1
|
Mascotte-Cruz JU, Vera A, Leija L, Lopez-Salas FE, Gradzielski M, Koetz J, Gatica-García B, Rodríguez-Oviedo CP, Valenzuela-Arzeta IE, Escobedo L, Reyes-Corona D, Gutierrez-Castillo ME, Maldonado-Berny M, Espadas-Alvarez AJ, Orozco-Barrios CE, Martinez-Fong D. Focused ultrasound on the substantia nigra enables safe neurotensin-polyplex nanoparticle-mediated gene delivery to dopaminergic neurons intranasally and by blood circulation. DISCOVER NANO 2024; 19:60. [PMID: 38564106 PMCID: PMC10987469 DOI: 10.1186/s11671-024-04005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Neurotensin-polyplex nanoparticles provide efficient gene transfection of nigral dopaminergic neurons when intracerebrally injected in preclinical trials of Parkinson's disease because they do not cross the blood-brain barrier (BBB). Therefore, this study aimed to open BBB with focused ultrasound (FUS) on the substantia nigra to attain systemic and intranasal transfections and evaluate its detrimental effect in rats. Systemically injected Evans Blue showed that a two-pulse FUS opened the nigral BBB. Accordingly, 35 μL of neurotensin-polyplex nanoparticles encompassing the green fluorescent protein plasmid (79.6 nm mean size and + 1.3 mV Zeta-potential) caused its expression in tyrosine hydroxylase(+) cells (dopaminergic neurons) of both substantiae nigrae upon delivery via internal carotid artery, retro-orbital venous sinus, or nasal mucosa 30 min after FUS. The intracarotid delivery yielded the highest transgene expression, followed by intranasal and venous administration. However, FUS caused neuroinflammation displayed by infiltrated lymphocytes (positive to cluster of differentiation 45), activated microglia (positive to ionized calcium-binding adaptor molecule 1), neurotoxic A1 astrocytes (positive to glial fibrillary acidic protein and complement component 3), and neurotrophic A2 astrocytes (positive to glial fibrillary acidic protein and S100 calcium-binding protein A10), that ended 15 days after FUS. Dopaminergic neurons and axonal projections decreased but recuperated basal values on day 15 after transfection, correlating with a decrease and recovery of locomotor behavior. In conclusion, FUS caused transient neuroinflammation and reversible neuronal affection but allowed systemic and intranasal transfection of dopaminergic neurons in both substantiae nigrae. Therefore, FUS could advance neurotensin-polyplex nanotechnology to clinical trials for Parkinson's disease.
Collapse
Affiliation(s)
- Juan U Mascotte-Cruz
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | - Arturo Vera
- Departamento de Ingeniería Eléctrica-Bioelectrónica, Centro de Investigación y de Estudios Avanzados, Ciudad de Mexico, México
| | - Lorenzo Leija
- Departamento de Ingeniería Eléctrica-Bioelectrónica, Centro de Investigación y de Estudios Avanzados, Ciudad de Mexico, México
| | - Francisco E Lopez-Salas
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México Instituto de Investigaciones Biomédicas, Ciudad de Mexico, México
| | - Michael Gradzielski
- Institut für Chemie, Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin, Berlin, Germany
| | - Joachim Koetz
- Institut für Chemie , Universität Potsdam, Potsdam, Germany
| | - Bismark Gatica-García
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
- Nanoparticle Therapy Institute, Aguascalientes, México
| | | | - Irais E Valenzuela-Arzeta
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | - Lourdes Escobedo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | | | - M E Gutierrez-Castillo
- Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo, Departamento de Biociencias e Ingeniería, Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Minerva Maldonado-Berny
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | - Armando J Espadas-Alvarez
- Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo, Departamento de Biociencias e Ingeniería, Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Carlos E Orozco-Barrios
- CONAHCYT - Unidad de Investigaciones Médicas en Enfermedades Neurológicas, Hospital de Especialidades "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México.
- Nanoparticle Therapy Institute, Aguascalientes, México.
| |
Collapse
|
2
|
Dadkhah M, Baziar M, Rezaei N. The regulatory role of BDNF in neuroimmune axis function and neuroinflammation induced by chronic stress: A new therapeutic strategies for neurodegenerative disorders. Cytokine 2024; 174:156477. [PMID: 38147741 DOI: 10.1016/j.cyto.2023.156477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/14/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
Neurodegenerative disorders account for a high proportion of neurological diseases that significantly threaten public health worldwide. Various factors are involved in the pathophysiology of such diseases which can lead to neurodegeneration and neural damage. Furthermore, neuroinflammation is a well-known factor in predisposing factors of neurological and especially neurodegenerative disorders which can be strongly suppressed by "anti-inflammatory" actions of brain-derived neurotrophic factor (BDNF). Stress has has also been identified as a risk factor in developing neurodegenerative disorders potentially leading to increased neuroinflammation in the brain and progressive loss in neuronal structures and impaired functions in the CNS. Recently, more studies have increasingly been focused on the role of neuroimmune system in regulating the neurobiology of stress. Emerging evidence indicate that exposure to chronic stress might alter the susceptibility to neurodegeneration via influencing the microglia function. Microglia is considered as the first responding group of cells in suppressing neuroinflammation, leading to an increased inflammatory cytokine signaling that promote the synaptic plasticity deficiencies, impairment in neurogenesis, and development of neurodegenerative disorders. In this review we discuss how exposure to chronic stress might alter the neuroimmune response potentially leading to progress of neurodegenerative disorders. We also emphasize on the role of BDNF in regulating the neuroimmune axis function and microglia modulation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Milad Baziar
- Student Research Committee, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran 1419733151, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education Research Network (USERN), Tehran, Iran
| |
Collapse
|
3
|
Tripathi RK, Goyal L, Singh S. Potential Therapeutic Approach using Aromatic l-amino Acid Decarboxylase and Glial-derived Neurotrophic Factor Therapy Targeting Putamen in Parkinson's Disease. Curr Gene Ther 2024; 24:278-291. [PMID: 38310455 DOI: 10.2174/0115665232283842240102073002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 02/05/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative illness characterized by specific loss of dopaminergic neurons, resulting in impaired motor movement. Its prevalence is twice as compared to the previous 25 years and affects more than 10 million individuals. Lack of treatment still uses levodopa and other options as disease management measures. Treatment shifts to gene therapy (GT), which utilizes direct delivery of specific genes at the targeted area. Therefore, the use of aromatic L-amino acid decarboxylase (AADC) and glial-derived neurotrophic factor (GDNF) therapy achieves an effective control to treat PD. Patients diagnosed with PD may experience improved therapeutic outcomes by reducing the frequency of drug administration while utilizing provasin and AADC as dopaminergic protective therapy. Enhancing the enzymatic activity of tyrosine hydroxylase (TH), glucocorticoid hormone (GCH), and AADC in the striatum would be useful for external L-DOPA to restore the dopamine (DA) level. Increased expression of glutamic acid decarboxylase (GAD) in the subthalamic nucleus (STN) may also be beneficial in PD. Targeting GDNF therapy specifically to the putaminal region is clinically sound and beneficial in protecting the dopaminergic neurons. Furthermore, preclinical and clinical studies supported the role of GDNF in exhibiting its neuroprotective effect in neurological disorders. Another Ret receptor, which belongs to the tyrosine kinase family, is expressed in dopaminergic neurons and sounds to play a vital role in inhibiting the advancement of PD. GDNF binding on those receptors results in the formation of a receptor-ligand complex. On the other hand, venous delivery of recombinant GDNF by liposome-based and encapsulated cellular approaches enables the secure and effective distribution of neurotrophic factors into the putamen and parenchyma. The current review emphasized the rate of GT target GDNF and AADC therapy, along with the corresponding empirical evidence.
Collapse
Affiliation(s)
- Raman Kumar Tripathi
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Lav Goyal
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
4
|
Narváez-Pérez LF, Paz-Bermúdez F, Avalos-Fuentes JA, Campos-Romo A, Florán-Garduño B, Segovia J. CRISPR/sgRNA-directed synergistic activation mediator (SAM) as a therapeutic tool for Parkinson´s disease. Gene Ther 2024; 31:31-44. [PMID: 37542151 PMCID: PMC10788271 DOI: 10.1038/s41434-023-00414-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/30/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Parkinson`s disease (PD) is the second most prevalent neurodegenerative disease, and different gene therapy strategies have been used as experimental treatments. As a proof-of-concept for the treatment of PD, we used SAM, a CRISPR gene activation system, to activate the endogenous tyrosine hydroxylase gene (th) of astrocytes to produce dopamine (DA) in the striatum of 6-OHDA-lesioned rats. Potential sgRNAs within the rat th promoter region were tested, and the expression of the Th protein was determined in the C6 glial cell line. Employing pseudo-lentivirus, the SAM complex and the selected sgRNA were transferred into cultures of rat astrocytes, and gene expression and Th protein synthesis were ascertained; furthermore, DA release into the culture medium was determined by HPLC. The DA-producing astrocytes were implanted into the striatum of 6-OHDA hemiparkinsonian rats. We observed motor behavior improvement in the lesioned rats that received DA-astrocytes compared to lesioned rats receiving astrocytes that did not produce DA. Our data indicate that the SAM-induced expression of the astrocyte´s endogenous th gene can generate DA-producing astrocytes that effectively reduce the motor asymmetry induced by the lesion.
Collapse
Affiliation(s)
- Luis Fernando Narváez-Pérez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, 07360, México
| | - Francisco Paz-Bermúdez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, 07360, México
| | - José Arturo Avalos-Fuentes
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, 07360, México
| | - Aurelio Campos-Romo
- Unidad Periférica de Neurociencias, Facultad de Medicina, Instituto Nacional de Neurología y Neurocirugía "MVS", Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Benjamín Florán-Garduño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, 07360, México
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, 07360, México.
| |
Collapse
|
5
|
Jiang F, Zhang C, Liu W, Liu F, Huang H, Tan Y, Qin B. Bibliometric analysis of global research trends in adeno-associated virus vector for gene therapy (1991-2022). Front Cell Infect Microbiol 2023; 13:1301915. [PMID: 38145048 PMCID: PMC10739348 DOI: 10.3389/fcimb.2023.1301915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Background Gene therapy involves introducing and editing foreign genes in the body to treat and prevent genetic diseases. Adeno-associated virus (AAV) vector has become a widely used tool in gene therapy due to its high safety and transfection efficiency. Methods This study employs bibliometric analysis to explore the foundation and current state of AAV vector application in gene therapy research. A total of 6,069 publications from 1991 to 2022 were analyzed, retrieved from the Science Citation Index Expanded (SCI-E) within the Web of Science Core Collection (WoSCC) of Clarivate Analytics. Institutions, authors, journals, references, and keywords were analyzed and visualized by using VOSviewer and CiteSpace. The R language and Microsoft Excel 365 were used for statistical analyses. Results The global literature on AAV vector and gene therapy exhibited consistent growth, with the United States leading in productivity, contributing 3,868 papers and obtaining the highest H-index. Noteworthy authors like Wilson JM, Samulski RJ, Hauswirth WW, and Mingozzi F were among the top 10 most productive and co-cited authors. The journal "Human Gene Therapy" published the most papers (n = 485) on AAV vector and gene therapy. Current research focuses on "gene editing," "gene structure," "CRISPR," and "AAV gene therapy for specific hereditary diseases." Conclusion The application of AAV vector in gene therapy has shown continuous growth, fostering international cooperation among countries and institutions. The intersection of gene editing, gene structure, CRISPR, and AAV gene therapy for specific hereditary diseases and AAV vector represents a prominent and prioritized focus in contemporary gene therapy research. This study provides valuable insights into the trends and characteristics of AAV gene therapy research, facilitating further advancements in the field.
Collapse
Affiliation(s)
| | | | | | | | - Haiyan Huang
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Yao Tan
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
- Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
| | - Bo Qin
- Jinan University, Guangzhou, China
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
- Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
| |
Collapse
|
6
|
Pandey SK, Singh RK. Recent developments in nucleic acid-based therapies for Parkinson's disease: Current status, clinical potential, and future strategies. Front Pharmacol 2022; 13:986668. [PMID: 36339626 PMCID: PMC9632735 DOI: 10.3389/fphar.2022.986668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease is the second most common progressive neurodegenerative disease diagnosed mainly based on clinical symptoms caused by loss of nigrostriatal dopaminergic neurons. Although currently available pharmacological therapies provide symptomatic relief, however, the disease continues to progress eventually leading to severe motor and cognitive decline and reduced quality of life. The hallmark pathology of Parkinson's disease includes intraneuronal inclusions known as Lewy bodies and Lewy neurites, including fibrillar α-synuclein aggregates. These aggregates can progressively spread across synaptically connected brain regions leading to emergence of disease symptoms with time. The α-synuclein level is considered important in its fibrillization and aggregation. Nucleic acid therapeutics have recently been shown to be effective in treating various neurological diseases, raising the possibility of developing innovative molecular therapies for Parkinson's disease. In this review, we have described the advancements in genetic dysregulations in Parkinson's disease along with the disease-modifying strategies involved in genetic regulation with particular focus on downregulation of α-synuclein gene using various novel technologies, notably antisense oligonucleotides, microRNA, short interfering RNA, short hairpin RNAs, DNA aptamers, and gene therapy of vector-assisted delivery system-based therapeutics. In addition, the current status of preclinical and clinical development for nucleic acid-based therapies for Parkinson's disease have also been discussed along with their limitations and opportunities.
Collapse
Affiliation(s)
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, India
| |
Collapse
|
7
|
Wu Y, Rakotoarisoa M, Angelov B, Deng Y, Angelova A. Self-Assembled Nanoscale Materials for Neuronal Regeneration: A Focus on BDNF Protein and Nucleic Acid Biotherapeutic Delivery. NANOMATERIALS 2022; 12:nano12132267. [PMID: 35808102 PMCID: PMC9268293 DOI: 10.3390/nano12132267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023]
Abstract
Enabling challenging applications of nanomedicine and precision medicine in the treatment of neurodegenerative disorders requires deeper investigations of nanocarrier-mediated biomolecular delivery for neuronal targeting and recovery. The successful use of macromolecular biotherapeutics (recombinant growth factors, antibodies, enzymes, synthetic peptides, cell-penetrating peptide–drug conjugates, and RNAi sequences) in clinical developments for neuronal regeneration should benefit from the recent strategies for enhancement of their bioavailability. We highlight the advances in the development of nanoscale materials for drug delivery in neurodegenerative disorders. The emphasis is placed on nanoformulations for the delivery of brain-derived neurotrophic factor (BDNF) using different types of lipidic nanocarriers (liposomes, liquid crystalline or solid lipid nanoparticles) and polymer-based scaffolds, nanofibers and hydrogels. Self-assembled soft-matter nanoscale materials show favorable neuroprotective characteristics, safety, and efficacy profiles in drug delivery to the central and peripheral nervous systems. The advances summarized here indicate that neuroprotective biomolecule-loaded nanoparticles and injectable hydrogels can improve neuronal survival and reduce tissue injury. Certain recently reported neuronal dysfunctions in long-COVID-19 survivors represent early manifestations of neurodegenerative pathologies. Therefore, BDNF delivery systems may also help in prospective studies on recovery from long-term COVID-19 neurological complications and be considered as promising systems for personalized treatment of neuronal dysfunctions and prevention or retarding of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yu Wu
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, F-92290 Châtenay-Malabry, France; (Y.W.); (M.R.)
| | - Miora Rakotoarisoa
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, F-92290 Châtenay-Malabry, France; (Y.W.); (M.R.)
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic;
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, No. 1, Jinlian Road, Longwan District, Wenzhou 325001, China;
| | - Angelina Angelova
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, F-92290 Châtenay-Malabry, France; (Y.W.); (M.R.)
- Correspondence:
| |
Collapse
|
8
|
Pottier C, Mateiu L, Baker MC, DeJesus-Hernandez M, Teixeira Vicente C, Finch NA, Tian S, van Blitterswijk M, Murray ME, Ren Y, Petrucelli L, Oskarsson B, Biernacka JM, Graff-Radford NR, Boeve BF, Petersen RC, Josephs KA, Asmann YW, Dickson DW, Rademakers R. Shared brain transcriptomic signature in TDP-43 type A FTLD patients with or without GRN mutations. Brain 2021; 145:2472-2485. [PMID: 34918030 PMCID: PMC9337811 DOI: 10.1093/brain/awab437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/24/2021] [Accepted: 10/24/2021] [Indexed: 11/28/2022] Open
Abstract
Frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) is a complex heterogeneous neurodegenerative disorder for which mechanisms are poorly understood. To explore transcriptional changes underlying FTLD-TDP, we performed RNA-sequencing on 66 genetically unexplained FTLD-TDP patients, 24 FTLD-TDP patients with GRN mutations and 24 control participants. Using principal component analysis, hierarchical clustering, differential expression and coexpression network analyses, we showed that GRN mutation carriers and FTLD-TDP-A patients without a known mutation shared a common transcriptional signature that is independent of GRN loss-of-function. After combining both groups, differential expression as compared to the control group and coexpression analyses revealed alteration of processes related to immune response, synaptic transmission, RNA metabolism, angiogenesis and vesicle-mediated transport. Deconvolution of the data highlighted strong cellular alterations that were similar in FTLD-TDP-A and GRN mutation carriers with NSF as a potentially important player in both groups. We propose several potentially druggable pathways such as the GABAergic, GDNF and sphingolipid pathways. Our findings underline new disease mechanisms and strongly suggest that affected pathways in GRN mutation carriers extend beyond GRN and contribute to genetically unexplained forms of FTLD-TDP-A.
Collapse
Affiliation(s)
- Cyril Pottier
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ligia Mateiu
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Cristina Teixeira Vicente
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - NiCole A Finch
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Shulan Tian
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Joanna M Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Yan W Asmann
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | - Rosa Rademakers
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
9
|
Chen Z, Zhang W, Wu M, Huang H, Zou L, Luo Q. Pathogenic mechanisms of preeclampsia with severe features implied by the plasma exosomal mirna profile. Bioengineered 2021; 12:9140-9149. [PMID: 34696680 PMCID: PMC8810006 DOI: 10.1080/21655979.2021.1993717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022] Open
Abstract
Preeclampsia is a complication of pregnancy characterized by high blood pressure and organ damage after 20 gestational weeks. It is associated with high maternal and fetal morbidity and mortality. However, at present, there is no effective prevention or treatment for this condition. Previous studies have revealed that plasma exosomal mirnas from pregnant women with preeclampsia could serve as biomarkers of pathogenic factors. However, the roles of plasma exosomal mirnas in preeclampsia with severe features (sPE), which is associated with poorer pregnancy outcomes, remain unknown. Thus, the aims of this study were to characterize plasma exosomal miRNAs in sPE and explore the related pathogenic mechanisms using bioinformatic analysis. Plasma exosomes were isolated using a mirVana RNA isolation kit. the exosomal miRNAs were detected using high-throughput sequencing and the mirnas related to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene ontology (GO) terms were analyzed using the clusterprofiler package of R. Fifteen miRNAs exhibited increased expression and fourteen miRNAs exhibited reduced expression in plasma exosomes from women with sPE as compared to normal pregnant women. Further, gene set enrichment analysis revealed that the differentially expressed plasma exosomal miRNAs were related to the stress response and cell junction regulation, among others. In summary, this study is the first to identify the differentially expressed plasma exosomal miRNAs in sPE. These findings highlight promising pathogenesis mechanisms underlying preeclampsia.
Collapse
Affiliation(s)
- Zhirui Chen
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Obstetrics, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengying Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haixia Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingqing Luo
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Nishimura K, Takata K. Combination of Drugs and Cell Transplantation: More Beneficial Stem Cell-Based Regenerative Therapies Targeting Neurological Disorders. Int J Mol Sci 2021; 22:ijms22169047. [PMID: 34445753 PMCID: PMC8396512 DOI: 10.3390/ijms22169047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/02/2023] Open
Abstract
Cell transplantation therapy using pluripotent/multipotent stem cells has gained attention as a novel therapeutic strategy for treating neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, ischemic stroke, and spinal cord injury. To fully realize the potential of cell transplantation therapy, new therapeutic options that increase cell engraftments must be developed, either through modifications to the grafted cells themselves or through changes in the microenvironment surrounding the grafted region. Together these developments could potentially restore lost neuronal function by better supporting grafted cells. In addition, drug administration can improve the outcome of cell transplantation therapy through better accessibility and delivery to the target region following cell transplantation. Here we introduce examples of drug repurposing approaches for more successful transplantation therapies based on preclinical experiments with clinically approved drugs. Drug repurposing is an advantageous drug development strategy because drugs that have already been clinically approved can be repurposed to treat other diseases faster and at lower cost. Therefore, drug repurposing is a reasonable approach to enhance the outcomes of cell transplantation therapies for neurological diseases. Ideal repurposing candidates would result in more efficient cell transplantation therapies and provide a new and beneficial therapeutic combination.
Collapse
|
11
|
Wang F, Li N, Hou R, Wang L, Zhang L, Li C, Zhang Y, Yin Y, Chang L, Cheng Y, Wang Y, Lu J. Treatment of Parkinson’s disease using focused ultrasound with GDNF retrovirus-loaded microbubbles to open the blood–brain barrier. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AbstractThis study aims to prepare ultrasound-targeted glial cell-derived neurotrophic factor (GDNF) retrovirus-loaded microbubbles (M pLXSN-GDNF) to verify the properties of the microbubbles and to study the therapeutic effect of the GDNF retrovirus-loaded microbubbles combined with ultrasound (U) to open the blood–brain barrier (BBB) in a Parkinson’s disease (PD) model in rats, allowing the retrovirus to pass through the BBB and transfect neurons in the substantia nigra of the midbrain, thereby increasing the expression of GDNF. The results of western blot analysis revealed significant differences between U + MpLXSN-EGFP, U + M + pLXSN-GDNF, and M pLXSN-GDNF (P < 0.05) groups. After 8 weeks of treatment, the evaluation of the effect of increased GDNF expression on behavioral deficits in PD model rats was conducted. The rotation symptom was significantly improved in the U + MpLXSN-GDNF group, and the difference before and after treatment was significant (P < 0.05). Also, the content of dopamine and the number of tyrosine hydroxylase-positive (dopaminergic) neurons were found to be higher in the brain of PD rats in the U + M pLXSN-GDNF group than in the control groups. Ultrasound combined with GDNF retrovirus-loaded microbubbles can enhance the transfection efficiency of neurons in vivo and highly express the exogenous GDNF gene to play a therapeutic role in PD model rats.
Collapse
Affiliation(s)
- Feng Wang
- Henan Key Laboratory of Neurorestoratology (The First Affiliated Hospital of Xinxiang Medical University), Xinxiang 453100, China
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Nana Li
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Ruanling Hou
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Lu Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Libin Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Chenzhang Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yu Zhang
- Department of Biochemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yaling Yin
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Liansheng Chang
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yuan Cheng
- Department of Biochemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yongling Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Jianping Lu
- Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518057, China
| |
Collapse
|
12
|
|
13
|
Parkinson's disease treatment: past, present, and future. J Neural Transm (Vienna) 2020; 127:785-791. [PMID: 32172471 DOI: 10.1007/s00702-020-02167-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
Abstract
The substantial contributions of Dr. Gerald Stern to past and current treatments for Parkinson's disease patients are reviewed, which form the foundation for an evaluation of future options to control symptoms and halt progression of the disease. These opportunities will depend on a greater understanding of the relative contributions of the environment, genetic and epigenetic influences to disease onset, and promise to emerge as strategies for improving mitochondrial function, halting accumulation of synuclein and neuromelanin, in addition to refinement of stem cell and gene therapies. Such advances will be achieved through deployment of improved models for the disease.
Collapse
|
14
|
Viral Delivery of GDNF Promotes Functional Integration of Human Stem Cell Grafts in Parkinson's Disease. Cell Stem Cell 2020; 26:511-526.e5. [PMID: 32059808 DOI: 10.1016/j.stem.2020.01.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/31/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Dopaminergic neurons (DAns), generated from human pluripotent stem cells (hPSCs), are capable of functionally integrating following transplantation and have recently advanced to clinical trials for Parkinson's disease (PD). However, pre-clinical studies have highlighted the low proportion of DAns within hPSC-derived grafts and their inferior plasticity compared to fetal tissue. Here, we examined whether delivery of a developmentally critical protein, glial cell line-derived neurotrophic factor (GDNF), could improve graft outcomes. We tracked the response of DAns implanted into either a GDNF-rich environment or after a delay in exposure. Early GDNF promoted survival and plasticity of non-DAns, leading to enhanced motor recovery in PD rats. Delayed exposure to GDNF promoted functional recovery through increases in DAn specification, DAn plasticity, and DA metabolism. Transcriptional profiling revealed a role for mitogen-activated protein kinase (MAPK)-signaling downstream of GDNF. Collectively, these results demonstrate the potential of neurotrophic gene therapy strategies to improve hPSC graft outcomes.
Collapse
|
15
|
Palasz E, Wysocka A, Gasiorowska A, Chalimoniuk M, Niewiadomski W, Niewiadomska G. BDNF as a Promising Therapeutic Agent in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21031170. [PMID: 32050617 PMCID: PMC7037114 DOI: 10.3390/ijms21031170] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) promotes neuroprotection and neuroregeneration. In animal models of Parkinson’s disease (PD), BDNF enhances the survival of dopaminergic neurons, improves dopaminergic neurotransmission and motor performance. Pharmacological therapies of PD are symptom-targeting, and their effectiveness decreases with the progression of the disease; therefore, new therapeutical approaches are needed. Since, in both PD patients and animal PD models, decreased level of BDNF was found in the nigrostriatal pathway, it has been hypothesized that BDNF may serve as a therapeutic agent. Direct delivery of exogenous BDNF into the patient’s brain did not relieve the symptoms of disease, nor did attempts to enhance BDNF expression with gene therapy. Physical training was neuroprotective in animal models of PD. This effect is mediated, at least partly, by BDNF. Animal studies revealed that physical activity increases BDNF and tropomyosin receptor kinase B (TrkB) expression, leading to inhibition of neurodegeneration through induction of transcription factors and expression of genes related to neuronal proliferation, survival, and inflammatory response. This review focuses on the evidence that increasing BDNF level due to gene modulation or physical exercise has a neuroprotective effect and could be considered as adjunctive therapy in PD.
Collapse
Affiliation(s)
- Ewelina Palasz
- Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Adrianna Wysocka
- Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Anna Gasiorowska
- Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Malgorzata Chalimoniuk
- Faculty in Biala Podlaska, Jozef Pilsudski University of Physical Education in Warsaw, 21-500 Warszawa, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland
- Correspondence: ; Tel.: +48-225892409
| |
Collapse
|
16
|
Cembran A, Bruggeman KF, Williams RJ, Parish CL, Nisbet DR. Biomimetic Materials and Their Utility in Modeling the 3-Dimensional Neural Environment. iScience 2020; 23:100788. [PMID: 31954980 PMCID: PMC6970178 DOI: 10.1016/j.isci.2019.100788] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/30/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
The brain is a complex 3-dimensional structure, the organization of which provides a local environment that directly influences the survival, proliferation, differentiation, migration, and plasticity of neurons. To probe the effects of damage and disease on these cells, a synthetic environment is needed. Three-dimensional culturing of stem cells, neural progenitors, and neurons within fabricated biomaterials has demonstrated superior biomimetic properties over conventional 2-dimensional cultureware, offering direct recapitulation of both cell-cell and cell-extracellular matrix interactions. Within this review we address the benefits of deploying biomaterials as advanced cell culture tools capable of influencing neuronal fate and as in vitro models of the native in vivo microenvironment. We highlight recent and promising biomaterials approaches toward understanding neural network and their function relevant to neurodevelopment and provide our perspective on how these materials can be engineered and programmed to study both the healthy and diseased nervous system.
Collapse
Affiliation(s)
- Arianna Cembran
- Laboratory of Advanced Biomaterials, Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT 2600, Australia
| | - Kiara F Bruggeman
- Laboratory of Advanced Biomaterials, Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT 2600, Australia
| | | | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia.
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
17
|
Parmar M, Grealish S, Henchcliffe C. The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci 2020; 21:103-115. [DOI: 10.1038/s41583-019-0257-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2019] [Indexed: 01/07/2023]
|
18
|
|
19
|
Hernandez-Baltazar D, Nadella R, Mireya Zavala-Flores L, Rosas-Jarquin CDJ, Rovirosa-Hernandez MDJ, Villanueva-Olivo A. Four main therapeutic keys for Parkinson's disease: A mini review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:716-721. [PMID: 32373291 PMCID: PMC7196346 DOI: 10.22038/ijbms.2019.33659.8025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/08/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Parkinson's disease (PD) is characterized by motor and cognitive dysfunctions. The progressive degeneration of dopamine-producing neurons that are present in the substantia nigra pars compacta (SNpc) has been the main focus of study and PD therapies since ages. MATERIALS AND METHODS In this manuscript, a systematic revision of experimental and clinical evidence of PD-associated cell process was conducted. RESULTS Classically, the damage in the dopaminergic neuronal circuits of SNpc is favored by reactive oxidative/nitrosative stress, leading to cell death. Interestingly, the therapy for PD has only focused on avoiding the symptom progression but not in finding a complete reversion of the disease. Recent evidence suggests that the renin-angiotensin system imbalance and neuroinflammation are the main keys in the progression of experimental PD. CONCLUSION The progression of neurodegeneration in SNpc is due to the complex interaction of multiple processes. In this review, we analyzed the main contribution of four cellular processes and discussed in the perspective of novel experimental approaches.
Collapse
Affiliation(s)
| | - Rasajna Nadella
- IIIT Srikakulam, Rajiv Gandhi University of Knowledge Technologies (RGUKT); International collaboration ID:1840; India
| | | | | | | | | |
Collapse
|
20
|
GDNF-mediated rescue of the nigrostriatal system depends on the degree of degeneration. Gene Ther 2018; 26:57-64. [PMID: 30531868 PMCID: PMC6514883 DOI: 10.1038/s41434-018-0049-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 10/01/2018] [Accepted: 10/12/2018] [Indexed: 02/02/2023]
Abstract
Glial cell-line derived neurotrophic factor (GDNF) is a promising therapeutic molecule to treat Parkinson’s disease. Despite an excellent profile in experimental settings, clinical trials testing GDNF have failed. One of the theories to explain these negative outcomes is that the clinical trials were done in late-stage patients that have advanced nigrostriatal degeneration and may therefore not respond to a neurotrophic factor therapy. Based on this idea, we tested if the stage of nigrostriatal degeneration is important for GDNF-based therapies. Lentiviral vectors expressing regulated GDNF were delivered to the striatum of rats to allow GDNF expression to be turned on either while the nigrostriatal system was degenerating or after the nigrostriatal system had been fully lesioned by 6-OHDA. In the group of animals where GDNF expression was on during degeneration, neurons were rescued and there was a reversal of motor deficits. Turning GDNF expression on after the nigrostriatal system was lesioned did not rescue neurons or reverse motor deficits. In fact, these animals were indistinguishable from the control groups. Our results suggest that GDNF can reverse motor deficits and nigrostriatal pathology despite an ongoing nigrostriatal degeneration, if there is still a sufficient number of remaining neurons to respond to therapy.
Collapse
|
21
|
Jamebozorgi K, Taghizadeh E, Rostami D, Pormasoumi H, Barreto GE, Hayat SMG, Sahebkar A. Cellular and Molecular Aspects of Parkinson Treatment: Future Therapeutic Perspectives. Mol Neurobiol 2018; 56:4799-4811. [PMID: 30397850 DOI: 10.1007/s12035-018-1419-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder accompanied by depletion of dopamine and loss of dopaminergic neurons in the brain that is believed to be responsible for the motor and non-motor symptoms in this disease. The main drug prescribed for Parkinsonian patients is L-dopa, which can be converted to dopamine by passing through the blood-brain barrier. Although L-dopa is able to improve motor function and improve the quality of life in the patients, there is inter-individual variability and some patients do not achieve the therapeutic effect. Variations in treatment response and side effects of current drugs have convinced scientists to think of treating Parkinson's disease at the cellular and molecular level. Molecular and cellular therapy for Parkinson's disease include (i) cell transplantation therapy with human embryonic stem (ES) cells, human induced pluripotent stem (iPS) cells and human fetal mesencephalic tissue, (ii) immunological and inflammatory therapy which is done using antibodies, and (iii) gene therapy with AADC-TH-GCH gene therapy, viral vector-mediated gene delivery, RNA interference-based therapy, CRISPR-Cas9 gene editing system, and alternative methods such as optogenetics and chemogenetics. Although these methods currently have a series of challenges, they seem to be promising techniques for Parkinson's treatment in future. In this study, these prospective therapeutic approaches are reviewed.
Collapse
Affiliation(s)
| | - Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Departments of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Daryoush Rostami
- Department of School Allied, Zabol University of Medical Sciences, Zabol, Iran
| | - Hosein Pormasoumi
- Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, P.O. Box: 91779-48564, Mashhad, Iran.
| |
Collapse
|
22
|
Quintino L, Namislo A, Davidsson M, Breger LS, Kavanagh P, Avallone M, Elgstrand-Wettergren E, Isaksson C, Lundberg C. Destabilizing Domains Enable Long-Term and Inert Regulation of GDNF Expression in the Brain. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 11:29-39. [PMID: 30324128 PMCID: PMC6187056 DOI: 10.1016/j.omtm.2018.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 08/30/2018] [Indexed: 12/31/2022]
Abstract
Regulation of therapeutic transgene expression can increase the safety of gene therapy interventions, especially when targeting critical organs such as the brain. Although several gene expression systems have been described, none of the current systems has the required safety profile for clinical applications. Our group has previously adapted a system for novel gene regulation based on the destabilizing domain degron technology to successfully regulate glial cell-line derived neurotrophic factor in the brain (GDNF-F-DD). In the present study, we used GDNF-F-DD as a proof-of-principle molecule to fully characterize DD regulation in the brain. Our results indicate that DD could be regulated in a dose-dependent manner. In addition, GDNF-F-DD could also be induced in vivo repeatedly, without loss of activity or efficacy in vivo. Finally, DD regulation was able to be sustained for 24 weeks without loss of expression or any overt toxicity. The present study shows that DD has great potential to regulate gene expression in the brain.
Collapse
Affiliation(s)
- Luis Quintino
- CNS Gene Therapy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Angrit Namislo
- CNS Gene Therapy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Marcus Davidsson
- Molecular Neuromodulation, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Ludivine S Breger
- CNS Gene Therapy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Patrick Kavanagh
- CNS Gene Therapy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Martino Avallone
- CNS Gene Therapy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Christina Isaksson
- CNS Gene Therapy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Cecilia Lundberg
- CNS Gene Therapy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Herpes Simplex Virus Vectors for Gene Transfer to the Central Nervous System. Diseases 2018; 6:diseases6030074. [PMID: 30110885 PMCID: PMC6164475 DOI: 10.3390/diseases6030074] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases (NDs) have a profound impact on human health worldwide and their incidence is predicted to increase as the population ages. ND severely limits the quality of life and leads to early death. Aside from treatments that may reduce symptoms, NDs are almost completely without means of therapeutic intervention. The genetic and biochemical basis of many NDs is beginning to emerge although most have complex etiologies for which common themes remain poorly resolved. Largely relying on progress in vector design, gene therapy is gaining increasing support as a strategy for genetic treatment of diseases. Here we describe recent developments in the engineering of highly defective herpes simplex virus (HSV) vectors suitable for transfer and long-term expression of large and/or multiple therapeutic genes in brain neurons in the complete absence of viral gene expression. These advanced vector platforms are safe, non-inflammatory, and persist in the nerve cell nucleus for life. In the near term, it is likely that HSV can be used to treat certain NDs that have a well-defined genetic cause. As further information on disease etiology becomes available, these vectors may take on an expanded role in ND therapies, including gene editing and repair.
Collapse
|
24
|
O'Keeffe GW, Sullivan AM. Evidence for dopaminergic axonal degeneration as an early pathological process in Parkinson's disease. Parkinsonism Relat Disord 2018; 56:9-15. [PMID: 29934196 DOI: 10.1016/j.parkreldis.2018.06.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/21/2018] [Accepted: 06/17/2018] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is a common neurodegenerative disorder presenting with a variety of motor and non-motor symptoms. The motor symptoms manifest as a result of the progressive degeneration of midbrain dopaminergic neurons. The axons of these neurons project to the striatum as the nigrostriatal pathway, which is a crucial part of the basal ganglia circuitry controlling movement. In addition to the neuronal degeneration, abnormal intraneuronal α-synuclein protein inclusions called Lewy bodies and Lewy neurites increase in number and spread throughout the nervous system as the disease progresses. While the loss of midbrain dopaminergic neurons is well-established as being central to motor symptoms, there is an increasing focus on the timing of nigrostriatal degeneration, with preclinical evidence suggesting that early axonal degeneration may play a key role in the early stages of Parkinson's disease. Here we review recent evidence for early midbrain dopaminergic axonal degeneration in patients with Parkinson's disease, and explore the potential role of α-synuclein accumulation in this process, with a focus on studies in human populations at the imaging, post-mortem, cellular and molecular levels. Finally, we discuss the implications of this for neurotrophic factor therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Cork, Ireland; Cork Neuroscience Centre, University College Cork, Cork, Ireland.
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Cork, Ireland; Cork Neuroscience Centre, University College Cork, Cork, Ireland.
| |
Collapse
|
25
|
Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurol 2018; 17:548-558. [PMID: 29724592 PMCID: PMC6237181 DOI: 10.1016/s1474-4422(18)30126-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/01/2018] [Accepted: 03/26/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND Loss-of-function mutations in GRN cause frontotemporal lobar degeneration (FTLD). Patients with GRN mutations present with a uniform subtype of TAR DNA-binding protein 43 (TDP-43) pathology at autopsy (FTLD-TDP type A); however, age at onset and clinical presentation are variable, even within families. We aimed to identify potential genetic modifiers of disease onset and disease risk in GRN mutation carriers. METHODS The study was done in three stages: a discovery stage, a replication stage, and a meta-analysis of the discovery and replication data. In the discovery stage, genome-wide logistic and linear regression analyses were done to test the association of genetic variants with disease risk (case or control status) and age at onset in patients with a GRN mutation and controls free of neurodegenerative disorders. Suggestive loci (p<1 × 10-5) were genotyped in a replication cohort of patients and controls, followed by a meta-analysis. The effect of genome-wide significant variants at the GFRA2 locus on expression of GFRA2 was assessed using mRNA expression studies in cerebellar tissue samples from the Mayo Clinic brain bank. The effect of the GFRA2 locus on progranulin concentrations was studied using previously generated ELISA-based expression data. Co-immunoprecipitation experiments in HEK293T cells were done to test for a direct interaction between GFRA2 and progranulin. FINDINGS Individuals were enrolled in the current study between Sept 16, 2014, and Oct 5, 2017. After quality control measures, statistical analyses in the discovery stage included 382 unrelated symptomatic GRN mutation carriers and 1146 controls free of neurodegenerative disorders collected from 34 research centres located in the USA, Canada, Australia, and Europe. In the replication stage, 210 patients (67 symptomatic GRN mutation carriers and 143 patients with FTLD without GRN mutations pathologically confirmed as FTLD-TDP type A) and 1798 controls free of neurodegenerative diseases were recruited from 26 sites, 20 of which overlapped with the discovery stage. No genome-wide significant association with age at onset was identified in the discovery or replication stages, or in the meta-analysis. However, in the case-control analysis, we replicated the previously reported TMEM106B association (rs1990622 meta-analysis odds ratio [OR] 0·54, 95% CI 0·46-0·63; p=3·54 × 10-16), and identified a novel genome-wide significant locus at GFRA2 on chromosome 8p21.3 associated with disease risk (rs36196656 meta-analysis OR 1·49, 95% CI 1·30-1·71; p=1·58 × 10-8). Expression analyses showed that the risk-associated allele at rs36196656 decreased GFRA2 mRNA concentrations in cerebellar tissue (p=0·04). No effect of rs36196656 on plasma and CSF progranulin concentrations was detected by ELISA; however, co-immunoprecipitation experiments in HEK293T cells did suggest a direct binding of progranulin and GFRA2. INTERPRETATION TMEM106B-related and GFRA2-related pathways might be future targets for treatments for FTLD, but the biological interaction between progranulin and these potential disease modifiers requires further study. TMEM106B and GFRA2 might also provide opportunities to select and stratify patients for future clinical trials and, when more is known about their potential effects, to inform genetic counselling, especially for asymptomatic individuals. FUNDING National Institute on Aging, National Institute of Neurological Disorders and Stroke, Canadian Institutes of Health Research, Italian Ministry of Health, UK National Institute for Health Research, National Health and Medical Research Council of Australia, and the French National Research Agency.
Collapse
|
26
|
Stenslik MJ, Evans A, Pomerleau F, Weeks R, Huettl P, Foreman E, Turchan-Cholewo J, Andersen A, Cass WA, Zhang Z, Grondin RC, Gash DM, Gerhardt GA, Bradley LH. Methodology and effects of repeated intranasal delivery of DNSP-11 in awake Rhesus macaques. J Neurosci Methods 2018; 303:30-40. [PMID: 29614295 DOI: 10.1016/j.jneumeth.2018.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND To determine if the intranasal delivery of neuroactive compounds is a viable, long-term treatment strategy for progressive, chronic neurodegenerative disorders, such as Parkinson's disease (PD), intranasal methodologies in preclinical models comparable to humans are needed. NEW METHOD We developed a methodology to evaluate the repeated intranasal delivery of neuroactive compounds on the non-human primate (NHP) brain, without the need for sedation. We evaluated the effects of the neuroactive peptide, DNSP-11 following repeated intranasal delivery and dose-escalation over the course of 10-weeks in Rhesus macaques. This approach allowed us to examine striatal target engagement, safety and tolerability, and brain distribution following a single 125I-labeled DNSP-11 dose. RESULTS Our initial data support that repeated intranasal delivery and dose-escalation of DNSP-11 resulted in bilateral, striatal target engagement based on neurochemical changes in dopamine (DA) metabolites-without observable, adverse behavioral effects or weight loss in NHPs. Furthermore, a 125I-labeled DNSP-11 study illustrates diffuse rostral to caudal distribution in the brain including the striatum-our target region of interest. COMPARISON WITH EXISTING METHODS The results of this study are compared to our experiments in normal and 6-OHDA lesioned rats, where DNSP-11 was repeatedly delivered intranasally using a micropipette with animals under light sedation. CONCLUSIONS The results from this proof-of-concept study support the utility of our repeated intranasal dosing methodology in awake Rhesus macaques, to evaluate the effects of neuroactive compounds on the NHP brain. Additionally, results indicate that DNSP-11 can be safely and effectively delivered intranasally in MPTP-treated NHPs, while engaging the DA system.
Collapse
Affiliation(s)
- M J Stenslik
- Department of Neuroscience and Brain Restoration Center, University of Kentucky College of Medicine, United States
| | - A Evans
- Department of Neuroscience and Brain Restoration Center, University of Kentucky College of Medicine, United States
| | - F Pomerleau
- Department of Neuroscience and Brain Restoration Center, University of Kentucky College of Medicine, United States
| | - R Weeks
- Department of Neuroscience and Brain Restoration Center, University of Kentucky College of Medicine, United States
| | - P Huettl
- Department of Neuroscience and Brain Restoration Center, University of Kentucky College of Medicine, United States
| | - E Foreman
- Department of Neuroscience and Brain Restoration Center, University of Kentucky College of Medicine, United States
| | - J Turchan-Cholewo
- Department of Neuroscience and Brain Restoration Center, University of Kentucky College of Medicine, United States
| | - A Andersen
- Department of Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky College of Medicine, United States
| | - W A Cass
- Department of Neuroscience and Brain Restoration Center, University of Kentucky College of Medicine, United States
| | - Z Zhang
- Department of Neuroscience and Brain Restoration Center, University of Kentucky College of Medicine, United States
| | - R C Grondin
- Department of Neuroscience and Brain Restoration Center, University of Kentucky College of Medicine, United States
| | - D M Gash
- Department of Neuroscience and Brain Restoration Center, University of Kentucky College of Medicine, United States
| | - G A Gerhardt
- Department of Neuroscience and Brain Restoration Center, University of Kentucky College of Medicine, United States
| | - L H Bradley
- Department of Neuroscience and Brain Restoration Center, University of Kentucky College of Medicine, United States; Department of Molecular & Cellular Biochemistry and Center of Structural Biology, University of Kentucky College of Medicine, United States.
| |
Collapse
|
27
|
Revealing cooperative binding of polycationic cyclodextrins with DNA oligomers by capillary electrophoresis coupled to mass spectrometry. Anal Chim Acta 2018; 1002:70-81. [DOI: 10.1016/j.aca.2017.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/12/2017] [Accepted: 11/14/2017] [Indexed: 11/23/2022]
|
28
|
Sandmark J, Dahl G, Öster L, Xu B, Johansson P, Akerud T, Aagaard A, Davidsson P, Bigalke JM, Winzell MS, Rainey GJ, Roth RG. Structure and biophysical characterization of the human full-length neurturin-GFRa2 complex: A role for heparan sulfate in signaling. J Biol Chem 2018; 293:5492-5508. [PMID: 29414779 DOI: 10.1074/jbc.ra117.000820] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
Neurturin (NRTN) provides trophic support to neurons and is considered a therapeutic agent for neurodegenerative diseases, such as Parkinson's disease. It binds to its co-receptor GFRa2, and the resulting NRTN-GFRa2 complex activates the transmembrane receptors rearranged during transfection (RET) or the neural cell adhesion molecule (NCAM). We report the crystal structure of NRTN, alone and in complex with GFRa2. This is the first crystal structure of a GFRa with all three domains and shows that domain 1 does not interact directly with NRTN, but it may support an interaction with RET and/or NCAM, via a highly conserved surface. In addition, biophysical results show that the relative concentration of GFRa2 on cell surfaces can affect the functional affinity of NRTN through avidity effects. We have identified a heparan sulfate-binding site on NRTN and a putative binding site in GFRa2, suggesting that heparan sulfate has a role in the assembly of the signaling complex. We further show that mutant NRTN with reduced affinity for heparan sulfate may provide a route forward for delivery of NRTN with increased exposure in preclinical in vivo models and ultimately to Parkinson's patients.
