1
|
Harris SA, Gordon EE, Barrett KT, Scantlebury MH, Teskey GC. Febrile Seizures, Ongoing Epileptiform Activity, and the Resulting Long-Term Consequences: Lessons From Animal Models. Pediatr Neurol 2024; 161:216-222. [PMID: 39442247 DOI: 10.1016/j.pediatrneurol.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/17/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Febrile seizures affect 2% to 14% of children. Prospective studies indicate that following a relatively prolonged febrile seizure there are long-term consequences. Although controlled experiments in children have ethical limitations, nonhuman animal models give us the ability to discover new phenomena, determine their mechanisms, and test treatments that can potentially translate to the human clinical population. Rat models of febrile seizures show two temporally distinct phases: (1); behavioral seizures and (2); ongoing epileptiform activity associated with hyperoxia. The behavioral seizures mimic those displayed by children including tonic-clonic convulsions and loss of postural control. Recordings show classic spiking discharges from cortical regions during the behavioral seizures. Following behavioral seizure termination electrical recordings in rodent models reveal that there is ongoing epileptiform activity that lasts longer than the duration of the behavioral seizures themselves. This ongoing epileptiform activity is also associated with hyperoxia-levels of brain tissue oxygen well above the normoxic zone (typical oxygen levels)-and can last more than an hour. When this hyperoxia, but not the epileptiform activity, is prevented in febrile rat pups the long-term learning impairments are also prevented. This leaves important questions unanswered, "Do children also have ongoing and long-lasting epileptiform activity and associated hyperoxia following termination of their febrile behavioral seizures and does this second phase have long-term consequences"? Here we discuss appropriate animal models of febrile seizures that replicate much of the human condition with special attention to the long-term effects of occult epileptiform activity following termination of a behavioral febrile seizure.
Collapse
Affiliation(s)
- Sydney A Harris
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Emily E Gordon
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Karlene T Barrett
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Morris H Scantlebury
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - G Campbell Teskey
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
Ackermann BW, Merkenschlager A. The Role of TRPV1 in Febrile Seizure Susceptibility: Inflammation, Respiratory Alkalosis, and Seizure Threshold. Am J Respir Cell Mol Biol 2024; 71:139-140. [PMID: 38701493 PMCID: PMC11299084 DOI: 10.1165/rcmb.2024-0182ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Indexed: 05/05/2024] Open
|
3
|
Barrett KT, Roy A, Ebdalla A, Pittman QJ, Wilson RJA, Scantlebury MH. The Impact of Inflammation on Thermal Hyperpnea: Relevance for Heat Stress and Febrile Seizures. Am J Respir Cell Mol Biol 2024; 71:195-206. [PMID: 38597725 PMCID: PMC11299082 DOI: 10.1165/rcmb.2023-0451oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/09/2024] [Indexed: 04/11/2024] Open
Abstract
Extreme heat caused by climate change is increasing the transmission of infectious diseases, resulting in a sharp rise in heat-related illness and mortality. Understanding the mechanistic link between heat, inflammation, and disease is thus important for public health. Thermal hyperpnea, and consequent respiratory alkalosis, is crucial in febrile seizures and convulsions induced by heat stress in humans. Here, we address what causes thermal hyperpnea in neonates and how it is affected by inflammation. Transient receptor potential cation channel subfamily V member 1 (TRPV1), a heat-activated channel, is sensitized by inflammation and modulates breathing and thus may play a key role. To investigate whether inflammatory sensitization of TRPV1 modifies neonatal ventilatory responses to heat stress, leading to respiratory alkalosis and an increased susceptibility to hyperthermic seizures, we treated neonatal rats with bacterial LPS, and breathing, arterial pH, in vitro vagus nerve activity, and seizure susceptibility were assessed during heat stress in the presence or absence of a TRPV1 antagonist (AMG-9810) or shRNA-mediated TRPV1 suppression. LPS-induced inflammatory preconditioning lowered the threshold temperature and latency of hyperthermic seizures. This was accompanied by increased tidal volume, minute ventilation, expired CO2, and arterial pH (alkalosis). LPS exposure also elevated vagal spiking and intracellular calcium concentrations in response to hyperthermia. TRPV1 inhibition with AMG-9810 or shRNA reduced the LPS-induced susceptibility to hyperthermic seizures and altered the breathing pattern to fast shallow breaths (tachypnea), making each breath less efficient and restoring arterial pH. These results indicate that inflammation exacerbates thermal hyperpnea-induced respiratory alkalosis associated with increased susceptibility to hyperthermic seizures, primarily mediated by TRPV1 localized to vagus neurons.
