1
|
Eskandari S, Rezayof A, Asghari SM, Hashemizadeh S. Neurobiochemical characteristics of arginine-rich peptides explain their potential therapeutic efficacy in neurodegenerative diseases. Neuropeptides 2023; 101:102356. [PMID: 37390744 DOI: 10.1016/j.npep.2023.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Neurodegenerative diseases, including Alzheimer̕ s disease (AD), Parkinson̕ s disease (PD), Huntington̕ s disease (HD), and Amyotrophic Lateral Sclerosis (ALS) require special attention to find new potential treatment methods. This review aims to summarize the current knowledge of the relationship between the biochemical properties of arginine-rich peptides (ARPs) and their neuroprotective effects to deal with the harmful effects of risk factors. It seems that ARPs have portrayed a promising and fantastic landscape for treating neurodegeneration-associated disorders. With multimodal mechanisms of action, ARPs play various unprecedented roles, including as the novel delivery platforms for entering the central nervous system (CNS), the potent antagonists for calcium influx, the invader molecules for targeting mitochondria, and the protein stabilizers. Interestingly, these peptides inhibit the proteolytic enzymes and block protein aggregation to induce pro-survival signaling pathways. ARPs also serve as the scavengers of toxic molecules and the reducers of oxidative stress agents. They also have anti-inflammatory, antimicrobial, and anti-cancer properties. Moreover, by providing an efficient nucleic acid delivery system, ARPs can play an essential role in developing various fields, including gene vaccines, gene therapy, gene editing, and imaging. ARP agents and ARP/cargo therapeutics can be raised as an emergent class of neurotherapeutics for neurodegeneration. Part of the aim of this review is to present recent advances in treating neurodegenerative diseases using ARPs as an emerging and powerful therapeutic tool. The applications and progress of ARPs-based nucleic acid delivery systems have also been discussed to highlight their usefulness as a broad-acting class of drugs.
Collapse
Affiliation(s)
- Sedigheh Eskandari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - S Mohsen Asghari
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| | - Shiva Hashemizadeh
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, IPM, Tehran, Iran
| |
Collapse
|
2
|
Song NN, Zhao Y, Sun C, Zhang J, Lin GJ, Yin XW, Ma CY. DUSP10 alleviates ischemic stroke-induced neuronal damage by restricting p38/JNK pathway. Behav Brain Res 2023; 450:114478. [PMID: 37164190 DOI: 10.1016/j.bbr.2023.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/23/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Neuronal apoptosis is considered one of the hallmarks of ischemic stroke. Dual specificity phosphatase 10 (DUSP10), a member of the dual-specificity phosphatase family, which is involved in the regulation of apoptosis process. This study aimed to investigate the effect of on apoptosis in primary cortical neurons exposed to oxygen-glucose deprivation and reoxygenation (OGD/R) and mice suffered from transient middle cerebral artery occlusion and reperfusion (MCAO/R). The results showed that DUSP10 overexpression improved survival and reduced apoptosis in neurons subjected to OGD/R, which was manifested by decreased apoptotic proteins (cleaved caspase 3 and bax) and TUNEL+ cells, as well as increased the anti-apoptotic protein (bcl-2). DUSP10 overexpression inhibited the p38/JNK signaling pathway after OGD/R treatment, whilst DUSP10 knockdown had opposite effects. In addition, the p38 inhibitor SB203580 or JNK inhibitor SP600125 attenuated the increased apoptosis of OGD/R-stimulated neurons treated with DUSP10 silencing. Consistently, DUSP10 knockdown exacerbated infarct volume in MCAO/R injury. The data of Nissl staining and TUNEL-NeuN double staining revealed that DUSP10 interference aggravated neuronal damage in the ischemic penumbra of mice. Furthermore, DUSP10 inhibition activated the p38/JNK axis accompanied by enhanced phosphorylation of p38 and JNK in vivo. In summary, DUSP10 is a neuroprotective agent against ischemic stroke-induced neuronal damage via suppressing the p38/JNK signaling pathway.
Collapse
Affiliation(s)
- Ni-Na Song
- Department of Neurology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ying Zhao
- Department of Neurology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chuang Sun
- Department of Radiology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jun Zhang
- Department of Neurology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Guang-Jun Lin
- Department of Neurology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiao-Wei Yin
- Department of Neurology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chun-Ye Ma
- Department of Neurology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
3
|
Tahmasbi F, Madani Neishaboori A, Mardani M, Toloui A, Komlakh K, Azizi Y, Yousefifard M. Efficacy of polyarginine peptides in the treatment of stroke: A systematic review and meta-analysis. Brain Behav 2023; 13:e2858. [PMID: 36542540 PMCID: PMC9847609 DOI: 10.1002/brb3.2858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 11/27/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Disparities exist regarding an efficient treatment for stroke. Polyarginines have shown promising neuroprotective properties based on available published studies. Thus, the present study aims to systemically review and analyze existing evidence regarding polyarginine's administration efficacy in animal stroke models. METHOD Medline, Scopus, Embase, and Web of Science were systematically searched, in addition to manual search. Inclusion criteria were administrating polyarginine peptides in stroke animal models. Exclusion criteria were previous polyarginine administration, lacking a control group, review articles, and case reports. Data were collected and analyzed using STATA 17.0; a pooled standardized mean difference (SMD) with a 95% confidence interval (CI), meta-regression, and subgroup analyses were presented. Risk of bias, publication bias, and level of evidence were assessed using SYRCLE's tool, Egger's analysis, and Grading of Recommendations Assessment, Development and Evaluation framework, respectively. RESULTS From the 468 searched articles, 11 articles were included. Analyses showed that R18 significantly decreases infarct size (SMD = -0.65; 95% CI: -1.01, -0.29) and brain edema (SMD = -1.90; 95% CI: -3.28, -0.51) and improves neurological outcome (SMD = 0.67; 95% CI: 0.44, 0.91) and functional status (SMD = 0.55; 95% CI: 0.26, 0.85) in stroke animal models. Moreover, R18D significantly decreases infarct size (SMD = -0.75; 95% CI: -1.17, -0.33) and improves neurological outcome (SMD = 0.46; 95% CI: 0.06, 0.86) and functional status (SMD = 0.35; 95% CI: 0.16, 0.54) in stroke models. CONCLUSION Moderate level of evidence demonstrated that both R18 and R18D administration can significantly improve stroke outcomes in animal stroke models. However, considering the limitations, further pre-clinical and clinical studies are warranted to substantiate the neuroprotective efficacy of polyarginines for stroke.
Collapse
Affiliation(s)
- Fateme Tahmasbi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahta Mardani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Toloui
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Khalil Komlakh
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yaser Azizi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Chiu LS, Anderton RS. The role of the microbiota-gut-brain axis in long-term neurodegenerative processes following traumatic brain injury. Eur J Neurosci 2023; 57:400-418. [PMID: 36494087 PMCID: PMC10107147 DOI: 10.1111/ejn.15892] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) can be a devastating and debilitating disease to endure. Due to improvements in clinical practice, declining mortality rates have led to research into the long-term consequences of TBI. For example, the incidence and severity of TBI have been associated with an increased susceptibility of developing neurodegenerative disorders, such as Parkinson's or Alzheimer's disease. However, the mechanisms linking this alarming association are yet to be fully understood. Recently, there has been a groundswell of evidence implicating the microbiota-gut-brain axis in the pathogenesis of these diseases. Interestingly, survivors of TBI often report gastrointestinal complaints and animal studies have demonstrated gastrointestinal dysfunction and dysbiosis following injury. Autonomic dysregulation and chronic inflammation appear to be the main driver of these pathologies. Consequently, this review will explore the potential role of the microbiota-gut-brain axis in the development of neurodegenerative diseases following TBI.
Collapse
Affiliation(s)
- Li Shan Chiu
- School of Medicine, The University Notre Dame Australia, Fremantle, Western Australia, Australia
- Ear Science Institute Australia, Nedlands, Western Australia, Australia
| | - Ryan S Anderton
- Institute for Health Research, The University Notre Dame Australia, Fremantle, Western Australia, Australia
| |
Collapse
|
5
|
Impact of poly-arginine peptides R18D and R18 on alteplase and tenecteplase thrombolysis in vitro, and neuroprotective stability to proteolysis. J Thromb Thrombolysis 2022; 54:172-182. [PMID: 35305237 PMCID: PMC9259545 DOI: 10.1007/s11239-022-02642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 10/26/2022]
Abstract
The poly-arginine peptides R18D and R18 represent novel potential neuroprotective treatments for acute ischaemic stroke. Here we examined whether R18D and R18 had any significant effects on the thrombolytic activity of alteplase (tPA) and tenecteplase (TNK) on clots formed from whole blood in an in vitro thrombolysis plate assay. R18D and R18 were examined at concentrations of 0.25, 0.5, 1, 2, 4, 8 and 16 µM during the 1-h thrombolytic assay. We also included the well-characterised neuroprotective NA-1 peptide as a control. R18D, R18 and NA-1 all reduced tPA or TNK percentage clot lysis by 0-9.35%, 0-3.44% and 0-4.8%, respectively. R18D, R18 and NA-1 had a modest and variable effect on the lag time, increasing the time to the commencement of thrombolysis by 0-9.9 min, 0-5.53 min and 0-7.16 min, respectively. Lastly, R18 and NA-1 appeared to increase the maximal activity of the thrombolysis reaction. In addition, the in vitro anti-excitotoxic neuroprotective efficacy of R18D and R18 was not affected by pre-incubation for 1-2 h or overnight with tPA or TNK, whereas only R18D retained high anti-excitotoxic neuroprotective efficacy when pre-incubated in a synthetic trypsin (TrypLE Express). The present in vitro findings suggest that neither R18D or R18 when co-administered with the thrombolytic inducing agents tPA or TNK are likely to have a significant impact when used clinically during clot thrombolysis and confirm the superior proteolytic stability of the R18D peptide.
Collapse
|
6
|
Li C, Zhang S, Zhu J, Huang W, Luo Y, Shi H, Yu D, Chen L, Song L, Yu R. A Novel Peptide Derived from Arca inflata Induces Apoptosis in Colorectal Cancer Cells through Mitochondria and the p38 MAPK Pathway. Mar Drugs 2022; 20:md20020110. [PMID: 35200639 PMCID: PMC8875476 DOI: 10.3390/md20020110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal carcinoma (CRC) is one of the major causes of cancer-related incidence and deaths. Here, we identified a novel antitumor peptide, P6, with a molecular weight of 2794.8 Da from a marine Chinese medicine, Arca inflata Reeve. The full amino acid sequence and secondary structure of P6 were determined by tandem mass de novo sequencing and circular dichroism spectroscopy, respectively. P6 markedly inhibited cell proliferation and colony formation, and induced apoptosis in CRC cells. Mechanistically, transcriptomics analysis and a serial functional evaluation showed that P6 induced colon cancer cell apoptosis through the activation of the p38-MAPK signaling pathway. Moreover, it was demonstrated that P6 exhibited antitumor effects in a tumor xenograft model, and induced cell cycle arrest in CRC cells in a concentration-dependent mode. These findings provide the first line of indication that P6 could be a potential therapeutic agent for CRC treatment.
Collapse
Affiliation(s)
- Chunlei Li
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; (C.L.); (J.Z.); (Y.L.); (H.S.)
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Sirui Zhang
- Department of Pharmacology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; (S.Z.); (W.H.)
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; (C.L.); (J.Z.); (Y.L.); (H.S.)
- Department of Natural Product Chemistry, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Weijuan Huang
- Department of Pharmacology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; (S.Z.); (W.H.)
| | - Yuanyuan Luo
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; (C.L.); (J.Z.); (Y.L.); (H.S.)
| | - Hui Shi
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; (C.L.); (J.Z.); (Y.L.); (H.S.)
| | - Dongbo Yu
- Department of Cardiovascular Care, ThedaCare Regional Medical Center, Appleton, WI 54911, USA;
| | - Liguo Chen
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
- Institute of Integrated Chinese & Western Medicine, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- Correspondence: (L.C.); (L.S.); (R.Y.); Tel.: +86-20-85226476 (L.C.); +86-20-85228205 (L.S.); +86-20-85220386 (R.Y.); Fax: +86-20-85226476 (L.C.); +86-20-85224766 (R.Y.)
| | - Liyan Song
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; (C.L.); (J.Z.); (Y.L.); (H.S.)
- Department of Pharmacology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; (S.Z.); (W.H.)
- Correspondence: (L.C.); (L.S.); (R.Y.); Tel.: +86-20-85226476 (L.C.); +86-20-85228205 (L.S.); +86-20-85220386 (R.Y.); Fax: +86-20-85226476 (L.C.); +86-20-85224766 (R.Y.)
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; (C.L.); (J.Z.); (Y.L.); (H.S.)
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
- Department of Natural Product Chemistry, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- Correspondence: (L.C.); (L.S.); (R.Y.); Tel.: +86-20-85226476 (L.C.); +86-20-85228205 (L.S.); +86-20-85220386 (R.Y.); Fax: +86-20-85226476 (L.C.); +86-20-85224766 (R.Y.)
| |
Collapse
|
7
|
Mamsa SSA, Meloni BP. Arginine and Arginine-Rich Peptides as Modulators of Protein Aggregation and Cytotoxicity Associated With Alzheimer's Disease. Front Mol Neurosci 2021; 14:759729. [PMID: 34776866 PMCID: PMC8581540 DOI: 10.3389/fnmol.2021.759729] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/29/2021] [Indexed: 01/10/2023] Open
Abstract
A substantial body of evidence indicates cationic, arginine-rich peptides (CARPs) are effective therapeutic compounds for a range of neurodegenerative pathologies, with beneficial effects including the reduction of excitotoxic cell death and mitochondrial dysfunction. CARPs, therefore, represent an emergent class of promising neurotherapeutics with multimodal mechanisms of action. Arginine itself is a known chaotrope, able to prevent misfolding and aggregation of proteins. The putative role of proteopathies in chronic neurodegenerative diseases such as Alzheimer's disease (AD) warrants investigation into whether CARPs could also prevent the aggregation and cytotoxicity of amyloidogenic proteins, particularly amyloid-beta and tau. While monomeric arginine is well-established as an inhibitor of protein aggregation in solution, no studies have comprehensively discussed the anti-aggregatory properties of arginine and CARPs on proteins associated with neurodegenerative disease. Here, we review the structural, physicochemical, and self-associative properties of arginine and the guanidinium moiety, to explore the mechanisms underlying the modulation of protein aggregation by monomeric and multimeric arginine molecules. Arginine-rich peptide-based inhibitors of amyloid-beta and tau aggregation are discussed, as well as further modulatory roles which could reduce proteopathic cytotoxicity, in the context of therapeutic development for AD.
Collapse
Affiliation(s)
- Somayra S A Mamsa
- School of Molecular Sciences, Faculty of Science, The University of Western Australia, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science, QEII Medical Centre, Perth, WA, Australia
| | - Bruno P Meloni
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Perth, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Crawley, WA, Australia.,Department of Neurology, Sir Charles Gairdner Hospital, QEII Medical Centre, Perth, WA, Australia
| |
Collapse
|
8
|
Duan C, Hu J, Liu R, Dai J, Duan M, Yuan L, Xia F, Lou X. Spatial Order of Functional Modules Enabling Diverse Intracellular Performance of Fluorescent Probes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Chong Duan
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430078 China
| | - Jing‐Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430078 China
| | - Rui Liu
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430078 China
| | - Jun Dai
- Department of Obstetrics and Gynecology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Mojie Duan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
| | - Lizhen Yuan
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430078 China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430078 China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430078 China
| |
Collapse
|
9
|
Increased biological antioxidant potential in the cerebrospinal fluid of transient global amnesia patients. Sci Rep 2021; 11:15861. [PMID: 34354147 PMCID: PMC8342448 DOI: 10.1038/s41598-021-95343-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/05/2021] [Indexed: 11/09/2022] Open
Abstract
Oxidative stress may accompany the pathological process in transient global amnesia (TGA). We measured the biological antioxidant potential (BAP) in the cerebrospinal fluid (CSF) of TGA patients. We enrolled 13 TGA patients (7 men, 6 women; mean age 65.0 years [48–70 years]) and 24 control subjects (12 men, 12 women; mean age 38.2 years [17–65 years]; age did not correlate with csfBAP in this group). We performed brain MRI in all TGA patients, and CA1 lesions were noted by MRI in 5 subjects. We measured csfBAP, total antioxidant properties, in all TGA patients and controls. csfBAP levels were higher in TGA patients than in controls (p = 0.024, 0.028). csfBAP levels in TGA patients did not differ between MRI-positive and -negative subgroups. Elevated csfBAP levels were observed in TGA patients, suggesting that oxidative stress may have a role in the pathogenesis of TGA.
Collapse
|
10
|
Duan C, Hu JJ, Liu R, Dai J, Duan M, Yuan L, Xia F, Lou X. Spatial Order of Functional Modules Enabling Diverse Intracellular Performance of Fluorescent Probes. Angew Chem Int Ed Engl 2021; 60:18280-18288. [PMID: 34081387 DOI: 10.1002/anie.202106195] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 12/15/2022]
Abstract
To overcome a series of challenges in tumor therapy, modular-agent probes (MAPs) comprised of various functional modules have been proposed. Researchers have tried to optimize the MAPs by exploiting the new modules or increasing the numbers of module, while neglecting the configuration of various modules. Here, we focus on the different spatial arrangements of existing modules. By utilizing a tetraphenylethylene (TPE) derivative with stereochemical structure and dual modifiable end-group sites as small molecule scaffold, two MAPs with same modular agents (module T for enhancing the internalization of MAPs by tumor cells and module M for causing mitochondrial dysfunction) but different spatial arrangements (on the one side, TM-AIE, and two sides, T-AIE-M, of the molecule scaffold) are designed. T-AIE-M with larger RGD binding angle performed higher specificity, while TM-AIE characterizing longer α-helix structure displayed superior toxicity.
Collapse
Affiliation(s)
- Chong Duan
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Rui Liu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mojie Duan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lizhen Yuan
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| |
Collapse
|
11
|
Perlikowska R. Whether short peptides are good candidates for future neuroprotective therapeutics? Peptides 2021; 140:170528. [PMID: 33716091 DOI: 10.1016/j.peptides.2021.170528] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases are a broad group of largely debilitating, and ultimately terminal conditions resulting in progressive degeneration of different brain regions. The observed damages are associated with cell death, structural and functional deficits of neurons, or demyelination. The concept of neuroprotection concerns the administration of the agent, which should reverse some of the damage or prevent further adverse changes. A growing body of evidence suggested that among many classes of compounds considered as neuroprotective agents, peptides derived from natural materials or their synthetic analogs are good candidates. They presented a broad spectrum of activities and abilities to act through diverse mechanisms of action. Biologically active peptides have many properties, including antioxidant, antimicrobial, antiinflammatory, and immunomodulatory effects. Peptides with pro-survival and neuroprotective activities, associated with inhibition of oxidative stress, apoptosis, inflammation and are able to improve cell viability or mitochondrial functions, are also promising molecules of particular interest to the pharmaceutical industries. Peptide multiple activities open the way for broad application potential as therapeutic agents or ingredients of health-promoting functional foods. Significantly, synthetic peptides can be remodeled in numerous ways to have desired features, such as increased solubility or biological stability, as well as selectivity towards a specific receptor, and finally better membrane penetration. This review summarized the most common features of major neurodegenerative disorders, their causes, consequences, and reported new neuroprotective drug development approaches. The author focused on the unique perspectives in neuroprotection and provided a concise survey of short peptides proposed as novel therapeutic agents against various neurodegenerative diseases.
Collapse
Affiliation(s)
- Renata Perlikowska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, 92-215, Lodz, Poland.
| |
Collapse
|
12
|
Milani D, Clark VW, Feindel KW, Blacker DJ, Bynevelt M, Edwards AB, Anderton RS, Knuckey NW, Meloni BP. Comparative Assessment of the Proteolytic Stability and Impact of Poly-Arginine Peptides R18 and R18D on Infarct Growth and Penumbral Tissue Preservation Following Middle Cerebral Artery Occlusion in the Sprague Dawley Rat. Neurochem Res 2021; 46:1166-1176. [PMID: 33523394 DOI: 10.1007/s11064-021-03251-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 11/28/2022]
Abstract
Poly-arginine peptides R18 and R18D have previously been demonstrated to be neuroprotective in ischaemic stroke models. Here we examined the proteolytic stability and efficacy of R18 and R18D in reducing infarct core growth and preserving the ischaemic penumbra following middle cerebral artery occlusion (MCAO) in the Sprague Dawley rat. R18 (300 or 1000 nmol/kg), R18D (300 nmol/kg) or saline were administered intravenously 10 min after MCAO induced using a filament. Serial perfusion and diffusion-weighted MRI imaging was performed to measure changes in the infarct core and penumbra from time points between 45- and 225-min post-occlusion. Repeated measures analyses of infarct growth and penumbral tissue size were evaluated using generalised linear mixed models (GLMMs). R18D (300 nmol/kg) was most effective in slowing infarct core growth (46.8 mm3 reduction; p < 0.001) and preserving penumbral tissue (21.6% increase; p < 0.001), followed by R18 at the 300 nmol/kg dose (core: 29.5 mm3 reduction; p < 0.001, penumbra: 12.5% increase; p < 0.001). R18 at the 1000 nmol/kg dose had a significant impact in slowing core growth (19.5 mm3 reduction; p = 0.026), but only a modest impact on penumbral preservation (6.9% increase; p = 0.062). The in vitro anti-excitotoxic neuroprotective efficacy of R18D was also demonstrated to be unaffected when preincubated for 1-3 h or overnight, in a cell lysate prepared from dying neurons or with the proteolytic enzyme, plasmin, whereas the neuroprotective efficacy of R18 was significantly reduced after a 2-h incubation. These findings highlight the capacity of poly-arginine peptides to reduce infarct growth and preserve the ischaemic penumbra, and confirm the superior efficacy and proteolytic stability of R18D, which indicates that this peptide is likely to retain its neuroprotective properties when co-administered with alteplase during thrombolysis for acute ischaemic stroke.
Collapse
Affiliation(s)
- Diego Milani
- Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Vince W Clark
- Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Kirk W Feindel
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - David J Blacker
- Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, 6009, Australia
- Department of Neurology, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA, 6009, Australia
| | - Michael Bynevelt
- Neurological Intervention and Imaging Service of Western Australia, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA, 6009, Australia
| | - Adam B Edwards
- Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Ryan S Anderton
- Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, 6009, Australia
- School of Heath Sciences and Institute for Health Research, The University Notre Dame Australia, Fremantle, WA, 6160, Australia
| | - Neville W Knuckey
- Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Bruno P Meloni
- Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, WA, 6009, Australia.
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA, 6009, Australia.
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, 6009, Australia.
| |
Collapse
|
13
|
Extracellular ferritin contributes to neuronal injury in an in vitro model of ischemic stroke. J Physiol Biochem 2021; 77:539-545. [PMID: 33829407 DOI: 10.1007/s13105-021-00810-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 03/29/2021] [Indexed: 12/19/2022]
Abstract
Previous clinical and experimental studies have shown that neurological decline and poor functional outcome after acute ischemic stroke in humans are associated with high ferritin levels in serum and cerebrospinal fluid (CSF) within 24 h of ischemic stroke onset. The aim of the present study was to find out if and how high extracellular ferritin concentrations can increase the excitotoxicity effect in a neuronal cortical culture model of stroke. Extracellular ferritin (100 ng/ml) significantly increased the excitotoxic effect caused by excessive exogenous glutamate (50 μM and 100 μM) by leading to an increase in lipid peroxidation, a reduction in mitochondrial membrane potential, and a decrease in neuron viability. Extracellular apoferritin (100 ng/ml), the iron-free form of the protein, does not increase the excitotoxicity of glutamate, which proves that iron was responsible for the neurotoxic effect of the exogenous ferritin. We present evidence that extracellular ferritin iron exacerbates the neurotoxic effect induced by glutamate excitotoxicity and that the effect of ferritin iron is dependent of glutamate excitotoxicity. Our results support the idea that body iron overload is involved in the severity of the brain damage caused by stroke and reveal the need to control systemic iron homeostasis.
Collapse
|
14
|
Mitroshina EV, Loginova MM, Savyuk MO, Krivonosov MI, Mishchenko TA, Tarabykin VS, Ivanchenko MV, Vedunova MV. Neuroprotective Effect of Kinase Inhibition in Ischemic Factor Modeling In Vitro. Int J Mol Sci 2021; 22:1885. [PMID: 33672819 PMCID: PMC7917718 DOI: 10.3390/ijms22041885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/16/2022] Open
Abstract
The contribution of many neuronal kinases to the adaptation of nerve cells to ischemic damage and their effect on functional neural network activity has not yet been studied. The aim of this work is to study the role of the four kinases belonging to different metabolic cascades (SRC, Ikkb, eEF2K, and FLT4) in the adaptive potential of the neuron-glial network for modeling the key factors of ischemic damage. We carried out a comprehensive study on the effects of kinases blockade on the viability and network functional calcium activity of nerve cells under ischemic factor modeling in vitro. Ischemic factor modelling was performed on day 14 of culturing primary hippocampal cells obtained from mouse embryos (E18). The most significant neuroprotective effect was shown in the blockade of FLT4 kinase in the simulation of hypoxia. The studies performed revealed the role of FLT4 in the development of functional dysfunction in cerebrovascular accidents and created new opportunities for the study of this enzyme and its blockers in the formation of new therapeutic strategies.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia; (M.M.L.); (M.O.S.); (T.A.M.); (V.S.T.)
| | - Maria M. Loginova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia; (M.M.L.); (M.O.S.); (T.A.M.); (V.S.T.)
| | - Maria O. Savyuk
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia; (M.M.L.); (M.O.S.); (T.A.M.); (V.S.T.)
| | - Mikhail I. Krivonosov
- Institute of Information, Technology, Mathematics and Mechanics, Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia; (M.I.K.); (M.V.I.)
| | - Tatiana A. Mishchenko
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia; (M.M.L.); (M.O.S.); (T.A.M.); (V.S.T.)
| | - Viktor S. Tarabykin
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia; (M.M.L.); (M.O.S.); (T.A.M.); (V.S.T.)
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Mikhail V. Ivanchenko
- Institute of Information, Technology, Mathematics and Mechanics, Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia; (M.I.K.); (M.V.I.)
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia; (M.M.L.); (M.O.S.); (T.A.M.); (V.S.T.)
| |
Collapse
|
15
|
Gong L, He K, Liu J. Concentration‐Dependent Subcellular Distribution of Ultrasmall Near‐Infrared‐Emitting Gold Nanoparticles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lingshan Gong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Kui He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| |
Collapse
|
16
|
Gong L, He K, Liu J. Concentration‐Dependent Subcellular Distribution of Ultrasmall Near‐Infrared‐Emitting Gold Nanoparticles. Angew Chem Int Ed Engl 2021; 60:5739-5743. [DOI: 10.1002/anie.202014833] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/13/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Lingshan Gong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Kui He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| |
Collapse
|
17
|
Sun L, Xu H, Wang Y, Ma X, Xu Y, Sun F. The mitochondrial-targeted peptide SBT-20 ameliorates inflammation and oxidative stress in chronic renal failure. Aging (Albany NY) 2020; 12:18238-18250. [PMID: 32979258 PMCID: PMC7585075 DOI: 10.18632/aging.103681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/12/2020] [Indexed: 01/24/2023]
Abstract
Chronic renal failure (CRF) is the final outcome of the development of chronic kidney disease with different causes. Although CRF is a common clinical disease, its pathogenesis remains to be improved. SBT-20 belongs to a class of cell-permeable peptides that target the inner mitochondrial membrane, reduce reactive oxygen species (ROS), normalize electron transport chain function, and ATP generation. Our experiment was to evaluate whether SBT-20 affected the oxidative stress and inflammatory process of CRF. The levels of ROS production, mitochondrial membrane potential, NF- κB-p65, TNF-α, Drp1, and mfn2 were measured before and after SBT-20 treatment. We observed that SBT-20 treatment inhibited H2O2-induced mitochondrial ROS production. SBT-20 could also restore the mitochondrial membrane potential and reduce the elevated levels of NF-κB-p65 and TNF-α in HK-2 cells. In vivo, the renal function of CRF mice recovered after treating with SBT-20, the levels of necrotic cells and inflammation decreased, and the morphology of mitochondria recovered. The results showed that SBT-20 had a protective effect on CRF by reducing oxidative stress, inflammation progression via down-regulating of NF-κB-p65, TNF-α, and Drp1 and upregulating of Mfn2. These data support SBT-20 could be used as a potential preparation for CRF.
Collapse
Affiliation(s)
- Lina Sun
- Department of Nephrology, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Haiping Xu
- Department of Nephrology, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Yunfei Wang
- Department of Cardiology, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Xiaoying Ma
- Department of Nephrology, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Yan Xu
- Department of Nephrology, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Fuyun Sun
- Department of Nephrology, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| |
Collapse
|
18
|
Rodríguez M, Valez V, Cimarra C, Blasina F, Radi R. Hypoxic-Ischemic Encephalopathy and Mitochondrial Dysfunction: Facts, Unknowns, and Challenges. Antioxid Redox Signal 2020; 33:247-262. [PMID: 32295425 DOI: 10.1089/ars.2020.8093] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Hypoxic-ischemic events due to intrapartum complications represent the second cause of neonatal mortality and initiate an acute brain disorder known as hypoxic-ischemic encephalopathy (HIE). In HIE, the brain undergoes primary and secondary energy failure phases separated by a latent phase in which partial neuronal recovery is observed. A hypoxic-ischemic event leads to oxygen restriction causing ATP depletion, neuronal oxidative stress, and cell death. Mitochondrial dysfunction and enhanced oxidant formation in brain cells are characteristic phenomena associated with energy failure. Recent Advances: Mitochondrial sources of oxidants in neurons include complex I of the mitochondrial respiratory chain, as a key contributor to O2•- production via succinate by a reverse electron transport mechanism. The reaction of O2•- with nitric oxide (•NO) yields peroxynitrite, a mitochondrial and cellular toxin. Quantitation of the redox state of cytochrome c oxidase, through broadband near-infrared spectroscopy, represents a promising monitoring approach to evaluate mitochondrial dysfunction in vivo in humans, in conjunction with the determination of cerebral oxygenation and their correlation with the severity of brain injury. Critical Issues: The energetic failure being a key phenomenon in HIE connected with the severity of the encephalopathy, measurement of mitochondrial dysfunction in vivo provides an approach to assess evolution, prognosis, and adequate therapies. Restoration of mitochondrial redox homeostasis constitutes a key therapeutic goal. Future Directions: While hypothermia is the only currently accepted therapy in clinical management to preserve mitochondrial function, other mitochondria-targeted and/or redox-based treatments are likely to synergize to ensure further efficacy.
Collapse
Affiliation(s)
- Marianela Rodríguez
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) and Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay.,Departamento de Neonatología, Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Valeria Valez
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) and Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Carolina Cimarra
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) and Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Fernanda Blasina
- Departamento de Neonatología, Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) and Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
19
|
Stem Cells as Drug-like Biologics for Mitochondrial Repair in Stroke. Pharmaceutics 2020; 12:pharmaceutics12070615. [PMID: 32630218 PMCID: PMC7407993 DOI: 10.3390/pharmaceutics12070615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 01/01/2023] Open
Abstract
Stroke is a devastating condition characterized by widespread cell death after disruption of blood flow to the brain. The poor regenerative capacity of neural cells limits substantial recovery and prolongs disruptive sequelae. Current therapeutic options are limited and do not adequately address the underlying mitochondrial dysfunction caused by the stroke. These same mitochondrial impairments that result from acute cerebral ischemia are also present in retinal ischemia. In both cases, sufficient mitochondrial activity is necessary for cell survival, and while astrocytes are able to transfer mitochondria to damaged tissues to rescue them, they do not have the capacity to completely repair damaged tissues. Therefore, it is essential to investigate this mitochondrial transfer pathway as a target of future therapeutic strategies. In this review, we examine the current literature pertinent to mitochondrial repair in stroke, with an emphasis on stem cells as a source of healthy mitochondria. Stem cells are a compelling cell type to study in this context, as their ability to mitigate stroke-induced damage through non-mitochondrial mechanisms is well established. Thus, we will focus on the latest preclinical research relevant to mitochondria-based mechanisms in the treatment of cerebral and retinal ischemia and consider which stem cells are ideally suited for this purpose.
Collapse
|
20
|
MacDougall G, Anderton RS, Trimble A, Mastaglia FL, Knuckey NW, Meloni BP. Poly-arginine-18 (R18) Confers Neuroprotection through Glutamate Receptor Modulation, Intracellular Calcium Reduction, and Preservation of Mitochondrial Function. Molecules 2020; 25:E2977. [PMID: 32610439 PMCID: PMC7412265 DOI: 10.3390/molecules25132977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022] Open
Abstract
Recent studies have highlighted that a novel class of neuroprotective peptide, known as cationic arginine-rich peptides (CARPs), have intrinsic neuroprotective properties and are particularly effective anti-excitotoxic agents. As such, the present study investigated the mechanisms underlying the anti-excitotoxic properties of CARPs, using poly-arginine-18 (R18; 18-mer of arginine) as a representative peptide. Cortical neuronal cultures subjected to glutamic acid excitotoxicity were used to assess the effects of R18 on ionotropic glutamate receptor (iGluR)-mediated intracellular calcium influx, and its ability to reduce neuronal injury from raised intracellular calcium levels after inhibition of endoplasmic reticulum calcium uptake by thapsigargin. The results indicate that R18 significantly reduces calcium influx by suppressing iGluR overactivation, and results in preservation of mitochondrial membrane potential (ΔΨm) and ATP production, and reduced ROS generation. R18 also protected cortical neurons against thapsigargin-induced neurotoxicity, which indicates that the peptide helps maintain neuronal survival when intracellular calcium levels are elevated. Taken together, these findings provide important insight into the mechanisms of action of R18, supporting its potential application as a neuroprotective therapeutic for acute and chronic neurological disorders.
Collapse
Affiliation(s)
- Gabriella MacDougall
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia; (R.S.A.); (A.T.); (F.L.M.); (N.W.K.); (B.P.M.)
- Institute for Health Research, School of Heath Sciences and Institute for Health Research, The University Notre Dame, Fremantle, WA 6160, Australia
| | - Ryan S. Anderton
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia; (R.S.A.); (A.T.); (F.L.M.); (N.W.K.); (B.P.M.)
- Institute for Health Research, School of Heath Sciences and Institute for Health Research, The University Notre Dame, Fremantle, WA 6160, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA 6009, Australia
| | - Amy Trimble
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia; (R.S.A.); (A.T.); (F.L.M.); (N.W.K.); (B.P.M.)
- Institute for Health Research, School of Heath Sciences and Institute for Health Research, The University Notre Dame, Fremantle, WA 6160, Australia
| | - Frank L. Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia; (R.S.A.); (A.T.); (F.L.M.); (N.W.K.); (B.P.M.)
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA 6009, Australia
| | - Neville W. Knuckey
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia; (R.S.A.); (A.T.); (F.L.M.); (N.W.K.); (B.P.M.)
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA 6009, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA 6008, Australia
| | - Bruno P. Meloni
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia; (R.S.A.); (A.T.); (F.L.M.); (N.W.K.); (B.P.M.)
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA 6009, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA 6008, Australia
| |
Collapse
|
21
|
GYY4137 protects against MCAO via p38 MAPK mediated anti-apoptotic signaling pathways in rats. Brain Res Bull 2020; 158:59-65. [DOI: 10.1016/j.brainresbull.2020.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
|
22
|
Chiu LS, Anderton RS, Clark VW, Cross JL, Knuckey NW, Meloni BP. Effect of Polyarginine Peptide R18D Following a Traumatic Brain Injury in Sprague-Dawley Rats. CURRENT THERAPEUTIC RESEARCH 2020; 92:100584. [PMID: 32322314 PMCID: PMC7163064 DOI: 10.1016/j.curtheres.2020.100584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/10/2020] [Indexed: 11/23/2022]
Abstract
Cationic arginine-rich peptides (CARPs) have previously demonstrated neuroprotective efficacy in a rat model of traumatic brain injury (TBI). The CARP R18D significantly reduced the extent of axonal injury at a high dose of 1000 nmol/kg. Both high (1000 nmol/kg) and low (100 nmol/kg) doses only showed a trend in functional improvement.
Background Despite extensive studies, there are still no clinically available neuroprotective treatments for traumatic brain injury. Objectives In previous studies we demonstrated beneficial treatment effects of polyarginine peptides R18 (18-mer of arginine; 300 nmol/kg) and R18D (18-mer of D-arginine; 1000 nmol/kg) in a rat model of impact-acceleration closed-head injury. Methods We examined the efficacy of R18D when intravenously administered at a low (100 nmol/kg) and high (1000 nmol/kg) dose, 30 minutes after a closed-head injury in male Sprague-Dawley rats. Results At postinjury day 3, treatment with R18D at the high dose significantly reduced axonal injury (P = 0.044), whereas the low-dose treatment of R18D showed a trend for reduced axonal injury. Following assessment in the Barnes maze, both doses of R18D treatment appeared to improve learning and memory recovery compared with vehicle treatment at postinjury days 1 and 3, albeit not to a statistically significant level. Rotarod assessment of vestibulomotor recovery did not differ between R18D and the vehicle treatment groups. Conclusions R18D modestly decreased axonal injury only at the highest dose used but had no significant effect on functional recovery. These findings warrant further studies with additional doses to better understand peptide pharmacodynamics and provide information to guide optimal dosing.
Collapse
Affiliation(s)
- Li Shan Chiu
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Western Australia, Australia
- Address correspondence to: Li Shan Chiu, Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, 8 Verdun St, RR Block, Nedlands, Western Australia, 6009, Australia.
| | - Ryan S. Anderton
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Western Australia, Australia
- School of Heath Sciences, The University Notre Dame Australia, Fremantle, Western Australia, Australia
- Institute for Health Research, The University Notre Dame Australia, Fremantle, Western Australia, Australia
| | - Vince W. Clark
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Western Australia, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Jane L. Cross
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Western Australia, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Neville W. Knuckey
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Western Australia, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Bruno P. Meloni
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Western Australia, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, Western Australia, Australia
| |
Collapse
|
23
|
Yu R, Li J, Lin Z, Ouyang Z, Huang X, Reglodi D, Vaudry D. TAT-tagging of VIP exerts positive allosteric modulation of the PAC1 receptor and enhances VIP neuroprotective effect in the MPTP mouse model of Parkinson's disease. Biochim Biophys Acta Gen Subj 2020; 1864:129626. [PMID: 32335135 DOI: 10.1016/j.bbagen.2020.129626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/10/2020] [Accepted: 04/22/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The cationic Arginine-rich peptide (CARP) TAT had been tagged at the C-terminal end of the vasoactive intestinal peptide (VIP) to construct VIP-TAT in order to improve traversing ability. Interestingly, it was found that TAT may bind the positive allosteric modulation (PAM) site of the N-terminal extracellular domain of neuropeptide receptor PAC1 (PAC1-EC1), imitating the C-terminus part of pituitary adenylate cyclase-activating polypeptide (PACAP) PACAP(28-38) fragment. METHODS To test this hypothesis, we addressed the neuroprotective effects of VIP, VIP-TAT and PACAP38 in Parkinson's Disease (PD) cellular and mouse models. We also analyzed the peptides affinity for PAC1 and their ability to activate it. RESULTS VIP-TAT had in vitro and in vivo neuroprotective effects much efficient than VIP in PD cellular and mouse models. The isothermal titration calorimetry (ITC) and competition binding bioassays confirmed that TAT binds PAC1-EC1 at the same site as PACAP(28-38). The cAMP experiments showed TAT-VIP results in a higher activation potency of PAC1 than VIP alone. CONCLUSIONS The correlation of the peptides cationic properties with their affinity for PAC1 and their ability to activate the receptor, indicated that electrostatic interactions mediate the binding of TAT to the PAM domain of the PAC1-EC1, which induces the conformational changes of PAC1-EC1 required to promote the subsequent structural interaction and activation of the receptor with VIP. GENERAL SIGNIFICANCE VIP-TAT has some potency for the development of a novel drug targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Rongjie Yu
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Junfeng Li
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Zhuochao Lin
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Zehua Ouyang
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Xiaoling Huang
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Dora Reglodi
- Department of Anatomy, University of Pecs Medical School, Pecs, Hungary
| | - David Vaudry
- Normandie Univ, UNIROUEN, Inserm, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death, Cell plasticity Team, Rouen, France
| |
Collapse
|
24
|
Meloni BP, Chen Y, Harrison KA, Nashed JY, Blacker DJ, South SM, Anderton RS, Mastaglia FL, Winterborn A, Knuckey NW, Cook DJ. Poly-Arginine Peptide-18 (R18) Reduces Brain Injury and Improves Functional Outcomes in a Nonhuman Primate Stroke Model. Neurotherapeutics 2020; 17:627-634. [PMID: 31833045 PMCID: PMC7283416 DOI: 10.1007/s13311-019-00809-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Poly-arginine peptide-18 (R18) is neuroprotective in different rodent middle cerebral artery occlusion (MCAO) stroke models. In this study, we examined whether R18 treatment could reduce ischemic brain injury and improve functional outcome in a nonhuman primate (NHP) stroke model. A stroke was induced in male cynomolgus macaques by MCAO distal to the orbitofrontal branch of the MCA through a right pterional craniotomy, using a 5-mm titanium aneurysm clip for 90 min. R18 (1000 nmol/kg) or saline vehicle was administered intravenously 60 min after the onset of MCAO. Magnetic resonance imaging (MRI; perfusion-weighted imaging, diffusion-weighted imaging, or T2-weighted imaging) of the brain was performed 15 min, 24 h, and 28 days post-MCAO, and neurological outcome was assessed using the NHP stroke scale (NHPSS). Experimental endpoint was 28 days post-MCAO, treatments were randomized, and all procedures were performed blinded to treatment status. R18 treatment reduced infarct lesion volume by up to 65.2% and 69.7% at 24 h and 28 days poststroke, respectively. Based on NHPSS scores, R18-treated animals displayed reduced functional deficits. This study confirms the effectiveness of R18 in reducing the severity of ischemic brain injury and improving functional outcomes after stroke in a NHP model, and provides further support for its clinical development as a stroke neuroprotective therapeutic.
Collapse
Affiliation(s)
- Bruno P Meloni
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, 6009, Australia
- Department of Neurosurgery, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Yining Chen
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Kathleen A Harrison
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Joseph Y Nashed
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - David J Blacker
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, 6009, Australia
- Department of Neurosurgery, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Department of Neurology, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Samantha M South
- Office of Research Enterprise, The University of Western Australia, Perth, Western Australia, Australia
| | - Ryan S Anderton
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
- School of Heath Sciences, and Institute for Health Research, The University Notre Dame Australia, Fremantle, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, 6009, Australia
- Department of Neurosurgery, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Andrew Winterborn
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Neville W Knuckey
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, 6009, Australia
- Department of Neurosurgery, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
- Division of Neurosurgery, Department of Surgery, Queen's University Kingston Health Sciences Centre, Kingston, Ontario, Canada.
- Division of Neurosurgery, Department of Surgery, Dalhousie University Halifax, Nova Scotia, Canada.
| |
Collapse
|
25
|
Meloni BP, Mastaglia FL, Knuckey NW. Cationic Arginine-Rich Peptides (CARPs): A Novel Class of Neuroprotective Agents With a Multimodal Mechanism of Action. Front Neurol 2020; 11:108. [PMID: 32158425 PMCID: PMC7052017 DOI: 10.3389/fneur.2020.00108] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
There are virtually no clinically available neuroprotective drugs for the treatment of acute and chronic neurological disorders, hence there is an urgent need for the development of new neuroprotective molecules. Cationic arginine-rich peptides (CARPs) are an expanding and relatively novel class of compounds, which possess intrinsic neuroprotective properties. Intriguingly, CARPs possess a combination of biological properties unprecedented for a neuroprotective agent including the ability to traverse cell membranes and enter the CNS, antagonize calcium influx, target mitochondria, stabilize proteins, inhibit proteolytic enzymes, induce pro-survival signaling, scavenge toxic molecules, and reduce oxidative stress as well as, having a range of anti-inflammatory, analgesic, anti-microbial, and anti-cancer actions. CARPs have also been used as carrier molecules for the delivery of other putative neuroprotective agents across the blood-brain barrier and blood-spinal cord barrier. However, there is increasing evidence that the neuroprotective efficacy of many, if not all these other agents delivered using a cationic arginine-rich cell-penetrating peptide (CCPPs) carrier (e.g., TAT) may actually be mediated largely by the properties of the carrier molecule, with overall efficacy further enhanced according to the amino acid composition of the cargo peptide, in particular its arginine content. Therefore, in reviewing the neuroprotective mechanisms of action of CARPs we also consider studies using CCPPs fused to a putative neuroprotective peptide. We review the history of CARPs in neuroprotection and discuss in detail the intrinsic biological properties that may contribute to their cytoprotective effects and their usefulness as a broad-acting class of neuroprotective drugs.