Collapse
Affiliation(s)
- Jenny Sandmark
- From the Departments of Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences
| | - Göran Dahl
- From the Departments of Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences
| | - Linda Öster
- From the Departments of Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences
| | - Bingze Xu
- the Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden.,Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg 43183, Sweden
| | - Patrik Johansson
- From the Departments of Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences
| | - Tomas Akerud
- From the Departments of Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences
| | - Anna Aagaard
- From the Departments of Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences
| | - Pia Davidsson
- Bioscience, Cardiovascular and Metabolic Diseases, and
| | - Janna M Bigalke
- From the Departments of Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences
| | | | - G Jonah Rainey
- the Department of Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, Maryland 20878, and
| | - Robert G Roth
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg 43183, Sweden,
| |
Collapse
|
29
|
Sison SL, Patitucci TN, Seminary ER, Villalon E, Lorson CL, Ebert AD. Astrocyte-produced miR-146a as a mediator of motor neuron loss in spinal muscular atrophy. Hum Mol Genet 2018. [PMID: 28637335 DOI: 10.1093/hmg/ddx230] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, is caused by the loss of the survival motor neuron-1 (SMN1) gene, which leads to motor neuron loss, muscle atrophy, respiratory distress, and death. Motor neurons exhibit the most profound loss, but the mechanisms underlying disease pathogenesis are not fully understood. Recent evidence suggests that motor neuron extrinsic influences, such as those arising from astrocytes, contribute to motor neuron malfunction and loss. Here we investigated both loss-of-function and toxic gain-of-function astrocyte mechanisms that could play a role in SMA pathology. We had previously found that glial derived neurotrophic factor (GDNF) is reduced in SMA astrocytes. However, reduced GDNF expression does not play a major role in SMA pathology as viral-mediated GDNF re-expression did not improve astrocyte function or motor neuron loss. In contrast, we found that SMA astrocytes increased microRNA (miR) production and secretion compared to control astrocytes, suggesting potential toxic gain-of-function properties. Specifically, we found that miR-146a was significantly upregulated in SMA induced pluripotent stem cell (iPSC)-derived astrocytes and SMNΔ7 mouse spinal cord. Moreover, increased miR-146a was sufficient to induce motor neuron loss in vitro, whereas miR-146a inhibition prevented SMA astrocyte-induced motor neuron loss. Together, these data indicate that altered astrocyte production of miR-146a may be a contributing factor in astrocyte-mediated SMA pathology.
Collapse
Affiliation(s)
- Samantha L Sison
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, 53226 WI, USA
| | - Teresa N Patitucci
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, 53226 WI, USA
| | - Emily R Seminary
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, 53226 WI, USA
| | - Eric Villalon
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, 65211 MO, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, 65211 MO, USA
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, 53226 WI, USA
| |
Collapse
|
30
|
Hou L, Chen W, Liu X, Qiao D, Zhou FM. Exercise-Induced Neuroprotection of the Nigrostriatal Dopamine System in Parkinson's Disease. Front Aging Neurosci 2017; 9:358. [PMID: 29163139 PMCID: PMC5675869 DOI: 10.3389/fnagi.2017.00358] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies indicate that physical activity and exercise may reduce the risk of developing Parkinson's disease (PD), and clinical observations suggest that physical exercise can reduce the motor symptoms in PD patients. In experimental animals, a profound observation is that exercise of appropriate timing, duration, and intensity can reduce toxin-induced lesion of the nigrostriatal dopamine (DA) system in animal PD models, although negative results have also been reported, potentially due to inappropriate timing and intensity of the exercise regimen. Exercise may also minimize DA denervation-induced medium spiny neuron (MSN) dendritic atrophy and other abnormalities such as enlarged corticostriatal synapse and abnormal MSN excitability and spiking activity. Taken together, epidemiological studies, clinical observations, and animal research indicate that appropriately dosed physical activity and exercise may not only reduce the risk of developing PD in vulnerable populations but also benefit PD patients by potentially protecting the residual DA neurons or directly restoring the dysfunctional cortico-basal ganglia motor control circuit, and these benefits may be mediated by exercise-triggered production of endogenous neuroprotective molecules such as neurotrophic factors. Thus, exercise is a universally available, side effect-free medicine that should be prescribed to vulnerable populations as a preventive measure and to PD patients as a component of treatment. Future research needs to establish standardized exercise protocols that can reliably induce DA neuron protection, enabling the delineation of the underlying cellular and molecular mechanisms that in turn can maximize exercise-induced neuroprotection and neurorestoration in animal PD models and eventually in PD patients.
Collapse
Affiliation(s)
- Lijuan Hou
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Wei Chen
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China.,Department of Exercise and Rehabilitation, Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Xiaoli Liu
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Decai Qiao
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN, United States
| |
Collapse
|
31
|
Maiti P, Manna J, Dunbar GL. Current understanding of the molecular mechanisms in Parkinson's disease: Targets for potential treatments. Transl Neurodegener 2017; 6:28. [PMID: 29090092 PMCID: PMC5655877 DOI: 10.1186/s40035-017-0099-z] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022] Open
Abstract
Gradual degeneration and loss of dopaminergic neurons in the substantia nigra, pars compacta and subsequent reduction of dopamine levels in striatum are associated with motor deficits that characterize Parkinson’s disease (PD). In addition, half of the PD patients also exhibit frontostriatal-mediated executive dysfunction, including deficits in attention, short-term working memory, speed of mental processing, and impulsivity. The most commonly used treatments for PD are only partially or transiently effective and are available or applicable to a minority of patients. Because, these therapies neither restore the lost or degenerated dopaminergic neurons, nor prevent or delay the disease progression, the need for more effective therapeutics is critical. In this review, we provide a comprehensive overview of the current understanding of the molecular signaling pathways involved in PD, particularly within the context of how genetic and environmental factors contribute to the initiation and progression of this disease. The involvement of molecular chaperones, autophagy-lysosomal pathways, and proteasome systems in PD are also highlighted. In addition, emerging therapies, including pharmacological manipulations, surgical procedures, stem cell transplantation, gene therapy, as well as complementary, supportive and rehabilitation therapies to prevent or delay the progression of this complex disease are reviewed.
Collapse
Affiliation(s)
- Panchanan Maiti
- Field Neurosciences Institute Laboratory for Restorative Neurology, Mt. Pleasant, MI 48859 USA.,Program in Neuroscience, Mt. Pleasant, MI 48859 USA.,Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859 USA.,Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI 48604 USA.,Department of Biology, Saginaw Valley State University, Saginaw, MI 48604 USA
| | - Jayeeta Manna
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38105 USA
| | - Gary L Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Mt. Pleasant, MI 48859 USA.,Program in Neuroscience, Mt. Pleasant, MI 48859 USA.,Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859 USA.,Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI 48604 USA
| |
Collapse
|
32
|
Francardo V, Schmitz Y, Sulzer D, Cenci MA. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson's disease. Exp Neurol 2017; 298:137-147. [PMID: 28988910 DOI: 10.1016/j.expneurol.2017.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/25/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022]
Abstract
Disease-modifying treatments remain an unmet medical need in Parkinson's disease (PD). Such treatments can be operationally defined as interventions that slow down the clinical evolution to advanced disease milestones. A treatment may achieve this outcome by either inhibiting primary neurodegenerative events ("neuroprotection") or boosting compensatory and regenerative mechanisms in the brain ("neurorestoration"). Here we review experimental paradigms that are currently used to assess the neuroprotective and neurorestorative potential of candidate treatments in animal models of PD. We review some key molecular mediators of neuroprotection and neurorestoration in the nigrostriatal dopamine pathway that are likely to exert beneficial effects on multiple neural systems affected in PD. We further review past and current strategies to therapeutically stimulate these mediators, and discuss the preclinical evidence that exercise training can have neuroprotective and neurorestorative effects. A future translational task will be to combine behavioral and pharmacological interventions to exploit endogenous mechanisms of neuroprotection and neurorestoration for therapeutic purposes. This type of approach is likely to provide benefit to many PD patients, despite the clinical, etiological, and genetic heterogeneity of the disease.
Collapse
Affiliation(s)
- Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Yvonne Schmitz
- Departments Neurology, Psychiatry, Pharmacology, Columbia University Medical Center: Division of Molecular Therapeutics, New York State Psychiatric Institute, New York 10032, NY, USA
| | - David Sulzer
- Departments Neurology, Psychiatry, Pharmacology, Columbia University Medical Center: Division of Molecular Therapeutics, New York State Psychiatric Institute, New York 10032, NY, USA
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
33
|
Timed Release of Cerebrolysin Using Drug-Loaded Titanate Nanospheres Reduces Brain Pathology and Improves Behavioral Functions in Parkinson’s Disease. Mol Neurobiol 2017; 55:359-369. [DOI: 10.1007/s12035-017-0747-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Fan CH, Lin CY, Liu HL, Yeh CK. Ultrasound targeted CNS gene delivery for Parkinson's disease treatment. J Control Release 2017; 261:246-262. [DOI: 10.1016/j.jconrel.2017.07.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 10/19/2022]
|
35
|
Lin JY, Xie CL, Zhang SF, Yuan W, Liu ZG. Current Experimental Studies of Gene Therapy in Parkinson's Disease. Front Aging Neurosci 2017; 9:126. [PMID: 28515689 PMCID: PMC5413509 DOI: 10.3389/fnagi.2017.00126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/13/2017] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) was characterized by late-onset, progressive dopamine neuron loss and movement disorders. The progresses of PD affected the neural function and integrity. To date, most researches had largely addressed the dopamine replacement therapies, but the appearance of L-dopa-induced dyskinesia hampered the use of the drug. And the mechanism of PD is so complicated that it's hard to solve the problem by just add drugs. Researchers began to focus on the genetic underpinnings of Parkinson's disease, searching for new method that may affect the neurodegeneration processes in it. In this paper, we reviewed current delivery methods used in gene therapies for PD, we also summarized the primary target of the gene therapy in the treatment of PD, such like neurotrophic factor (for regeneration), the synthesis of neurotransmitter (for prolong the duration of L-dopa), and the potential proteins that might be a target to modulate via gene therapy. Finally, we discussed RNA interference therapies used in Parkinson's disease, it might act as a new class of drug. We mainly focus on the efficiency and tooling features of different gene therapies in the treatment of PD.
Collapse
Affiliation(s)
- Jing-Ya Lin
- Department of Neurology, Xinhua Hospital Affiliated to the Medical School of Shanghai JiaoTong UniversityShanghai, China
| | - Cheng-Long Xie
- Department of Neurology, The first Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical UniversityWenzhou, China
| | - Su-Fang Zhang
- Department of Neurology, Xinhua Hospital Affiliated to the Medical School of Shanghai JiaoTong UniversityShanghai, China
| | - Weien Yuan
- School of Pharmacy, Shanghai JiaoTong UniversityShanghai, China
| | - Zhen-Guo Liu
- Department of Neurology, Xinhua Hospital Affiliated to the Medical School of Shanghai JiaoTong UniversityShanghai, China
| |
Collapse
|
36
|
Non-human primate models of PD to test novel therapies. J Neural Transm (Vienna) 2017; 125:291-324. [PMID: 28391443 DOI: 10.1007/s00702-017-1722-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
Abstract
Non-human primate (NHP) models of Parkinson disease show many similarities with the human disease. They are very useful to test novel pharmacotherapies as reviewed here. The various NHP models of this disease are described with their characteristics including the macaque, the marmoset, and the squirrel monkey models. Lesion-induced and genetic models are described. There is no drug to slow, delay, stop, or cure Parkinson disease; available treatments are symptomatic. The dopamine precursor, L-3,4-dihydroxyphenylalanine (L-Dopa) still remains the gold standard symptomatic treatment of Parkinson. However, involuntary movements termed L-Dopa-induced dyskinesias appear in most patients after chronic treatment and may become disabling. Dyskinesias are very difficult to manage and there is only amantadine approved providing only a modest benefit. In this respect, NHP models have been useful to seek new drug targets, since they reproduce motor complications observed in parkinsonian patients. Therapies to treat motor symptoms in NHP models are reviewed with a discussion of their translational value to humans. Disease-modifying treatments tested in NHP are reviewed as well as surgical treatments. Many biochemical changes in the brain of post-mortem Parkinson disease patients with dyskinesias are reviewed and compare well with those observed in NHP models. Non-motor symptoms can be categorized into psychiatric, autonomic, and sensory symptoms. These symptoms are present in most parkinsonian patients and are already installed many years before the pre-motor phase of the disease. The translational usefulness of NHP models of Parkinson is discussed for non-motor symptoms.
Collapse
|
37
|
Albert K, Voutilainen MH, Domanskyi A, Airavaara M. AAV Vector-Mediated Gene Delivery to Substantia Nigra Dopamine Neurons: Implications for Gene Therapy and Disease Models. Genes (Basel) 2017; 8:genes8020063. [PMID: 28208742 PMCID: PMC5333052 DOI: 10.3390/genes8020063] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/03/2017] [Indexed: 12/21/2022] Open
Abstract
Gene delivery using adeno-associated virus (AAV) vectors is a widely used method to transduce neurons in the brain, especially due to its safety, efficacy, and long-lasting expression. In addition, by varying AAV serotype, promotor, and titer, it is possible to affect the cell specificity of expression or the expression levels of the protein of interest. Dopamine neurons in the substantia nigra projecting to the striatum, comprising the nigrostriatal pathway, are involved in movement control and degenerate in Parkinson’s disease. AAV-based gene targeting to the projection area of these neurons in the striatum has been studied extensively to induce the production of neurotrophic factors for disease-modifying therapies for Parkinson’s disease. Much less emphasis has been put on AAV-based gene therapy targeting dopamine neurons in substantia nigra. We will review the literature related to targeting striatum and/or substantia nigra dopamine neurons using AAVs in order to express neuroprotective and neurorestorative molecules, as well as produce animal disease models of Parkinson’s disease. We discuss difficulties in targeting substantia nigra dopamine neurons and their vulnerability to stress in general. Therefore, choosing a proper control for experimental work is not trivial. Since the axons along the nigrostriatal tract are the first to degenerate in Parkinson’s disease, the location to deliver the therapy must be carefully considered. We also review studies using AAV-α-synuclein (α-syn) to target substantia nigra dopamine neurons to produce an α-syn overexpression disease model in rats. Though these studies are able to produce mild dopamine system degeneration in the striatum and substantia nigra and some behavioural effects, there are studies pointing to the toxicity of AAV-carrying green fluorescent protein (GFP), which is often used as a control. Therefore, we discuss the potential difficulties in overexpressing proteins in general in the substantia nigra.
Collapse
Affiliation(s)
- Katrina Albert
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
| | - Merja H Voutilainen
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
| | - Andrii Domanskyi
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
| | - Mikko Airavaara
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|