Collapse
Affiliation(s)
- Karlene T. Barrett
- Alberta Children’s Hospital Research Institute
- Hotchkiss Brain Institute
- Department of Pediatrics
| | - Arijit Roy
- Hotchkiss Brain Institute
- Department of Physiology and Pharmacology, and
| | - Aya Ebdalla
- Alberta Children’s Hospital Research Institute
| | - Quentin J. Pittman
- Alberta Children’s Hospital Research Institute
- Hotchkiss Brain Institute
- Department of Physiology and Pharmacology, and
| | - Richard J. A. Wilson
- Alberta Children’s Hospital Research Institute
- Hotchkiss Brain Institute
- Department of Physiology and Pharmacology, and
| | - Morris H. Scantlebury
- Alberta Children’s Hospital Research Institute
- Hotchkiss Brain Institute
- Department of Pediatrics
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Maximiano TKE, Carneiro JA, Fattori V, Verri WA. TRPV1: Receptor structure, activation, modulation and role in neuro-immune interactions and pain. Cell Calcium 2024; 119:102870. [PMID: 38531262 DOI: 10.1016/j.ceca.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
In the 1990s, the identification of a non-selective ion channel, especially responsive to capsaicin, revolutionized the studies of somatosensation and pain that were to follow. The TRPV1 channel is expressed mainly in neuronal cells, more specifically, in sensory neurons responsible for the perception of noxious stimuli. However, its presence has also been detected in other non-neuronal cells, such as immune cells, β- pancreatic cells, muscle cells and adipocytes. Activation of the channel occurs in response to a wide range of stimuli, such as noxious heat, low pH, gasses, toxins, endocannabinoids, lipid-derived endovanilloid, and chemical agents, such as capsaicin and resiniferatoxin. This activation results in an influx of cations through the channel pore, especially calcium. Intracellular calcium triggers different responses in sensory neurons. Dephosphorylation of the TRPV1 channel leads to its desensitization, which disrupts its function, while its phosphorylation increases the channel's sensitization and contributes to the channel's rehabilitation after desensitization. Kinases, phosphoinositides, and calmodulin are the main signaling pathways responsible for the channel's regulation. Thus, in this review we provide an overview of TRPV1 discovery, its tissue expression as well as on the mechanisms by which TRPV1 activation (directly or indirectly) induces pain in different disease models.
Collapse
Affiliation(s)
- Thaila Kawane Euflazio Maximiano
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Jessica Aparecida Carneiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Victor Fattori
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Karp Research Building, 300 Longwood Ave, 02115, Boston, Massachusetts, United States.
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil.
| |
Collapse
|
5
|
Yi Y, Zhong C, Wei-wei H. The long-term neurodevelopmental outcomes of febrile seizures and underlying mechanisms. Front Cell Dev Biol 2023; 11:1186050. [PMID: 37305674 PMCID: PMC10248510 DOI: 10.3389/fcell.2023.1186050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Febrile seizures (FSs) are convulsions caused by a sudden increase in body temperature during a fever. FSs are one of the commonest presentations in young children, occurring in up to 4% of children between the ages of about 6 months and 5 years old. FSs not only endanger children's health, cause panic and anxiety to families, but also have many adverse consequences. Both clinical and animal studies show that FSs have detrimental effects on neurodevelopment, that cause attention deficit hyperactivity disorder (ADHD), increased susceptibility to epilepsy, hippocampal sclerosis and cognitive decline during adulthood. However, the mechanisms of FSs in developmental abnormalities and disease occurrence during adulthood have not been determined. This article provides an overview of the association of FSs with neurodevelopmental outcomes, outlining both the underlying mechanisms and the possible appropriate clinical biomarkers, from histological changes to cellular molecular mechanisms. The hippocampus is the brain region most significantly altered after FSs, but the motor cortex and subcortical white matter may also be involved in the development disorders induced by FSs. The occurrence of multiple diseases after FSs may share common mechanisms, and the long-term role of inflammation and γ-aminobutyric acid (GABA) system are currently well studied.
Collapse
Affiliation(s)
- You Yi
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Zhong
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hu Wei-wei
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Harris SA, George AG, Barrett KT, Scantlebury MH, Teskey GC. Febrile seizures lead to prolonged epileptiform activity and hyperoxia that when blocked prevents learning deficits. Epilepsia 2022; 63:2650-2663. [DOI: 10.1111/epi.17371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Sydney A. Harris
- Hotchkiss Brain Institute University of Calgary Calgary AB Canada
- Alberta Children’s Hospital Research Institute University of Calgary Calgary AB Canada
| | - Antis G. George
- Hotchkiss Brain Institute University of Calgary Calgary AB Canada
| | - Karlene T. Barrett
- Hotchkiss Brain Institute University of Calgary Calgary AB Canada
- Alberta Children’s Hospital Research Institute University of Calgary Calgary AB Canada
- Departments of Pediatrics and Clinical Neurosciences University of Calgary Calgary AB Canada
| | - Morris H. Scantlebury
- Hotchkiss Brain Institute University of Calgary Calgary AB Canada
- Alberta Children’s Hospital Research Institute University of Calgary Calgary AB Canada
- Departments of Pediatrics and Clinical Neurosciences University of Calgary Calgary AB Canada
| | - G. Campbell Teskey
- Hotchkiss Brain Institute University of Calgary Calgary AB Canada
- Alberta Children’s Hospital Research Institute University of Calgary Calgary AB Canada
- Department of Cell Biology and Anatomy University of Calgary Calgary AB Canada
| |
Collapse
|
7
|
Dimitrijevic S, Jekic B, Cvjeticanin S, Tucovic A, Filipovic T, Novaković I, Ivić B, Nikolic D. KCC2 rs2297201 Gene Polymorphism Might be a Predictive Genetic Marker of Febrile Seizures. ASN Neuro 2022; 14:17590914221093257. [PMID: 35414199 PMCID: PMC9016559 DOI: 10.1177/17590914221093257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction: Febrile seizures (FS) are the most common neurological
disease in childhood. The etiology of FS is the subject of numerous studies
including studies regarding genetic predisposition. Aim: The aim of
the study was to analyze the association of TRPV1 rs222747 and
KCC2 rs2297201 gene polymorphisms with the occurrence of
FS. Materials and Methods: The study included 112 patients
diagnosed with FS classified as simple febrile seizures (SFS) or complex febrile
seizures (CFS). We analyzed selected polymorphisms of KCC2 and
TRPV1 genes using the Real-time PCR method.
Results: The CT and TT genotypes of the rs2297201 polymorphism
of the KCC2 gene are significantly more common in the group of
children with FS than the control group (p = .002) as well as
the allele T of this polymorphism (p = .045). Additionally,
genotypes CT and TT of the rs2297201 polymorphism of the KCC2
gene were more frequent in the group of children with CFS compared to the
control group (p < .001). Different genotypes and alleles of
the rs222747 TRPV1 gene polymorphism were not associated with
the occurrence of febrile seizures or epilepsy, nor were associated with the
occurrence of a particular type of febrile seizure (p = .252).
Conclusion: These results indicate that the CT and TT
genotypes, as well as the T allele of rs2297201 polymorphism of the
KCC2 gene, could be a predisposing factor for the FS, as
well as the occurrence of CFS.
