1
|
Zhang Q, Yang G, Luo Y, Jiang L, Chi H, Tian G. Neuroinflammation in Alzheimer's disease: insights from peripheral immune cells. Immun Ageing 2024; 21:38. [PMID: 38877498 PMCID: PMC11177389 DOI: 10.1186/s12979-024-00445-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Alzheimer's disease (AD) is a serious brain disorder characterized by the presence of beta-amyloid plaques, tau pathology, inflammation, neurodegeneration, and cerebrovascular dysfunction. The presence of chronic neuroinflammation, breaches in the blood-brain barrier (BBB), and increased levels of inflammatory mediators are central to the pathogenesis of AD. These factors promote the penetration of immune cells into the brain, potentially exacerbating clinical symptoms and neuronal death in AD patients. While microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in AD, recent evidence suggests the infiltration of cerebral vessels and parenchyma by peripheral immune cells, including neutrophils, T lymphocytes, B lymphocytes, NK cells, and monocytes in AD. These cells participate in the regulation of immunity and inflammation, which is expected to play a huge role in future immunotherapy. Given the crucial role of peripheral immune cells in AD, this article seeks to offer a comprehensive overview of their contributions to neuroinflammation in the disease. Understanding the role of these cells in the neuroinflammatory response is vital for developing new diagnostic markers and therapeutic targets to enhance the diagnosis and treatment of AD patients.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, USA
| | - Yuan Luo
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, China
| | - Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China.
| | - Gang Tian
- Department of Laboratory Medicine, Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China.
| |
Collapse
|
2
|
De Marchi F, Munitic I, Vidatic L, Papić E, Rački V, Nimac J, Jurak I, Novotni G, Rogelj B, Vuletic V, Liscic RM, Cannon JR, Buratti E, Mazzini L, Hecimovic S. Overlapping Neuroimmune Mechanisms and Therapeutic Targets in Neurodegenerative Disorders. Biomedicines 2023; 11:2793. [PMID: 37893165 PMCID: PMC10604382 DOI: 10.3390/biomedicines11102793] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Many potential immune therapeutic targets are similarly affected in adult-onset neurodegenerative diseases, such as Alzheimer's (AD) disease, Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD), as well as in a seemingly distinct Niemann-Pick type C disease with primarily juvenile onset. This strongly argues for an overlap in pathogenic mechanisms. The commonly researched immune targets include various immune cell subsets, such as microglia, peripheral macrophages, and regulatory T cells (Tregs); the complement system; and other soluble factors. In this review, we compare these neurodegenerative diseases from a clinical point of view and highlight common pathways and mechanisms of protein aggregation, neurodegeneration, and/or neuroinflammation that could potentially lead to shared treatment strategies for overlapping immune dysfunctions in these diseases. These approaches include but are not limited to immunisation, complement cascade blockade, microbiome regulation, inhibition of signal transduction, Treg boosting, and stem cell transplantation.
Collapse
Affiliation(s)
- Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy;
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia;
| | - Lea Vidatic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia;
| | - Eliša Papić
- Department of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (E.P.); (V.R.); (V.V.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Valentino Rački
- Department of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (E.P.); (V.R.); (V.V.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Jerneja Nimac
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; (J.N.); (B.R.)
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Igor Jurak
- Molecular Virology Laboratory, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia;
| | - Gabriela Novotni
- Department of Cognitive Neurology and Neurodegenerative Diseases, University Clinic of Neurology, Medical Faculty, University Ss. Cyril and Methodius, 91701 Skoplje, North Macedonia;
| | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; (J.N.); (B.R.)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Vladimira Vuletic
- Department of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (E.P.); (V.R.); (V.V.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Rajka M. Liscic
- Department of Neurology, Sachsenklinik GmbH, Muldentalweg 1, 04828 Bennewitz, Germany;
| | - Jason R. Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy;
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy;
| | - Silva Hecimovic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia;
| |
Collapse
|
3
|
Li Y, Wang T, Meng L, Jin L, Liu C, Liang Y, Ren L, Liu Y, Liu Y, Liu S, Li T, Liang Y, Chen X, Zhang Z. Novel naturally occurring autoantibodies attenuate α-synuclein pathology in a mouse model of Parkinson's disease. Neuropathol Appl Neurobiol 2023; 49:e12860. [PMID: 36331758 DOI: 10.1111/nan.12860] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
AIMS Accumulation and propagation of pathological α-synuclein (α-Syn) are the major contributing factors to the pathogenesis of Parkinson's disease (PD). Therapy to halt the spreading of α-Syn pathology needs to be established. METHODS After phage display and affinity maturation, human-derived anti-α-Syn autoantibodies were selected and applied to biochemical, cellular and animal models of PD. RESULTS The novel naturally occurring anti-α-Syn autoantibodies (α-Syn-nAbs), P21 and P22, selectively bind α-Syn preformed fibrils (PFFs), recognise Lewy bodies (LBs) and Lewy neurites (LNs) in human PD brains, block α-Syn fibrillization and inhibit the seeding of α-Syn PFFs. Moreover, systematic administration of P21 and P22 attenuates α-Syn pathology, degeneration of the nigrostriatal pathway and motor deficits in mice injected with α-Syn PFFs. CONCLUSIONS P21 and P22 attenuate α-synuclein pathology and are promising candidates for PD treatment.
Collapse
Affiliation(s)
- Yiming Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tao Wang
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lei Jin
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, China
| | - Congcong Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yangqiu Liang
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, China
| | - Lin Ren
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, China
| | - Yang Liu
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, China
| | - Yanshuang Liu
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, China
| | - Shuang Liu
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, China
| | - Tete Li
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, China
| | - Yanqi Liang
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, China
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
4
|
Dong X, Li Y, Li Q, Li W, Wu G. Identification of immune signatures in Parkinson's disease based on co-expression networks. Front Genet 2023; 14:1090382. [PMID: 36733342 PMCID: PMC9886886 DOI: 10.3389/fgene.2023.1090382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly people, and there is less research on the relationship between immunity and PD. In this study, the protein-protein interaction networks (PPI) data, 2747 human immune-related genes (HIRGs), 2078 PD-related genes (PDRGs), and PD-related datasets (GSE49036 and GSE20292) were downloaded from the Human Protein Reference Database (HPRD), Amigo 2, DisGeNET, and Gene Expression Omnibus (GEO) databases, respectively. An immune- or PD-directed neighbor co-expressed network construction (IOPDNC) was drawn based on the GSE49036 dataset and HPRD database. Furthermore, a PD-directed neighbor co-expressed network was constructed. Modular clustering analysis was performed on the genes of the gene interaction network obtained in the first step to obtain the central core genes using the GraphWeb online website. The modules with the top 5 functional scores and the number of core genes greater than six were selected as PD-related gene modules. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of different module genes were performed. The single sample Gene Set Enrichment Analysis (ssGSEA) algorithm was used to calculate the immune cell infiltration of the PD and the normal samples. The quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) was performed to investigate the expression of module genes. An IOPDNC and PD-directed neighbor co-expressed network (PDNC network) were constructed. Furthermore, a total of 5 immune-PD modules were identified which could distinguish between PD and normal samples, and these module genes were strongly related to PD in protein interaction level or gene expression level. In addition, functional analysis indicated that module genes were involved in various neurodegenerative diseases, such as Alzheimer disease, Huntington disease, Parkinson disease, and Long-term depression. In addition, the genes of the 6 modules were significantly associated with these 4 differential immune cells (aDC cells, eosinophils, neutrophils, and Th2 cells). Finally, the result of qRT-PCR manifested that the expression of 6 module genes was significantly higher in normal samples than in PD samples. In our study, the immune-related genes were found to be strongly related to PD and might play key roles in PD.
Collapse
|
5
|
How Well Do Rodent Models of Parkinson's Disease Recapitulate Early Non-Motor Phenotypes? A Systematic Review. Biomedicines 2022; 10:biomedicines10123026. [PMID: 36551782 PMCID: PMC9775565 DOI: 10.3390/biomedicines10123026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The prodromal phase of Parkinson's disease (PD) is characterised by many non-motor symptoms, and these have recently been posited to be predictive of later diagnosis. Genetic rodent models can develop non-motor phenotypes, providing tools to identify mechanisms underlying the early development of PD. However, it is not yet clear how reproducible non-motor phenotypes are amongst genetic PD rodent models, whether phenotypes are age-dependent, and the translatability of these phenotypes has yet to be explored. A systematic literature search was conducted on studies using genetic PD rodent models to investigate non-motor phenotypes; cognition, anxiety/depressive-like behaviour, gastrointestinal (GI) function, olfaction, circadian rhythm, cardiovascular and urinary function. In total, 51 genetic models of PD across 150 studies were identified. We found outcomes of most phenotypes were inconclusive due to inadequate studies, assessment at different ages, or variation in experimental and environmental factors. GI dysfunction was the most reproducible phenotype across all genetic rodent models. The mouse model harbouring mutant A53T, and the wild-type hα-syn overexpression (OE) model recapitulated the majority of phenotypes, albeit did not reliably produce concurrent motor deficits and nigral cell loss. Furthermore, animal models displayed different phenotypic profiles, reflecting the distinct genetic risk factors and heterogeneity of disease mechanisms. Currently, the inconsistent phenotypes within rodent models pose a challenge in the translatability and usefulness for further biomechanistic investigations. This review highlights opportunities to improve phenotype reproducibility with an emphasis on phenotypic assay choice and robust experimental design.
Collapse
|
6
|
Proteinopathies: Deciphering Physiology and Mechanisms to Develop Effective Therapies for Neurodegenerative Diseases. Mol Neurobiol 2022; 59:7513-7540. [PMID: 36205914 DOI: 10.1007/s12035-022-03042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/13/2022] [Indexed: 10/10/2022]
Abstract
Neurodegenerative diseases (NDs) are a cluster of diseases marked by progressive neuronal loss, axonal transport blockage, mitochondrial dysfunction, oxidative stress, neuroinflammation, and aggregation of misfolded proteins. NDs are more prevalent beyond the age of 50, and their symptoms often include motor and cognitive impairment. Even though various proteins are involved in different NDs, the mechanisms of protein misfolding and aggregation are very similar. Recently, several studies have discovered that, like prions, these misfolded proteins have the inherent capability of translocation from one neuron to another, thus having far-reaching implications for understanding the processes involved in the onset and progression of NDs, as well as the development of innovative therapy and diagnostic options. These misfolded proteins can also influence the transcription of other proteins and form aggregates, tangles, plaques, and inclusion bodies, which then accumulate in the CNS, leading to neuronal dysfunction and neurodegeneration. This review demonstrates protein misfolding and aggregation in NDs, and similarities and differences between different protein aggregates have been discussed. Furthermore, we have also reviewed the disposal of protein aggregates, the various molecular machinery involved in the process, their regulation, and how these molecular mechanisms are targeted to build innovative therapeutic and diagnostic procedures. In addition, the landscape of various therapeutic interventions for targeting protein aggregation for the effective prevention or treatment of NDs has also been discussed.
Collapse
|
7
|
Folke J, Bergholt E, Pakkenberg B, Aznar S, Brudek T. Alpha-Synuclein Autoimmune Decline in Prodromal Multiple System Atrophy and Parkinson's Disease. Int J Mol Sci 2022; 23:6554. [PMID: 35742998 PMCID: PMC9224313 DOI: 10.3390/ijms23126554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023] Open
Abstract
Multiple-system trophy (MSA) and Parkinson's Disease (PD) are both progressive, neurodegenerative diseases characterized by neuropathological deposition of aggregated alpha-synuclein (αSyn). The causes behind this aggregation are still unknown. We have reported aberrancies in MSA and PD patients in naturally occurring autoantibodies (nAbs) against αSyn (anti-αSyn-nAbs), which are important partakers in anti-aggregatory processes, immune-mediated clearance, and anti-inflammatory functions. To elaborate further on the timeline of autoimmune aberrancies towards αSyn, we investigated here the Immunoglobulin (Ig) affinity profile and subclass composition (IgG-total, IgG1-4 and IgM) of anti-αSyn-nAbs in serum samples from prodromal (p) phases of MSA and PD. Using an electrochemiluminescence competition immunoassay, we confirmed that the repertoire of high-affinity anti-αSyn-nAbs is significantly reduced in pMSA and pPD. Further, we demonstrated that pPD had increased anti-αSyn IgG-total levels compared to pMSA and controls, concordant with increased anti-αSyn IgG1 levels in pPD. Anti-αSyn IgG2 and IgG4 levels were reduced in pMSA and pPD compared with controls, whereas anti-αSyn IgG3 levels were reduced in pMSA compared to pPD and controls. The results indicate that the impaired reactivity towards αSyn occurs prior to disease onset. The apparent lack of high-affinity anti-αSyn nAbs may result in reduced clearance of αSyn, leading to aggregation of the protein. Thus, this study provides novel insights into possible causes behind the pathogenesis in synucleinopathies such as MSA and PD.
Collapse
Affiliation(s)
- Jonas Folke
- Centre for Neuroscience & Stereology, Department of Neurology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark; (E.B.); (B.P.); (S.A.); (T.B.)
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark
| | - Emil Bergholt
- Centre for Neuroscience & Stereology, Department of Neurology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark; (E.B.); (B.P.); (S.A.); (T.B.)
| | - Bente Pakkenberg
- Centre for Neuroscience & Stereology, Department of Neurology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark; (E.B.); (B.P.); (S.A.); (T.B.)
- Institute of Clinical Medicine, Faculty of Health, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Susana Aznar
- Centre for Neuroscience & Stereology, Department of Neurology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark; (E.B.); (B.P.); (S.A.); (T.B.)
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark
| | - Tomasz Brudek
- Centre for Neuroscience & Stereology, Department of Neurology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark; (E.B.); (B.P.); (S.A.); (T.B.)
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark
| |
Collapse
|
8
|
Pyk2 inhibition attenuates hypoxic-ischemic brain injury in neonatal mice. Acta Pharmacol Sin 2022; 43:797-810. [PMID: 34226665 PMCID: PMC8976000 DOI: 10.1038/s41401-021-00694-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Newborns suffering from hypoxia-ischemia (HI) brain injury still lack effective treatment. Proline-rich tyrosine kinase 2 (Pyk2) is a non-receptor tyrosine kinase, which is highly correlated with transient ischemic brain injury in adult. In this study, we investigated the role of Pyk2 in neonatal HI brain injury. HI was induced in postnatal day 7 mouse pups by unilateral common carotid artery ligation followed by hypoxic exposure. Pyk2 interference lentivirus (LV-Pyk2 shRNA) was constructed and injected into unilateral cerebral ventricle of neonatal mice before HI. Infarct volume, pathological changes, and neurological behaviors were assessed on postnatal day 8-14. We showed that the phosphorylation level of Pyk2 was significantly increased in neonatal brain after HI, whereas LV-Pyk2 shRNA injection significantly attenuated acute HI brain damage and improved neurobehavioral outcomes. In oxygen-glucose deprivation-treated cultured cortical neurons, Pyk2 inhibition significantly alleviated NMDA receptor-mediated excitotoxicity; similar results were also observed in neonatal HI brain injury. We demonstrated that Pyk2 inhibition contributes to the long-term cerebrovascular recovery assessed by laser speckle contrast imaging, but cognitive function was not obviously improved as evaluated in Morris water maze and novel object recognition tests. Thus, we constructed lentiviral LV-HIF-Pyk2 shRNA, through which HIF-1α promoter-mediated interference of Pyk2 would occur during the anoxic environment. Intracerebroventricular injection of LV-HIF-Pyk2 shRNA significantly improved long-term recovery of cognitive function in HI-treated neonatal mice. In conclusion, this study demonstrates that Pyk2 interference protects neonatal brain from hypoxic-ischemic injury. HIF-1α promoter-mediated hypoxia conditional control is a useful tool to distinguish between hypoxic period and normal period. Pyk2 is a promising drug target for potential treatment of neonatal HI brain injury.
Collapse
|
9
|
Braczynski AK, Sevenich M, Gering I, Kupreichyk T, Agerschou ED, Kronimus Y, Habib P, Stoldt M, Willbold D, Schulz JB, Bach JP, Falkenburger BH, Hoyer W. Alpha-Synuclein-Specific Naturally Occurring Antibodies Inhibit Aggregation In Vitro and In Vivo. Biomolecules 2022; 12:biom12030469. [PMID: 35327661 PMCID: PMC8946620 DOI: 10.3390/biom12030469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is associated with motor and non-motor symptoms and characterized by aggregates of alpha-synuclein (αSyn). Naturally occurring antibodies (nAbs) are part of the innate immune system, produced without prior contact to their specific antigen, and polyreactive. The abundance of nAbs against αSyn is altered in patients with PD. In this work, we biophysically characterized nAbs against αSyn (nAbs-αSyn) and determined their biological effects. nAbs-αSyn were isolated from commercial intravenous immunoglobulins using column affinity purification. Biophysical properties were characterized using a battery of established in vitro assays. Biological effects were characterized in HEK293T cells transiently transfected with fluorescently tagged αSyn. Specific binding of nAbs-αSyn to monomeric αSyn was demonstrated by Dot blot, ELISA, and Surface Plasmon Resonance. nAbs-αSyn did not affect viability of HEK293T cells as reported by Cell Titer Blue and LDH Assays. nAbs-αSyn inhibited fibrillation of αSyn reported by the Thioflavin T aggregation assay. Altered fibril formation was confirmed with atomic force microscopy. In cells transfected with EGFP-tagged αSyn we observed reduced formation of aggresomes, perinuclear accumulations of αSyn aggregates. The results demonstrate that serum of healthy individuals contains nAbs that specifically bind αSyn and inhibit aggregation of αSyn in vitro. The addition of nAbs-αSyn to cultured cells affects intracellular αSyn aggregates. These findings help understanding the role of the innate immune systems for the pathogenesis of PD and suggest that systemic αSyn binding agents could potentially affect neuronal αSyn pathology.
Collapse
Affiliation(s)
- Anne K. Braczynski
- Department of Neurology, RWTH University Hospital, 52074 Aachen, Germany; (A.K.B.); (P.H.); (J.B.S.); (J.-P.B.)
- Institut für Physikalische Biologie, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.K.); (E.D.A.); (M.S.); (D.W.)
| | - Marc Sevenich
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany; (M.S.); (I.G.)
- Priavoid GmbH, 40225 Düsseldorf, Germany
| | - Ian Gering
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany; (M.S.); (I.G.)
| | - Tatsiana Kupreichyk
- Institut für Physikalische Biologie, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.K.); (E.D.A.); (M.S.); (D.W.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany; (M.S.); (I.G.)
| | - Emil D. Agerschou
- Institut für Physikalische Biologie, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.K.); (E.D.A.); (M.S.); (D.W.)
| | - Yannick Kronimus
- Department of Geriatric Medicine, University Hospital Essen, University Duisburg-Essen, 47057 Duisburg, Germany;
| | - Pardes Habib
- Department of Neurology, RWTH University Hospital, 52074 Aachen, Germany; (A.K.B.); (P.H.); (J.B.S.); (J.-P.B.)
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias Stoldt
- Institut für Physikalische Biologie, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.K.); (E.D.A.); (M.S.); (D.W.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany; (M.S.); (I.G.)
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.K.); (E.D.A.); (M.S.); (D.W.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany; (M.S.); (I.G.)
| | - Jörg B. Schulz
- Department of Neurology, RWTH University Hospital, 52074 Aachen, Germany; (A.K.B.); (P.H.); (J.B.S.); (J.-P.B.)
- JARA-Institute Molecular Neuroscience and Neuroimaging, Jülich Aachen Research Alliance, FZ Jülich and RWTH University, 52428 Jülich, Germany
| | - Jan-Philipp Bach
- Department of Neurology, RWTH University Hospital, 52074 Aachen, Germany; (A.K.B.); (P.H.); (J.B.S.); (J.-P.B.)
| | - Björn H. Falkenburger
- Department of Neurology, RWTH University Hospital, 52074 Aachen, Germany; (A.K.B.); (P.H.); (J.B.S.); (J.-P.B.)
- Department of Neurology, University Hospital Carl Gustav Carus, 01307 Dresden, Germany
- Correspondence: (B.H.F.); (W.H.)
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.K.); (E.D.A.); (M.S.); (D.W.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany; (M.S.); (I.G.)
- Correspondence: (B.H.F.); (W.H.)
| |
Collapse
|
10
|
Passive Immunization in Alpha-Synuclein Preclinical Animal Models. Biomolecules 2022; 12:biom12020168. [PMID: 35204668 PMCID: PMC8961624 DOI: 10.3390/biom12020168] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/15/2022] [Indexed: 12/20/2022] Open
Abstract
Alpha-synucleinopathies include Parkinson’s disease, dementia with Lewy bodies, pure autonomic failure and multiple system atrophy. These are all progressive neurodegenerative diseases that are characterized by pathological misfolding and accumulation of the protein alpha-synuclein (αsyn) in neurons, axons or glial cells in the brain, but also in other organs. The abnormal accumulation and propagation of pathogenic αsyn across the autonomic connectome is associated with progressive loss of neurons in the brain and peripheral organs, resulting in motor and non-motor symptoms. To date, no cure is available for synucleinopathies, and therapy is limited to symptomatic treatment of motor and non-motor symptoms upon diagnosis. Recent advances using passive immunization that target different αsyn structures show great potential to block disease progression in rodent studies of synucleinopathies. However, passive immunotherapy in clinical trials has been proven safe but less effective than in preclinical conditions. Here we review current achievements of passive immunotherapy in animal models of synucleinopathies. Furthermore, we propose new research strategies to increase translational outcome in patient studies, (1) by using antibodies against immature conformations of pathogenic αsyn (monomers, post-translationally modified monomers, oligomers and protofibrils) and (2) by focusing treatment on body-first synucleinopathies where damage in the brain is still limited and effective immunization could potentially stop disease progression by blocking the spread of pathogenic αsyn from peripheral organs to the brain.
Collapse
|
11
|
Gustavsson N, Savchenko E, Klementieva O, Roybon L. The intracellular milieu of Parkinson's disease patient brain cells modulates alpha-synuclein protein aggregation. Acta Neuropathol Commun 2021; 9:153. [PMID: 34530929 PMCID: PMC8444604 DOI: 10.1186/s40478-021-01256-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/06/2021] [Indexed: 01/15/2023] Open
Abstract
Recent studies suggest that brain cell type specific intracellular environments may play important roles in the generation of structurally different protein aggregates that define neurodegenerative diseases. Using human induced pluripotent stem cells (hiPSC) and biochemical and vibrational spectroscopy techniques, we studied whether Parkinson's disease (PD) patient genomes could modulate alpha-synuclein (aSYN) protein aggregates formation. We found increased β-sheets and aggregated aSYN in PD patient hiPSC-derived midbrain cells, compared to controls. Importantly, we discovered that aSYN protein aggregation is modulated by patient brain cells' intracellular milieus at the primary nucleation phase. Additionally, we found changes in the formation of aSYN fibrils when employing cellular extracts from familial PD compared to idiopathic PD, in a Thioflavin T-based fluorescence assay. The data suggest that changes in cellular milieu induced by patient genomes trigger structural changes of aSYN potentially leading to the formation of strains having different structures, properties and seeding propensities.
Collapse
Affiliation(s)
- Nadja Gustavsson
- Medical Microspectroscopy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ekaterina Savchenko
- Stem Cell Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, Lund, Sweden
| | - Oxana Klementieva
- Medical Microspectroscopy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Laurent Roybon
- Stem Cell Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Mortada I, Farah R, Nabha S, Ojcius DM, Fares Y, Almawi WY, Sadier NS. Immunotherapies for Neurodegenerative Diseases. Front Neurol 2021; 12:654739. [PMID: 34163421 PMCID: PMC8215715 DOI: 10.3389/fneur.2021.654739] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
The current treatments for neurodegenerative diseases are mostly symptomatic without affecting the underlying cause of disease. Emerging evidence supports a potential role for immunotherapy in the management of disease progression. Numerous reports raise the exciting prospect that either the immune system or its derivative components could be harnessed to fight the misfolded and aggregated proteins that accumulate in several neurodegenerative diseases. Passive and active vaccinations using monoclonal antibodies and specific antigens that induce adaptive immune responses are currently under evaluation for their potential use in the development of immunotherapies. In this review, we aim to shed light on prominent immunotherapeutic strategies being developed to fight neuroinflammation-induced neurodegeneration, with a focus on innovative immunotherapies such as vaccination therapy.
Collapse
Affiliation(s)
- Ibrahim Mortada
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Raymond Farah
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Sanaa Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, United States
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Wassim Y Almawi
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Najwane Said Sadier
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.,College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
13
|
Folke J, Rydbirk R, Løkkegaard A, Hejl AM, Winge K, Starhof C, Salvesen L, Pedersen LØ, Aznar S, Pakkenberg B, Brudek T. Cerebrospinal fluid and plasma distribution of anti-α-synuclein IgMs and IgGs in multiple system atrophy and Parkinson's disease. Parkinsonism Relat Disord 2021; 87:98-104. [PMID: 34020303 DOI: 10.1016/j.parkreldis.2021.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/09/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Ubiquitous naturally occurring autoantibodies (nAbs) against alpha-synuclein (α-syn) may play important roles in the pathogenesis of Multiple System Atrophy (MSA) and Parkinson's disease (PD). Recently, we reported reduced high-affinity/avidity anti-α-syn nAbs levels in plasma from MSA and PD patients, along with distinct inter-group immunoglobulin (Ig)G subclass distributions. The extent to which these observations in plasma may reflect corresponding levels in the cerebrospinal fluid (CSF) is unknown. METHODS Using competitive and indirect ELISAs, we investigated the affinity/avidity of CSF anti-α-syn nAbs as well as the CSF and plasma distribution of IgG subclasses and IgM nAbs in a cross-sectional cohort of MSA and PD patients. RESULTS Repertoires of high-affinity/avidity anti-α-syn IgG nAbs were reduced in CSF samples from MSA and PD patients compared to controls. Furthermore, anti-α-syn IgM nAb levels were relatively lower in CSF and plasma from MSA patients but were reduced only in plasma from PD patients. Interestingly, anti-α-syn IgG subclasses presented disease-specific profiles both in CSF and plasma. Anti-α-syn IgG1, IgG2 and IgG3 levels were relatively increased in CSF of MSA patients, whereas PD patients showed increased anti-α-syn IgG2 and reduced anti-α-syn IgG4 levels. CONCLUSIONS Differences in the plasma/CSF distribution of anti-α-syn nAbs seem to be a common feature of synucleinopathies. Our data add further support to the notion that MSA and PD patients may have compromised immune reactivity towards α-syn. The differing α-syn-specific systemic immunological responses may reflect their specific disease pathophysiologies. These results are encouraging for further investigation of these immunological mechanisms in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonas Folke
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Nielsine Nielsens Vej 6B, entrance 11B, DK-2400, Copenhagen, NW, Denmark; Copenhagen Center for Translational Research, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Nielsine Nielsens Vej, 4B, entrance 80, DK-2400, Copenhagen, NW, Denmark.
| | - Rasmus Rydbirk
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, N, Denmark
| | - Annemette Løkkegaard
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Ebba Lunds Vej 44, DK-2400, Copenhagen, NW, Denmark
| | - Anne-Mette Hejl
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Ebba Lunds Vej 44, DK-2400, Copenhagen, NW, Denmark
| | - Kristian Winge
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Ebba Lunds Vej 44, DK-2400, Copenhagen, NW, Denmark; Novo Nordisk Foundation, Tuborg Havnevej 19, DK-2900, Hellerup, Denmark
| | - Charlotte Starhof
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Ebba Lunds Vej 44, DK-2400, Copenhagen, NW, Denmark
| | - Lisette Salvesen
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Ebba Lunds Vej 44, DK-2400, Copenhagen, NW, Denmark
| | | | - Susana Aznar
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Nielsine Nielsens Vej 6B, entrance 11B, DK-2400, Copenhagen, NW, Denmark; Copenhagen Center for Translational Research, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Nielsine Nielsens Vej, 4B, entrance 80, DK-2400, Copenhagen, NW, Denmark
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Nielsine Nielsens Vej 6B, entrance 11B, DK-2400, Copenhagen, NW, Denmark; Institute of Clinical Medicine, Faculty of Health, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, N, Denmark
| | - Tomasz Brudek
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Nielsine Nielsens Vej 6B, entrance 11B, DK-2400, Copenhagen, NW, Denmark; Copenhagen Center for Translational Research, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Nielsine Nielsens Vej, 4B, entrance 80, DK-2400, Copenhagen, NW, Denmark
| |
Collapse
|
14
|
Wang J, Zheng B, Yang S, Hu M, Wang JH. Differential Circulating Levels of Naturally Occurring Antibody to α-Synuclein in Parkinson's Disease Dementia, Alzheimer's Disease, and Vascular Dementia. Front Aging Neurosci 2020; 12:571437. [PMID: 33088272 PMCID: PMC7544955 DOI: 10.3389/fnagi.2020.571437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 01/10/2023] Open
Abstract
Background: Aggregation of alpha-synuclein (α-Syn) is considered to be a significant pathological hallmark and a driving force of Parkinson’s disease (PD). PD dementia (PDD) occurs in a substantial number of PD patients. Naturally occurring antibody against α-Syn (NAb-α-Syn) exists ubiquitously in human blood and is reported to be altered in PD. However, it is not clear yet whether PDD had similar changes of circulating NAb-α-Syn. Methods: In this study, we recruited 61 PDD patients, 52 patients with Alzheimer’s disease (AD), 51 patients with vascular dementia (VaD), and 50 normal controls (NCs). ELISA was used to examine NAb-α-Syn levels in serum. Results: In comparison with NCs, serum levels of NAb-α-Syn were significantly lower in patients with PDD. However, serum levels of NAb-α-Syn were comparable among AD, VaD, and NC groups. Serum levels of NAb-α-Syn were positively correlated with the cognitive function, as reflected by Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). Serum levels of NAb-α-Syn were negatively correlated with the severity of PD [as reflected by the Unified Parkinson Disease Rating Scale (UPDRS)] and the duration of PD and PDD. Serum NAb-α-Syn can differentiate PDD patients from AD and VaD patients. Conclusion: These results suggest that circulating NAb-α-Syn might be a potential biomarker of PDD.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurology, Yaan People's Hospital, Yaan, China
| | - Bo Zheng
- Department of Neurology, Yaan People's Hospital, Yaan, China
| | - Shu Yang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mei Hu
- Department of Imaging, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jian-Hong Wang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
15
|
Sim KY, Im KC, Park SG. The Functional Roles and Applications of Immunoglobulins in Neurodegenerative Disease. Int J Mol Sci 2020; 21:E5295. [PMID: 32722559 PMCID: PMC7432158 DOI: 10.3390/ijms21155295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Natural autoantibodies, immunoglobulins (Igs) that target self-proteins, are common in the plasma of healthy individuals; some of the autoantibodies play pathogenic roles in systemic or tissue-specific autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus. Recently, the field of autoantibody-associated diseases has expanded to encompass neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), with related studies examining the functions of Igs in the central nervous system (CNS). Recent evidence suggests that Igs have various effects in the CNS; these effects are associated with the prevention of neurodegeneration, as well as induction. Here, we summarize the functional roles of Igs with respect to neurodegenerative disease (AD and PD), focusing on the target antigens and effector cell types. In addition, we review the current knowledge about the roles of these antibodies as diagnostic markers and immunotherapies.
Collapse
Affiliation(s)
| | | | - Sung-Gyoo Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (K.-Y.S.); (K.C.I.)
| |
Collapse
|
16
|
Tan EK, Chao YX, West A, Chan LL, Poewe W, Jankovic J. Parkinson disease and the immune system - associations, mechanisms and therapeutics. Nat Rev Neurol 2020; 16:303-318. [PMID: 32332985 DOI: 10.1038/s41582-020-0344-4] [Citation(s) in RCA: 254] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Multiple lines of evidence indicate that immune system dysfunction has a role in Parkinson disease (PD); this evidence includes clinical and genetic associations between autoimmune disease and PD, impaired cellular and humoral immune responses in PD, imaging evidence of inflammatory cell activation and evidence of immune dysregulation in experimental models of PD. However, the mechanisms that link the immune system with PD remain unclear, and the temporal relationships of innate and adaptive immune responses with neurodegeneration are unknown. Despite these challenges, our current knowledge provides opportunities to develop immune-targeted therapeutic strategies for testing in PD, and clinical studies of some approaches are under way. In this Review, we provide an overview of the clinical observations, preclinical experiments and clinical studies that provide evidence for involvement of the immune system in PD and that help to define the nature of this association. We consider autoimmune mechanisms, central and peripheral inflammatory mechanisms and immunogenetic factors. We also discuss the use of this knowledge to develop immune-based therapeutic approaches, including immunotherapy that targets α-synuclein and the targeting of immune mediators such as inflammasomes. We also consider future research and clinical trials necessary to maximize the potential of targeting the immune system.
Collapse
Affiliation(s)
- Eng-King Tan
- Department of Neurology, Singapore General Hospital, Singapore, Singapore.
- National Neuroscience Institute, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| | - Yin-Xia Chao
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Andrew West
- Duke Center for Neurodegeneration and Neurotherapeutics, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Ling-Ling Chan
- Duke-NUS Medical School, Singapore, Singapore
- Department of Radiology, Singapore General Hospital, Singapore, Singapore
| | - Werner Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
17
|
Poloxamer 188-mediated anti-inflammatory effect rescues cognitive deficits in paraquat and maneb-induced mouse model of Parkinson's disease. Toxicology 2020; 436:152437. [PMID: 32169474 DOI: 10.1016/j.tox.2020.152437] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/15/2020] [Accepted: 03/09/2020] [Indexed: 01/06/2023]
Abstract
Mild cognitive impairment in Parkinson's disease (PD-MCI) is considered as a nonmotor clinical symptom in Parkinson's disease (PD). Microglia-mediated inflammation contributes to cognitive function impairment. Poloxamer 188 (P188) is an amphipathic polymer which has cytoprotective effect in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced dopaminergic (DA) neurons degeneration in PD. But whether P188 could ameliorate cognitive impairment in PD is still illusive. In the present study, we showed in a mouse model that paraquat (10 mg/kg) and maneb (30 mg/kg) (P + M) treatment intraperitoneally twice a week for 6 consecutive weeks resulted in cognitive deficits and synapse loss in hippocampus, together with DA neuron damage in the substantia nigra pars compacta (SNpc). P188 (0.8 g/kg) injection via tail vein 30 min after P + M administration significantly restored DA neuron numbers in SNpc and synapse density in hippocampus, and alleviated P + M-mediated cognitive function impairment in novel object recognition task and morris water maze task (MWM). Pathological synapse loss might be attributed to increased microglial phagocytic activity and cell density, and P188 prevented P + M-induced phagocytic state changes of microglia, such as increase in cell body size and decrease in process length, and upregulated microglia abundance in hippocampus. Consistently, P188 attenuated P + M-mediated increased mRNA levels of microglia proliferation related CSF1r and CSF2ra, microglial engulfment associated CD68, ICAM1, and ICAM2, and pro-inflammatory IL-6, IL-1β, CD11b, and TNF-α in hippocampus. Together, these findings suggest that the biocompatible polymer P188 blunts microglia activation which may promote synaptic loss and exacerbate cognitive function in a mouse model of PD-MCI.
Collapse
|
18
|
Nataf S, Guillen M, Pays L. Common Neurodegeneration-Associated Proteins Are Physiologically Expressed by Human B Lymphocytes and Are Interconnected via the Inflammation/Autophagy-Related Proteins TRAF6 and SQSTM1. Front Immunol 2019; 10:2704. [PMID: 31824497 PMCID: PMC6886494 DOI: 10.3389/fimmu.2019.02704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
There is circumstantial evidence that, under neurodegenerative conditions, peptides deriving from aggregated or misfolded specific proteins elicit adaptive immune responses. On another hand, several genes involved in familial forms of neurodegenerative diseases exert key innate immune functions. However, whether or not such observations are causally linked remains unknown. To start addressing this issue, we followed a systems biology strategy based on the mining of large proteomics and immunopeptidomics databases. First, we retrieved the expression patterns of common neurodegeneration-associated proteins in two professional antigen-presenting cells, namely B lymphocytes and dendritic cells. Surprisingly, we found that under physiological conditions, numerous neurodegeneration-associated proteins are abundantly expressed by human B lymphocytes. A survey of the human proteome allowed us to map a unique protein-protein interaction network linking common neurodegeneration-associated proteins and their first shell interactors in human B lymphocytes. Interestingly, network connectivity analysis identified two major hubs that both relate with inflammation and autophagy, namely TRAF6 (TNF Receptor Associated Factor 6) and SQSTM1 (Sequestosome-1). Moreover, the mapped network in B lymphocytes comprised two additional hub proteins involved in both inflammation and autoimmunity: HSPA8 (Heat Shock Protein Family A Member 8 also known as HSC70) and HSP90AA1 (Heat Shock Protein 90 Alpha Family Class A Member 1). Based on these results, we then explored the Immune Epitope Database "IEDB-AR" and actually found that a large share of neurodegeneration-associated proteins were previously reported to provide endogenous MHC class II-binding peptides in human B lymphocytes. Of note, peptides deriving from amyloid beta A4 protein, sequestosome-1 or profilin-1 were reported to bind multiple allele-specific MHC class II molecules. In contrast, peptides deriving from microtubule-associated protein tau, presenilin 2 and serine/threonine-protein kinase TBK1 were exclusively reported to bind MHC molecules encoded by the HLA-DRB1 1501 allele, a recently-identified susceptibility gene for late onset Alzheimer's disease. Finally, we observed that the whole list of proteins reported to provide endogenous MHC class II-binding peptides in human B lymphocytes is specifically enriched in neurodegeneration-associated proteins. Overall, our work indicates that immunization against neurodegeneration-associated proteins might be a physiological process which is shaped, at least in part, by B lymphocytes.
Collapse
Affiliation(s)
- Serge Nataf
- CarMeN Laboratory, INSERM U1060, INRA U1397, INSA de Lyon, Lyon-Sud Faculty of Medicine, University of Lyon, Pierre-Bénite, France
- Faculté de Médecine Lyon-Est, University of Lyon 1, Lyon, France
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Marine Guillen
- Faculté de Médecine Lyon-Est, University of Lyon 1, Lyon, France
| | - Laurent Pays
- CarMeN Laboratory, INSERM U1060, INRA U1397, INSA de Lyon, Lyon-Sud Faculty of Medicine, University of Lyon, Pierre-Bénite, France
- Faculté de Médecine Lyon-Est, University of Lyon 1, Lyon, France
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France
| |
Collapse
|
19
|
Jellinger KA. Animal models of synucleinopathies and how they could impact future drug discovery and delivery efforts. Expert Opin Drug Discov 2019; 14:969-982. [DOI: 10.1080/17460441.2019.1638908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|