1
|
Zhang Y, Zhang B. Bifenthrin Caused Parkinson's-Like Symptoms Via Mitochondrial Autophagy and Ferroptosis Pathway Stereoselectively in Parkin -/- Mice and C57BL/6 Mice. Mol Neurobiol 2024; 61:9694-9707. [PMID: 38691300 DOI: 10.1007/s12035-024-04140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/19/2024] [Indexed: 05/03/2024]
Abstract
It has been proposed that pyrethroid exposure contributes to the increasing prevalence of neurodegenerative diseases. However, the potential mechanisms remain unclear. The current study aimed to investigate the effects of the widely used pyrethroid bifenthrin on Parkinson's disease (PD) risk. Bifenthrin (1S-cis-bifenthrin, 1R-cis-bifenthrin, raceme) was administered to male Parkin-/- mice and C57BL/6 mice by oral gavage at a dose of 10 mg/kg bw/day for 28 days. Bifenthrin exposure significantly increased the time of pole climbing and decreased the period of rotarod running, indicating that bifenthrin decreased motor coordination in Parkin-/- mice, which was more evident by 1S-cis-bifenthrin. Furthermore, administration of bifenthrin induced obvious decreases in tyrosine hydroxylase (TH)+ cell count and the protein expression of TH. Increased protein of mitochondrial autophagy LC3B and p62 was observed after exposure to bifenthrin. Increased iron deposition and protein expression of iron transport transferrin (Tf) and transferrin receptor 2 (TfR2) was detected. 1S-cis-bifenthrin bound with Tf, TfR2, and GPX4 with lower binding energies than 1R-cis-bifenthrin, resulting in stronger interactions with these proteins. These results show structure-dependent PD-like effects of bifenthrin on motor activity and coordination associated with the disturbed mitochondrial autophagy and ferroptosis-related pathway. These data demonstrate that pyrethroid exposure increases the potential of Parkinson's-like symptoms via the ferroptosis pathway in Parkin-/- mice that is more pronounced than in C57BL/6 mice, providing a prospective enantioselective toxic effect of environmental neurotoxins on PD risk.
Collapse
Affiliation(s)
- Ying Zhang
- Neuroscience Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Lasheen NN, Allam S, Elgarawany A, Aswa DW, Mansour R, Farouk Z. Limitations and potential strategies of immune checkpoint blockade in age-related neurodegenerative disorders. J Physiol Sci 2024; 74:46. [PMID: 39313800 PMCID: PMC11421184 DOI: 10.1186/s12576-024-00933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
Neurological disorders such as Alzheimer's disease (AD), and Parkinson's disease (PD) have no disease-modifying treatments, resulting in a global dementia crisis that affects more than 50 million people. Amyloid-beta (Aβ), tau, and alpha-synuclein (α-Syn) are three crucial proteins that are involved in the pathogenesis of these age-related neurodegenerative diseases. Only a few approved AD medications have been used in the clinic up to this point, and their results are only partial symptomatic alleviation for AD patients and cannot stop the progression of AD. Immunotherapies have attracted considerable interest as they target certain protein strains and conformations as well as promote clearance. Immunotherapies also have the potential to be neuroprotective: as they limit synaptic damage and spread of neuroinflammation by neutralizing extracellular protein aggregates. Lately, disease-modifying therapies (DMTs) that can alter the pathophysiology that underlies AD with anti-Aβ monoclonal antibodies (MAbs) (e.g., aducanumab, lecanemab, gantenerumab, donanemab, solanezumab, crenezumab, tilavonemab). Similarly, in Parkinson's disease (PD), DMTs utilizing anti-αSyn (MAbs) (e.g., prasinezumab, cinpanemab,) are progressively being developed and evaluated in clinical trials. These therapies are based on the hypothesis that both AD and PD may involve systemic impairments in cell-dependent clearance mechanisms of amyloid-beta (Aβ) and alpha-synuclein (αSyn), respectively, meaning the body's overall inability to effectively remove Aβ and αSyn due to malfunctioning cellular mechanisms. In this review we will provide possible evidence behind the use of immunotherapy with MAbs in AD and PD and highlight the recent clinical development landscape of anti-Aβ (MAbs) and anti-αSyn (MAbs) from these clinical trials in order to better investigate the therapeutic possibilities and adverse effects of these anti-Aβ and anti-αSyn MAbs on AD and PD.
Collapse
Affiliation(s)
- Noha N Lasheen
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt.
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Salma Allam
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | | | - Darin W Aswa
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | - Rana Mansour
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | - Ziad Farouk
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| |
Collapse
|
3
|
Phillips MCL, Picard M. Neurodegenerative disorders, metabolic icebergs, and mitohormesis. Transl Neurodegener 2024; 13:46. [PMID: 39242576 PMCID: PMC11378521 DOI: 10.1186/s40035-024-00435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/25/2024] [Indexed: 09/09/2024] Open
Abstract
Neurodegenerative disorders are typically "split" based on their hallmark clinical, anatomical, and pathological features, but they can also be "lumped" by a shared feature of impaired mitochondrial biology. This leads us to present a scientific framework that conceptualizes Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) as "metabolic icebergs" comprised of a tip, a bulk, and a base. The visible tip conveys the hallmark neurological symptoms, neurodegenerative regions, and neuronal protein aggregates for each disorder. The hidden bulk depicts impaired mitochondrial biology throughout the body, which is multifaceted and may be subdivided into impaired cellular metabolism, cell-specific mitotypes, and mitochondrial behaviours, functions, activities, and features. The underlying base encompasses environmental factors, especially modern industrial toxins, dietary lifestyles, and cognitive, physical, and psychosocial behaviours, but also accommodates genetic factors specific to familial forms of AD, PD, and ALS, as well as HD. Over years or decades, chronic exposure to a particular suite of environmental and genetic factors at the base elicits a trajectory of impaired mitochondrial biology that maximally impacts particular subsets of mitotypes in the bulk, which eventually surfaces as the hallmark features of a particular neurodegenerative disorder at the tip. We propose that impaired mitochondrial biology can be repaired and recalibrated by activating "mitohormesis", which is optimally achieved using strategies that facilitate a balanced oscillation between mitochondrial stressor and recovery phases. Sustainably harnessing mitohormesis may constitute a potent preventative and therapeutic measure for people at risk of, or suffering with, neurodegenerative disorders.
Collapse
Affiliation(s)
- Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand.
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand.
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
4
|
Jiang Y, Lin Y, Tetlow AM, Pan R, Ji C, Kong XP, Congdon EE, Sigurdsson EM. Single-domain antibody-based protein degrader for synucleinopathies. Mol Neurodegener 2024; 19:44. [PMID: 38816762 PMCID: PMC11140919 DOI: 10.1186/s13024-024-00730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of α-synuclein (α-syn) in the brain, leading to motor and neuropsychiatric symptoms. Currently, there are no known cures for synucleinopathies, and treatments mainly focus on symptom management. In this study, we developed a single-domain antibody (sdAb)-based protein degrader with features designed to enhance proteasomal degradation of α-syn. This sdAb derivative targets both α-syn and Cereblon (CRBN), a substrate-receptor for the E3-ubiquitin ligase CRL4CRBN, and thereby induces α-syn ubiquitination and proteasomal degradation. Our results indicate that this therapeutic candidate enhances proteasomal degradation of α-syn, in addition to the endogenous lysosomal degradation machinery. By promoting proteasomal degradation of α-syn, we improved clearance of α-syn in primary culture and mouse models of synucleinopathy. These findings indicate that our sdAb-based protein degrader is a promising therapeutic candidate for synucleinopathies. Considering that only a small percentage of antibodies enter the brain, more potent sdAbs with greater brain entry than whole antibodies could enhance clinical benefits of antibody-based therapies.
Collapse
Affiliation(s)
- Yixiang Jiang
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Yan Lin
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Changyi Ji
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Erin E Congdon
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
5
|
Mukherjee A, Biswas S, Roy I. Immunotherapy: An emerging treatment option for neurodegenerative diseases. Drug Discov Today 2024; 29:103974. [PMID: 38555032 DOI: 10.1016/j.drudis.2024.103974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Accumulation of misfolded proteins and protein aggregates leading to degeneration of neurons is a hallmark of several neurodegenerative diseases. Therapy mostly relies on symptomatic relief. Immunotherapy offers a promising approach for the development of disease-modifying routes. Such strategies have shown remarkable results in oncology, and this promise is increasingly being realized for neurodegenerative diseases in advanced preclinical and clinical studies. This review highlights cases of passive and active immunotherapies in Parkinson's and Alzheimer's diseases. The reasons for success and failure, wherever available, and strategies to cross the blood-brain barrier, are discussed. The need for conditional modulation of the immune response is also reflected on.
Collapse
Affiliation(s)
- Abhiyanta Mukherjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Soumojit Biswas
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
6
|
Gu R, Pan J, Awan MUN, Sun X, Yan F, Bai L, Bai J. The major histocompatibility complex participates in Parkinson's disease. Pharmacol Res 2024; 203:107168. [PMID: 38583689 DOI: 10.1016/j.phrs.2024.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the substantia nigra and the aggregation of alpha-synuclein (α-syn). The central nervous system (CNS) has previously been considered as an immune-privileged area. However, studies have shown that the immune responses are involved in PD. The major histocompatibility complex (MHC) presents antigens from antigen-presenting cells (APCs) to T lymphocytes, immune responses will be induced. MHCs are expressed in microglia, astrocytes, and dopaminergic neurons. Single nucleotide polymorphisms in MHC are related to the risk of PD. The aggregated α-syn triggers the expression of MHCs by activating glia cells. CD4+ and CD8+ T lymphocytes responses and microglia activation are detected in brains of PD patients. In addiction immune responses further increase blood-brain barrier (BBB) permeability and T cell infiltration in PD. Thus, MHCs are involved in PD through participating in immune and inflammatory responses.
Collapse
Affiliation(s)
- Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianyu Pan
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Maher Un Nisa Awan
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; Department of Neurology, The Affiliated Hospital of Yunnan University, Kunming 650500, China
| | - Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Fang Yan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Liping Bai
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
7
|
Jiang Y, Lin Y, Tetlow AM, Pan R, Ji C, Kong XP, Congdon EE, Sigurdsson EM. Single-Domain Antibody-Based Protein Degrader for Synucleinopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584473. [PMID: 38558982 PMCID: PMC10979981 DOI: 10.1101/2024.03.11.584473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of α-synuclein (α-syn) in the brain, leading to motor and neuropsychiatric symptoms. Currently, there are no known cures for synucleinopathies, and treatments mainly focus on symptom management. In this study, we developed a single-domain antibody (sdAb)-based protein degrader with features designed to enhance proteasomal degradation of α-syn. This sdAb derivative targets both α-syn and Cereblon (CRBN), a substrate-receptor for the E3-ubiquitin ligase CRL4CRBN, and thereby induces α-syn ubiquitination and proteasomal degradation. Our results indicate that this therapeutic candidate enhances proteasomal degradation of α-syn, in addition to the endogenous lysosomal degradation machinery. By promoting proteasomal degradation of α-syn, we improved clearance of α-syn in primary culture and mouse models of synucleinopathy. These findings indicate that our sdAb-based protein degrader is a promising therapeutic candidate for synucleinopathies. Considering that only a small percentage of antibodies enter the brain, more potent sdAbs with greater brain entry than whole antibodies could enhance clinical benefits of antibody-based therapies.
Collapse
Affiliation(s)
- Yixiang Jiang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Yan Lin
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Changyi Ji
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Erin E Congdon
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| |
Collapse
|
8
|
Wang X, Huang J, Chatzakou M, Medijainen K, Toomela A, Nõmm S, Ruzhansky M. LSTM-CNN: An efficient diagnostic network for Parkinson's disease utilizing dynamic handwriting analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 247:108066. [PMID: 38364361 DOI: 10.1016/j.cmpb.2024.108066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND AND OBJECTIVES Dynamic handwriting analysis, due to its noninvasive and readily accessible nature, has emerged as a vital adjunctive method for the early diagnosis of Parkinson's disease (PD). An essential step involves analysing subtle variations in signals to quantify PD dysgraphia. Although previous studies have explored extracting features from the overall signal, they may ignore the potential importance of local signal segments. In this study, we propose a lightweight network architecture to analyse dynamic handwriting signal segments of patients and present visual diagnostic results, providing an efficient diagnostic method. METHODS To analyse subtle variations in handwriting, we investigate time-dependent patterns in local representation of handwriting signals. Specifically, we segment the handwriting signal into fixed-length sequential segments and design a compact one-dimensional (1D) hybrid network to extract discriminative temporal features for classifying each local segment. Finally, the category of the handwriting signal is fully diagnosed through a majority voting scheme. RESULTS The proposed method achieves impressive diagnostic performance on the new DraWritePD dataset (with an accuracy of 96.2%, sensitivity of 94.5% and specificity of 97.3%) and the well-established PaHaW dataset (with an accuracy of 90.7%, sensitivity of 94.3% and specificity of 87.5%). Moreover, the network architecture stands out for its excellent lightweight design, occupying a mere 0.084M parameters, with only 0.59M floating-point operations. It also exhibits nearly real-time CPU inference performance, with the inference time for a single handwriting signal ranging from 0.106 to 0.220 s. CONCLUSIONS We present a series of experiments with extensive analysis, which systematically demonstrate the effectiveness and efficiency of the proposed method in quantifying dysgraphia for a precise diagnosis of PD.
Collapse
Affiliation(s)
- Xuechao Wang
- Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Ghent, Belgium.
| | - Junqing Huang
- Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Ghent, Belgium
| | - Marianna Chatzakou
- Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Ghent, Belgium
| | - Kadri Medijainen
- Institute of Sport Sciences and Physiotherapy, University of Tartu, Puusepa 8, Tartu 51014, Estonia
| | - Aaro Toomela
- School of Natural Sciences and Health, Tallinn University, Narva mnt. 25, 10120, Tallinn, Estonia
| | - Sven Nõmm
- