the CNS. Our inducible system used a lentivirus-based vector platform for the ex vivo production of mifepristone-inducible murine neural progenitor cells that express our transgenes of interest. These cells were processed through a series of selection steps to ensure that the cells exhibited appropriate transgene expression in a dose-dependent and temporally controlled manner with minimal background activity. Inducible cells were then transplanted into the brains of rodents, where they exhibited appropriate mifepristone-inducible expression. These studies detail a strategy for regulated expression in the CNS for use in the development of safe and efficient gene therapy for neurological disorders.
Collapse
Affiliation(s)
- B E Hjelm
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - C Grunseich
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - G Gowing
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - P Avalos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - J Tian
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - B C Shelley
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - M Mooney
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - K Narwani
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Y Shi
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - C N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - J H Wolfe
- Departments of Pediatrics and Pathobiology, University of Pennsylvania, Philadelphia, PA, USA.,Stokes Research Institute, Children's Hospital of Philadelphia, PA, USA
| | - K H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - T M Pierson
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Pediatrics and Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
11
|
Harish P, Malerba A, Dickson G, Bachtarzi H. Progress on gene therapy, cell therapy, and pharmacological strategies toward the treatment of oculopharyngeal muscular dystrophy. Hum Gene Ther 2015; 26:286-92. [PMID: 25860803 DOI: 10.1089/hum.2015.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a muscle-specific, late-onset degenerative disorder whereby muscles of the eyes (causing ptosis), throat (leading to dysphagia), and limbs (causing proximal limb weakness) are mostly affected. The disease is characterized by a mutation in the poly(A)-binding protein nuclear-1 (PABPN1) gene, resulting in a short GCG expansion in the polyalanine tract of PABPN1 protein. Accumulation of filamentous intranuclear inclusions in affected skeletal muscle cells constitutes the pathological hallmark of OPMD. This review highlights the current translational research advances in the treatment of OPMD. In vitro and in vivo disease models are described. Conventional and experimental therapeutic approaches are discussed with emphasis on novel molecular therapies including the use of intrabodies, gene therapy, and myoblast transfer therapy.
Collapse
Affiliation(s)
- Pradeep Harish
- 1School of Biological Sciences, Royal Holloway-University of London, Surrey, TW20 0EX, United Kingdom
| | - Alberto Malerba
- 1School of Biological Sciences, Royal Holloway-University of London, Surrey, TW20 0EX, United Kingdom
| | - George Dickson
- 1School of Biological Sciences, Royal Holloway-University of London, Surrey, TW20 0EX, United Kingdom
| | - Houria Bachtarzi
- 2Brighton Centre for Regenerative Medicine, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, United Kingdom
| |
Collapse
|
12
|
Animal models in therapeutic drug discovery for oculopharyngeal muscular dystrophy. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 10:e103-8. [PMID: 24050237 DOI: 10.1016/j.ddtec.2012.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late onset disease which affects specific muscles. No pharmacological treatments are currently available for OPMD. In recent years, genetically tractable models of OPMD – Drosophila and Caenorhabditis elegans – have been generated. Although these models have not yet been used for large-scale primary drug screening, they have been very useful in candidate approaches for the identification of potential therapeutic compounds for OPMD. In this brief review, we summarize the data that validated active molecules for OPMD in animal models including Drosophila, C. elegans and mouse.
Collapse
|
13
|
Anvar SY, Raz Y, Verway N, van der Sluijs B, Venema A, Goeman JJ, Vissing J, van der Maarel SM, 't Hoen PAC, van Engelen BGM, Raz V. A decline in PABPN1 induces progressive muscle weakness in oculopharyngeal muscle dystrophy and in muscle aging. Aging (Albany NY) 2013; 5:412-26. [PMID: 23793615 PMCID: PMC3824410 DOI: 10.18632/aging.100567] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is caused by trinucleotide repeat expansion mutations in Poly(A) binding protein 1 (PABPN1). PABPN1 is a regulator of mRNA stability and is ubiquitously expressed. Here we investigated how symptoms in OPMD initiate only at midlife and why a subset of skeletal muscles is predominantly affected. Genome-wide RNA expression profiles from Vastus lateralis muscles human carriers of expanded-PABPN1 at pre-symptomatic and symptomatic stages were compared with healthy controls. Major expression changes were found to be associated with age rather than with expression of expanded-PABPN1, instead transcriptomes of OPMD and elderly muscles were significantly similar (P<0.05). Using k-means clustering we identified age-dependent trends in both OPMD and controls, but trends were often accelerated in OPMD. We report an age-regulated decline in PABPN1 levels in Vastus lateralis muscles from the fifth decade. In concurrence with severe muscle degeneration in OPMD, the decline in PABPN1 accelerated in OPMD and was specific to skeletal muscles. Reduced PABPN1 levels (30% to 60%) in muscle cells induced myogenic defects and morphological signatures of cellular aging in proportion to PABPN1 expression levels. We suggest that PABPN1 levels regulate muscle cell aging and OPMD represents an accelerated muscle aging disorder.