Collapse
Affiliation(s)
- Sanja Dimitrijevic
- Special Hospital for Cerebral Palsy and Developmental Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Biljana Jekic
- Institute of Human Genetics, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Suzana Cvjeticanin
- Institute of Human Genetics, School of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Tamara Filipovic
- Institute for Rehabilitation, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Novaković
- Institute of Human Genetics, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bojana Ivić
- University Clinic for Gynecology and Obstetrics “Narodni front”, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dimitrije Nikolic
- University Children’s Hospital Tiršova, School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Choudhary A, Mu C, Barrett KT, Charkhand B, Williams-Dyjur C, Marks WN, Shearer J, Rho JM, Scantlebury MH. The link between brain acidosis, breathing and seizures: a novel mechanism of action for the ketogenic diet in a model of infantile spasms. Brain Commun 2021; 3:fcab189. [PMID: 34734183 DOI: 10.1093/braincomms/fcab189] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2021] [Indexed: 11/12/2022] Open
Abstract
Infantile spasms (IS) syndrome is a catastrophic, epileptic encephalopathy of infancy that is often refractory to current antiepileptic therapies. The ketogenic diet (KD) has emerged as an alternative treatment for patients with medically intractable epilepsy, though the prospective validity and mechanism of action for IS remains largely unexplored. We investigated the KD's efficacy as well as its mechanism of action in a rodent model of intractable IS. The spasms were induced using the triple-hit paradigm and the animals were then artificially reared and put on either the KD (4:1 fats: carbohydrate + protein) or a control milk diet (CM; 1.7:1). 31Phosphorus magnetic resonance spectroscopy (31P MRS) and head-out plethysmography were examined in conjunction with continuous video-EEG behavioural recordings in lesioned animals and sham-operated controls. The KD resulted in a peripheral ketosis observed both in the blood and urine. The KD led to a robust reduction in the frequency of spasms observed, with approximately a 1.5-fold increase in the rate of survival. Intriguingly, the KD resulted in an intracerebral acidosis as measured with 31P MRS. In addition, the respiratory profile of the lesioned rats on the KD was significantly altered with slower, deeper and longer breathing, resulting in decreased levels of expired CO2. Sodium bicarbonate supplementation, acting as a pH buffer, partially reversed the KD's protective effects on spasm frequency. There were no differences in the mitochondrial respiratory profiles in the liver and brain frontal cortex measured between the groups, supporting the notion that the effects of the KD on breathing are not entirely due to changes in intermediary metabolism. Together, our results indicate that the KD produces its anticonvulsant effects through changes in respiration leading to intracerebral acidosis. These findings provide a novel understanding of the mechanisms underlying the anti-seizure effects of the KD in IS. Further research is required to determine whether the effects of the KD on breathing and intracerebral acid-base balance are seen in other paediatric models of epilepsy.
Collapse
Affiliation(s)
- Anamika Choudhary
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary Alberta, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Chunlong Mu
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary Alberta, Calgary, Alberta, Canada.,Department of Biochemistry & Molecular Biology, Cumming School of Medicine and Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Karlene T Barrett
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary Alberta, Calgary, Alberta, Canada
| | - Behshad Charkhand
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christine Williams-Dyjur
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wendie N Marks
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary Alberta, Calgary, Alberta, Canada.,Department of Biochemistry & Molecular Biology, Cumming School of Medicine and Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jane Shearer
- Alberta Children's Hospital Research Institute, University of Calgary Alberta, Calgary, Alberta, Canada.,Department of Biochemistry & Molecular Biology, Cumming School of Medicine and Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jong M Rho
- Departments of Neurosciences and Pediatrics, University of California San Diego (UCSD), San Diego, CA, USA
| | - Morris H Scantlebury
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary Alberta, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Wolf DC, Desgent S, Sanon NT, Chen JS, Elkaim LM, Bosoi CM, Awad PN, Simard A, Salam MT, Bilodeau GA, Duss S, Sawan M, Lewis EC, Weil AG. Sex differences in the developing brain impact stress-induced epileptogenicity following hyperthermia-induced seizures. Neurobiol Dis 2021; 161:105546. [PMID: 34742878 DOI: 10.1016/j.nbd.2021.105546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
Febrile seizures (FS) are common, affecting 2-5% of children between the ages of 3 months and 6 years. Complex FS occur in 10% of patients with FS and are strongly associated with mesial temporal lobe epilepsy. Current research suggests that predisposing factors, such as genetic and anatomic abnormalities, may be necessary for complex FS to translate to mesial temporal lobe epilepsy. Sex hormones are known to influence seizure susceptibility and epileptogenesis, but whether sex-specific effects of early life stress play a role in epileptogenesis is unclear. Here, we investigate sex differences in the activity of the hypothalamic-pituitary-adrenal (HPA) axis following chronic stress and the underlying contributions of gonadal hormones to the susceptibility of hyperthermia-induced seizures (HS) in rat pups. Chronic stress consisted of daily injections of 40 mg/kg of corticosterone (CORT) subcutaneously from postnatal day (P) 1 to P9 in male and female rat pups followed by HS at P10. Body mass, plasma CORT levels, temperature threshold to HS, seizure characteristics, and electroencephalographic in vivo recordings were compared between CORT- and vehicle (VEH)-injected littermates during and after HS at P10. In juvenile rats (P18-P22), in vitro CA1 pyramidal cell recordings were recorded in males to investigate excitatory and inhibitory neuronal circuits. Results show that daily CORT injections increased basal plasma CORT levels before HS and significantly reduced weight gain and body temperature threshold of HS in both males and females. CORT also significantly lowered the generalized convulsions (GC) latency while increasing recovery time and the number of electrographic seizures (>10s), which had longer duration. Furthermore, sex-specific differences were found in response to chronic CORT injections. Compared to females, male pups had increased basal plasma CORT levels after HS, longer recovery time and a higher number of electrographic seizures (>10s), which also had longer duration. Sex-specific differences were also found at baseline conditions with lower latency to generalized convulsions and longer duration of electrographic seizures in males but not in females. In juvenile male rats, the amplitude of evoked excitatory postsynaptic potentials, as well as the amplitude of inhibitory postsynaptic currents, were significantly greater in CORT rats when compared to VEH littermates. These findings not only validate CORT injections as a stress model, but also show a sex difference in baseline conditions as well as a response to chronic CORT and an impact on seizure susceptibility, supporting a potential link between sustained early-life stress and complex FS. Overall, these effects also indicate a putatively less severe phenotype in female than male pups. Ultimately, studies investigating the biological underpinnings of sex differences as a determining factor in mental and neurologic problems are necessary to develop better diagnostic, preventative, and therapeutic approaches for all patients regardless of their sex.
Collapse
Affiliation(s)
- Daniele C Wolf
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada; Département de Neurosciences, Université de Montréal, Québec, Canada.
| | - Sébastien Desgent
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada; Département de Neurosciences, Université de Montréal, Québec, Canada
| | - Nathalie T Sanon
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada
| | - Jia-Shu Chen
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Lior M Elkaim
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Ciprian M Bosoi
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada
| | - Patricia N Awad
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada
| | - Alexe Simard
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada
| | - Muhammad T Salam
- Laboratoire Polystim, Département de génie électrique, Polytechnique Montréal, Montréal, Québec, Canada
| | - Guillaume-Alexandre Bilodeau
- LITIV Lab., Département de génie informatique et génie logiciel, Polytechnique Montréal, Montréal, Québec, Canada
| | - Sandra Duss
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada
| | - Mohamad Sawan
- Laboratoire Polystim, Département de génie électrique, Polytechnique Montréal, Montréal, Québec, Canada
| | | | - Alexander G Weil
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada; Département de Neurosciences, Université de Montréal, Québec, Canada; Neurosurgery Service, Department of Surgery, Université de Montréal, Québec, Canada
| |
Collapse
|
10
|
Expression Pattern of ALOXE3 in Mouse Brain Suggests Its Relationship with Seizure Susceptibility. Cell Mol Neurobiol 2020; 42:777-790. [PMID: 33058074 DOI: 10.1007/s10571-020-00974-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/27/2020] [Indexed: 10/23/2022]
Abstract
Arachidonic acid (AA), a polyunsaturated fatty acid, is involved in the modulation of neuronal excitability in the brain. Arachidonate lipoxygenase 3 (ALOXE3), a critical enzyme in the AA metabolic pathway, catalyzes the derivate of AA into hepoxilins. However, the expression pattern of ALOXE3 and its role in the brain has not been described until now. Here we showed that the levels of Aloxe3 mRNA and protein kept increasing since birth and reached the highest level at postnatal day 30 in the mouse hippocampus and temporal cortex. Histomorphological analyses indicated that ALOXE3 was enriched in adult hippocampus, somatosensory cortex and striatum. The distribution was restricted to the neurites of function-specific subregions, such as mossy fibre connecting hilus and CA3 neurons, termini of Schaffer collateral projections, and the layers III and IV of somatosensory cortex. The spatiotemporal expression pattern of ALOXE3 suggests its potential role in the modulation of neural excitability and seizure susceptibility. In fact, decreased expression of ALOXE3 and elevated concentration of AA in the hippocampus was found after status epilepticus (SE) induced by pilocarpine. Local overexpression of ALOXE3 via adeno-associated virus gene transfer restored the elevated AA level induced by SE, alleviated seizure severities by increasing the latencies to myclonic switch, clonic convulsions and tonic hindlimb extensions, and decreased the mortality rate in the pilocarpine-induced SE model. These results suggest that the expression of ALOXE3 is a crucial regulator of AA metabolism in brain, and potentially acts as a regulator of neural excitability, thereby controlling brain development and seizure susceptibility.