Collapse
Affiliation(s)
- Bruno P Meloni
- Department of Neurosurgery, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Neville W Knuckey
- Department of Neurosurgery, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
26
|
Tang YN, Zhang GF, Chen HL, Sun XP, Qin WW, Shi F, Sun LX, Xu XN, Wang MS. Selective brain hypothermia-induced neuroprotection against focal cerebral ischemia/reperfusion injury is associated with Fis1 inhibition. Neural Regen Res 2020; 15:903-911. [PMID: 31719256 PMCID: PMC6990783 DOI: 10.4103/1673-5374.268973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Selective brain hypothermia is considered an effective treatment for neuronal injury after stroke, and avoids the complications of general hypothermia. However, the mechanisms by which selective brain hypothermia affects mitochondrial fission remain unknown. In this study, we investigated the effect of selective brain hypothermia on the expression of fission 1 (Fis1) protein, a key factor in the mitochondrial fission system, during focal cerebral ischemia/reperfusion injury. Sprague-Dawley rats were divided into four groups. In the sham group, the carotid arteries were exposed only. In the other three groups, middle cerebral artery occlusion was performed using the intraluminal filament technique. After 2 hours of occlusion, the filament was slowly removed to allow blood reperfusion in the ischemia/reperfusion group. Saline, at 4°C and 37°C, were perfused through the carotid artery in the hypothermia and normothermia groups, respectively, followed by restoration of blood flow. Neurological function was assessed with the Zea Longa 5-point scoring method. Cerebral infarct volume was assessed by 2,3,5-triphenyltetrazolium chloride staining, and apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining. Fis1 and cytosolic cytochrome c levels were assessed by western blot assay. Fis1 mRNA expression was assessed by quantitative reverse transcription-polymerase chain reaction. Mitochondrial ultrastructure was evaluated by transmission electron microscopy. Compared with the sham group, apoptosis, Fis1 protein and mRNA expression and cytosolic cytochrome c levels in the cortical ischemic penumbra and cerebral infarct volume were increased after reperfusion in the other three groups. These changes caused by cerebral ischemia/reperfusion were inhibited in the hypothermia group compared with the normothermia group. These findings show that selective brain hypothermia inhibits Fis1 expression and reduces apoptosis, thereby ameliorating focal cerebral ischemia/reperfusion injury in rats. Experiments were authorized by the Ethics Committee of Qingdao Municipal Hospital of China (approval No. 2019008).
Collapse
Affiliation(s)
- Ya-Nan Tang
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Gao-Feng Zhang
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Huai-Long Chen
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiao-Peng Sun
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Wei-Wei Qin
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Fei Shi
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Li-Xin Sun
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiao-Na Xu
- Department of Central Laboratory, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Ming-Shan Wang
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
27
|
Song Y, Wang LB, Bei Y, Qin DX, Ai LY, Ma QZ, Lin PY. Carvacryl acetate, a semisynthetic monoterpenic ester obtained from essential oils, provides neuroprotection against cerebral ischemia reperfusion-induced oxidative stress injury via the Nrf2 signalling pathway. Food Funct 2020; 11:1754-1763. [DOI: 10.1039/c9fo02037c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carvacryl acetate (CA) is a semisynthetic monoterpenic ester obtained from essential oils, and it exerts an antioxidation effect.
Collapse
Affiliation(s)
- Ying Song
- Department of Pharmacology
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| | - Li-Bo Wang
- Department of Pharmacology
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| | - Yun Bei
- Department of Pharmacology
- Zhejiang University of Technology
- Hangzhou
- P.R. China
- Department of Pharmacy
| | - Dong-Xu Qin
- Department of Pharmacology
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| | - Li-Yao Ai
- Department of Pharmacology
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| | - Qi-Zhuang Ma
- Department of Pharmacology
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| | - Pei-Yao Lin
- Department of Pharmacology
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| |
Collapse
|
28
|
In vitro cellular uptake and neuroprotective efficacy of poly-arginine-18 (R18) and poly-ornithine-18 (O18) peptides: critical role of arginine guanidinium head groups for neuroprotection. Mol Cell Biochem 2019; 464:27-38. [DOI: 10.1007/s11010-019-03646-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
|
29
|
Diao X, Zhou Z, Xiang W, Jiang Y, Tian N, Tang X, Chen S, Wen J, Chen M, Liu K, Li Q, Liao R. Glutathione alleviates acute intracerebral hemorrhage injury via reversing mitochondrial dysfunction. Brain Res 2019; 1727:146514. [PMID: 31628933 DOI: 10.1016/j.brainres.2019.146514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 01/01/2023]
Abstract
Glutathione (GSH) has been studied for its neuroprotection value in several diseases, but the effect of GSH on intracerebral hemorrhage (ICH) is unclear. In this study, we examined the protective effects of GSH in an experimentally induced ICH model and investigated the relative mechanisms. Adult male C57BL/6j mice were randomized into Sham, ICH and GSH treatment groups. GSH was injected with the dose of 50, 100 or 200 mg/kg once per day for 3 days, starting immediately after operation. The results revealed a GSH-mediated improvement of neurological deficits score (NDS), motor and sensory functions impairment in a dose-dependent manner three days post ICH (p < 0.01, GSH 200 vs ICH. Sham, n = 12; ICH, n = 9; GSH 50, n = 10; GSH 100, n = 10; GSH 200, n = 11) in addition to significantly reduced mortality rate (p = 0.2632, GSH 200 vs ICH. n = 12 per group) and damage volume (p < 0.05, GSH 200 vs ICH. n = 12 per group). GSH treatment also attenuated injury measured by decreased brain edema (p < 0.05, GSH 200 vs ICH. Sham, n = 10; ICH, n = 10; GSH 200, n = 12), blood-brain barrier disruption (p < 0.05, GSH 200 vs ICH. Sham, n = 10; ICH, n = 10; GSH 200, n = 12), and histopathological damage (p < 0.05, GSH 200 vs ICH. Sham, n = 6; ICH, n = 6; GSH 200, n = 8) 72 h after ICH. In addition, GSH treatment also decreased cell apoptosis (p < 0.01, GSH 200 vs ICH. Sham, n = 6; ICH, n = 6; GSH 200, n = 8) and resulted in up-regulated protein expression of complex I (p < 0.01, GSH 200 vs ICH. Sham, n = 6; ICH, n = 6; GSH 200, n = 8), which was consistent with an overall up-regulation of complex I function in mitochondria using Oxygraph-2 K high resolution respirometry (p < 0.05, GSH 200 vs ICH. Sham, n = 4; ICH, n = 5; GSH 200, n = 6). In conclusion, GSH effectively improved the prognosis of ICH mice by attenuating neurological impairment, decreasing neural damage, and inhibiting apoptosis. The neuroprotection by GSH resulted from the up-regulation of mitochondrial oxidative respiration function. The results of our study suggest that GSH can be a potential therapeutic agent for ICH.
Collapse
Affiliation(s)
- Xiaojun Diao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410000, China; Guilin Medical University, Guilin 541004, China
| | - Zixian Zhou
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Wenjing Xiang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Yanlin Jiang
- Department of Pharmacology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Ning Tian
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Xiaoling Tang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Sangsang Chen
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Jian Wen
- Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Meiling Chen
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Kaixiang Liu
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Qinghua Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410000, China; Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China.
| | - Rujia Liao
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China.
| |
Collapse
|
30
|
MacDougall G, Anderton RS, Mastaglia FL, Knuckey NW, Meloni BP. Proteomic analysis of cortical neuronal cultures treated with poly-arginine peptide-18 (R18) and exposed to glutamic acid excitotoxicity. Mol Brain 2019; 12:66. [PMID: 31315638 PMCID: PMC6637488 DOI: 10.1186/s13041-019-0486-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/01/2019] [Indexed: 01/30/2023] Open
Abstract
Poly-arginine peptide-18 (R18) has recently emerged as a highly effective neuroprotective agent in experimental stroke models, and is particularly efficacious in protecting cortical neurons against glutamic acid excitotoxicity. While we have previously demonstrated that R18 can reduce excitotoxicity-induced neuronal calcium influx, other molecular events associated with R18 neuroprotection are yet to investigated. Therefore, in this study we were particularly interested in protein expression changes in R18 treated neurons subjected to excitotoxicity. Proteomic analysis was used to compare protein expression patterns in primary cortical neuronal cultures subjected to: (i) R18-treatment alone (R18); (ii) glutamic acid excitotoxic injury (Glut); (iii) R18-treatment and glutamic acid injury (R18 + Glut); (iv) no treatment (Cont). Whole cell lysates were harvested 24 h post-injury and subjected to quantitative proteomic analysis (iTRAQ), coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and subsequent bioinformatic analysis of differentially expressed proteins (DEPs). Relative to control cultures, R18, Glut, and R18 + Glut treatment resulted in the detection of 5, 95 and 14 DEPs respectively. Compared to Glut alone, R18 + Glut revealed 98 DEPs, including 73 proteins whose expression was also altered by treatment with Glut and/or R18 alone, as well as 25 other uniquely regulated proteins. R18 treatment reversed the up- or down-regulation of all 73 Glut-associated DEPs, which included proteins involved in mitochondrial integrity, ATP generation, mRNA processing and protein translation. Analysis of protein-protein interactions of the 73 DEPs showed they were primarily associated with mitochondrial respiration, proteasome activity and protein synthesis, transmembrane trafficking, axonal growth and neuronal differentiation, and carbohydrate metabolism. Identified protein pathways associated with proteostasis and energy metabolism, and with pathways involved in neurodegeneration. Collectively, the findings indicate that R18 neuroprotection following excitotoxicity is associated with preservation of neuronal protein profiles, and differential protein expression that assists in maintaining mitochondrial function and energy production, protein homeostasis, and membrane trafficking.
Collapse
Affiliation(s)
- Gabriella MacDougall
- Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Ground Floor, RR Block, 8 Verdun St, Nedlands, Western Australia, 6009, Australia.
- School of Heath Sciences and Institute for Health Research, The University Notre Dame, Fremantle, Western Australia, Australia.
| | - Ryan S Anderton
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia
- Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Ground Floor, RR Block, 8 Verdun St, Nedlands, Western Australia, 6009, Australia
- School of Heath Sciences and Institute for Health Research, The University Notre Dame, Fremantle, Western Australia, Australia
| | - Frank L Mastaglia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia
- Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Ground Floor, RR Block, 8 Verdun St, Nedlands, Western Australia, 6009, Australia
| | - Neville W Knuckey
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, Western Australia, Australia
- Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Ground Floor, RR Block, 8 Verdun St, Nedlands, Western Australia, 6009, Australia
| | - Bruno P Meloni
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, Western Australia, Australia
- Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Ground Floor, RR Block, 8 Verdun St, Nedlands, Western Australia, 6009, Australia
| |
Collapse
|
31
|
Blair NP, Tan MR, Felder AE, Shahidi M. Retinal Oxygen Delivery, Metabolism and Extraction Fraction and Retinal Thickness Immediately Following an Interval of Ophthalmic Vessel Occlusion in Rats. Sci Rep 2019; 9:8092. [PMID: 31147557 PMCID: PMC6542852 DOI: 10.1038/s41598-019-44250-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/09/2019] [Indexed: 11/30/2022] Open
Abstract
Limited knowledge is currently available about alterations of retinal blood flow (F), oxygen delivery (DO2), oxygen metabolism (MO2), oxygen extraction fraction (OEF), or thickness after the ophthalmic blood vessels have been closed for a substantial interval and then reopened. We ligated the ophthalmic vessels for 120 minutes in one eye of 17 rats, and measured these variables within 20 minutes after release of the ligature in the 10 rats which had immediate reflow. F, DO2 and MO2 were 5.2 ± 3.1 μL/min, 428 ± 271 nL O2/min, and 234 ± 133 nL O2/min, respectively, that is, to 58%, 46% and 60% of values obtained from normal fellow eyes (P < 0.004). OEF was 0.65 ± 0.23, 148% of normal (P = 0.03). Inner and total retinal thicknesses were 195 ± 24 and 293 ± 20 μm, respectively, 117% and 114% of normal, and inversely related to MO2 (P ≤ 0.02). These results reflect how much energy is available to the retina immediately after an interval of nonperfusion for 120 minutes. Thus, they elucidate aspects of the pathophysiology of nonperfusion retinal injury and may improve therapy in patients with retinal artery or ophthalmic artery obstructions.
Collapse
Affiliation(s)
- Norman P Blair
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, USA
| | - Michael R Tan
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, USA
| | - Anthony E Felder
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, USA
| | - Mahnaz Shahidi
- Department of Ophthalmology, University of Southern California, Los Angeles, USA.
| |
Collapse
|
32
|
Kerkhofs M, Bultynck G, Vervliet T, Monaco G. Therapeutic implications of novel peptides targeting ER-mitochondria Ca 2+-flux systems. Drug Discov Today 2019; 24:1092-1103. [PMID: 30910738 DOI: 10.1016/j.drudis.2019.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/16/2019] [Accepted: 03/18/2019] [Indexed: 01/03/2023]
Abstract
Intracellular Ca2+-flux systems located at the ER-mitochondrial axis govern mitochondrial Ca2+ balance and cell fate. Multiple yet incurable pathologies are characterized by insufficient or excessive Ca2+ fluxes toward the mitochondria, in turn leading to aberrant cell life or death dynamics. The discovery and ongoing molecular characterization of the main interorganellar Ca2+ gateways have resulted in a novel class of peptide tools able to regulate relevant protein-protein interactions (PPIs) underlying this signaling scenario. Here, we review peptides, molecularly derived from Ca2+-flux systems or their accessory proteins. We discuss how they alter Ca2+-signaling protein complexes and modulate cell survival in light of their forthcoming therapeutic applications.
Collapse
Affiliation(s)
- Martijn Kerkhofs
- KU Leuven, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Laboratory of Molecular and Cellular Signaling, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, 3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Laboratory of Molecular and Cellular Signaling, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, 3000 Leuven, Belgium.
| | - Tim Vervliet
- KU Leuven, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Laboratory of Molecular and Cellular Signaling, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, 3000 Leuven, Belgium
| | - Giovanni Monaco
- KU Leuven, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Laboratory of Molecular and Cellular Signaling, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|