Collapse
Affiliation(s)
- Seyed Yahya Anvar
- Center for Human and Clinical Genetics, Leiden University Medical Center, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Raz V, Butler-Browne G, van Engelen B, Brais B. 191st ENMC International Workshop: Recent advances in oculopharyngeal muscular dystrophy research: From bench to bedside 8-10 June 2012, Naarden, The Netherlands. Neuromuscul Disord 2013; 23:516-23. [DOI: 10.1016/j.nmd.2013.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Indexed: 10/27/2022]
|
15
|
Banerjee A, Apponi LH, Pavlath GK, Corbett AH. PABPN1: molecular function and muscle disease. FEBS J 2013; 280:4230-50. [PMID: 23601051 DOI: 10.1111/febs.12294] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/03/2013] [Accepted: 04/11/2013] [Indexed: 12/17/2022]
Abstract
The polyadenosine RNA binding protein polyadenylate-binding nuclear protein 1 (PABPN1) plays key roles in post-transcriptional processing of RNA. Although PABPN1 is ubiquitously expressed and presumably contributes to control of gene expression in all tissues, mutation of the PABPN1 gene causes the disease oculopharyngeal muscular dystrophy (OPMD), in which a limited set of skeletal muscles are affected. A major goal in the field of OPMD research is to understand why mutation of a ubiquitously expressed gene leads to a muscle-specific disease. PABPN1 plays a well-documented role in controlling the poly(A) tail length of RNA transcripts but new functions are emerging through studies that exploit a variety of unbiased screens as well as model organisms. This review addresses (a) the molecular function of PABPN1 incorporating recent findings that reveal novel cellular functions for PABPN1 and (b) the approaches that are being used to understand the molecular defects that stem from expression of mutant PABPN1. The long-term goal in this field of research is to understand the key molecular functions of PABPN1 in muscle as well as the mechanisms that underlie the pathological consequences of mutant PABPN1. Armed with this information, researchers can seek to develop therapeutic approaches to enhance the quality of life for patients afflicted with OPMD.
Collapse
Affiliation(s)
- Ayan Banerjee
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
16
|
Atrophy, Fibrosis, and Increased PAX7-Positive Cells in Pharyngeal Muscles of Oculopharyngeal Muscular Dystrophy Patients. J Neuropathol Exp Neurol 2013; 72:234-43. [DOI: 10.1097/nen.0b013e3182854c07] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
17
|
Bengoechea R, Tapia O, Casafont I, Berciano J, Lafarga M, Berciano MT. Nuclear speckles are involved in nuclear aggregation of PABPN1 and in the pathophysiology of oculopharyngeal muscular dystrophy. Neurobiol Dis 2012; 46:118-29. [PMID: 22249111 DOI: 10.1016/j.nbd.2011.12.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 12/19/2011] [Accepted: 12/31/2011] [Indexed: 10/14/2022] Open
Abstract
Nuclear speckles are essential nuclear compartments involved in the assembly, delivery and recycling of pre-mRNA processing factors, and in the post-transcriptional processing of pre-mRNAs. Oculopharyngeal muscular dystrophy (OPMD) is caused by a small expansion of the polyalanine tract in the poly(A)-binding protein nuclear 1 (PABPN1). Aggregation of expanded PABPN1 into intranuclear inclusions (INIs) in skeletal muscle fibers is the pathological hallmark of OPMD. In this study what we have analyzed in muscle fibers of OPMD patients and in primary cultures of human myoblasts are the relationships between nuclear speckles and INIs, and the contribution of the former to the biogenesis of the latter. While nuclear speckles concentrate snRNP splicing factors and PABPN1 in control muscle fibers, they are depleted of PABPN1 and appear closely associated with INIs in muscle fibers of OPMD patients. The induction of INI formation in human myoblasts expressing either wild type GFP-PABPN1 or expanded GFP-PABPN1-17ala demonstrates that the initial aggregation of PABPN1 proteins and their subsequent growth in INIs occurs at the edges of the nuclear speckles. Moreover, the growing of INIs gradually depletes PABPN1 proteins and poly(A) RNA from nuclear speckles, although the existence of these nuclear compartments is preserved. Time-lapse experiments in cultured myoblasts confirm nuclear speckles as biogenesis sites of PABPN1 inclusions. Given the functional importance of nuclear speckles in the post-transcriptional processing of pre-mRNAs, the INI-dependent molecular reorganization of these nuclear compartments in muscle fibers may cause a severe dysfunction in nuclear trafficking and processing of polyadenylated mRNAs, thereby contributing to the molecular pathophysiology of OPMD. Our results emphasize the potential importance of nuclear speckles as nuclear targets of neuromuscular disorders.
Collapse
Affiliation(s)
- Rocío Bengoechea
- Department of Anatomy and Cell Biology and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, University of Cantabria, Santander, Spain
| | | | | | | | | | | |
Collapse
|