Collapse
|
11
|
Garami A, Shimansky YP, Rumbus Z, Vizin RCL, Farkas N, Hegyi J, Szakacs Z, Solymar M, Csenkey A, Chiche DA, Kapil R, Kyle DJ, Van Horn WD, Hegyi P, Romanovsky AA. Hyperthermia induced by transient receptor potential vanilloid-1 (TRPV1) antagonists in human clinical trials: Insights from mathematical modeling and meta-analysis. Pharmacol Ther 2020; 208:107474. [PMID: 31926897 DOI: 10.1016/j.pharmthera.2020.107474] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
Abstract
Antagonists of the transient receptor potential vanilloid-1 (TRPV1) channel alter body temperature (Tb) in laboratory animals and humans: most cause hyperthermia; some produce hypothermia; and yet others have no effect. TRPV1 can be activated by capsaicin (CAP), protons (low pH), and heat. First-generation (polymodal) TRPV1 antagonists potently block all three TRPV1 activation modes. Second-generation (mode-selective) TRPV1 antagonists potently block channel activation by CAP, but exert different effects (e.g., potentiation, no effect, or low-potency inhibition) in the proton mode, heat mode, or both. Based on our earlier studies in rats, only one mode of TRPV1 activation - by protons - is involved in thermoregulatory responses to TRPV1 antagonists. In rats, compounds that potently block, potentiate, or have no effect on proton activation cause hyperthermia, hypothermia, or no effect on Tb, respectively. A Tb response occurs when a TRPV1 antagonist blocks (in case of hyperthermia) or potentiates (hypothermia) the tonic TRPV1 activation by protons somewhere in the trunk, perhaps in muscles, and - via the acido-antithermogenic and acido-antivasoconstrictor reflexes - modulates thermogenesis and skin vasoconstriction. In this work, we used a mathematical model to analyze Tb data from human clinical trials of TRPV1 antagonists. The analysis suggests that, in humans, the hyperthermic effect depends on the antagonist's potency to block TRPV1 activation not only by protons, but also by heat, while the CAP activation mode is uninvolved. Whereas in rats TRPV1 drives thermoeffectors by mediating pH signals from the trunk, but not Tb signals, our analysis suggests that TRPV1 mediates both pH and thermal signals driving thermoregulation in humans. Hence, in humans (but not in rats), TRPV1 is likely to serve as a thermosensor of the thermoregulation system. We also conducted a meta-analysis of Tb data from human trials and found that polymodal TRPV1 antagonists (ABT-102, AZD1386, and V116517) increase Tb, whereas the mode-selective blocker NEO6860 does not. Several strategies of harnessing the thermoregulatory effects of TRPV1 antagonists in humans are discussed.
Collapse
Affiliation(s)
- Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.
| | - Yury P Shimansky
- Department of Neurobiology, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | - Zoltan Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Robson C L Vizin
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, AZ, USA
| | - Nelli Farkas
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Judit Hegyi
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Zsolt Szakacs
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Margit Solymar
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Alexandra Csenkey
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | | | | | | | - Wade D Van Horn
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Peter Hegyi
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pecs, Pecs, Hungary; Department of Translational Medicine, First Department of Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Andrej A Romanovsky
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, AZ, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, USA; Zharko Pharma Inc., Olympia, WA, USA.
| |
Collapse
|
12
|
Cao S, Li Q, Hou J, Li Z, Cao X, Liu X, Qin B. Intrathecal TRPM8 blocking attenuates cold hyperalgesia via PKC and NF-κB signaling in the dorsal root ganglion of rats with neuropathic pain. J Pain Res 2019; 12:1287-1296. [PMID: 31114308 PMCID: PMC6497852 DOI: 10.2147/jpr.s197168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/27/2019] [Indexed: 12/23/2022] Open
Abstract
Background: TRPM8 channel plays central roles in the sensitization of nociceptive transduction and is thought as one of the potential targets for the treatment of neuropathic pain. However, the specific molecular mechanisms are still less clear. Methods: Sciatic chronic constriction injury (CCI) rats were intrathecally administered with AMTB (TRPM8-selective antagonist) or PDTC (nuclear factor-kappa B (NF-κB) inhibitor). Cold-, thermal- and mechanical-pain thresholds were examined in CCI and sham-operated rats before and after intrathecal administration of AMTB or PDTC. Protein expression levels of TRPM8 and NF-κB p65, p-PKC/PKC value and p-PKA/PKA value in the CCI ipsilateral L4-6 dorsal root ganglions (DRGs) were analyzed. In addition, the co-expression of TRPM8 and NF-κB was evaluated in DRG. Results: Intrathecal injection of AMTB decreased the cold hypersensitivity and aggravated the thermal-hyperalgesia in the next 2 weeks after CCI surgery. The protein expression of TRPM8 and NF-κB p65 in the ipsilateral DRGs significantly increased after CCI surgery, which can be reversed by intrathecal administration of AMTB. The PKC, PKA, p-PKC/PKC and p-PKA/PKA values showed significantly increase after CCI surgery, while intrathecal AMTB administration offset the expression increase of PKC, p-PKC and p-PKC/PKC but PKA or p-PKA/PKA in the DRG. NF-κB inhibitor not only efficiently increased the cold-, thermal-pain threshold of CCI rats, but also enhanced AMTB’s anti-cold pain effect although exerted no anti-thermal hyperalgesia effect compared with TRPM8 blockade group. Immunofluorescence results showed co-expression of TRPM8 and NF-κB in DRG neurons. Conclusion: TRPM8 channels in DRGs participate in the pathogenesis of cold and thermal hyperalgesia (not mechanical allodynia) in rats with neuropathic pain, which could be regulated by PKC (not PKA) and NF-κB signaling. TRPM8 channel, PKC and NF-κB are potential targets for cold hyperalgesia treatment in neuropathic pain patients.
Collapse
Affiliation(s)
- Song Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Qingmei Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Jingfeng Hou
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Zhourui Li
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Xinya Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Xiaohong Liu
- Department of Physiology, Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Bangyong Qin
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| |
Collapse
|
13
|
Patrone LGA, Duarte JB, Bícego KC, Steiner AA, Romanovsky AA, Gargaglioni LH. TRPV1 Inhibits the Ventilatory Response to Hypoxia in Adult Rats, but Not the CO₂-Drive to Breathe. Pharmaceuticals (Basel) 2019; 12:ph12010019. [PMID: 30682830 PMCID: PMC6469189 DOI: 10.3390/ph12010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/27/2018] [Accepted: 12/07/2018] [Indexed: 12/31/2022] Open
Abstract
Receptors of the transient receptor potential (TRP) channels superfamily are expressed in many tissues and have different physiological functions. However, there are few studies investigating the role of these channels in cardiorespiratory control in mammals. We assessed the role of central and peripheral TRPV1 receptors in the cardiorespiratory responses to hypoxia (10% O2) and hypercapnia (7% CO2) by measuring pulmonary ventilation (V˙E), heart rate (HR), mean arterial pressure (MAP) and body temperature (Tb) of male Wistar rats before and after intraperitoneal (AMG9810 [2.85 µg/kg, 1 mL/kg]) or intracebroventricular (AMG9810 [2.85 µg/kg, 1 µL] or AMG7905 [28.5 μg/kg, 1 µL]) injections of TRPV1 antagonists. Central or peripheral injection of TRPV1 antagonists did not change cardiorespiratory parameters or Tb during room air and hypercapnic conditions. However, the hypoxic ventilatory response was exaggerated by both central and peripheral injection of AMG9810. In addition, the peripheral antagonist blunted the drop in Tb induced by hypoxia. Therefore, the current data provide evidence that TRPV1 channels exert an inhibitory modulation on the hypoxic drive to breathe and stimulate the Tb reduction during hypoxia.
Collapse
Affiliation(s)
- Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinarian Sciences, UNESP at Jaboticabal, Rod. Prof. Paulo Donato Castellane s/n, Jaboticabal SP 14870-000, Brazil.
| | - Jaime B Duarte
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinarian Sciences, UNESP at Jaboticabal, Rod. Prof. Paulo Donato Castellane s/n, Jaboticabal SP 14870-000, Brazil.
| | - Kênia Cardoso Bícego
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinarian Sciences, UNESP at Jaboticabal, Rod. Prof. Paulo Donato Castellane s/n, Jaboticabal SP 14870-000, Brazil.
| | - Alexandre A Steiner
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-090, Brazil.
| | - Andrej A Romanovsky
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA.
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinarian Sciences, UNESP at Jaboticabal, Rod. Prof. Paulo Donato Castellane s/n, Jaboticabal SP 14870-000, Brazil.
| |
Collapse
|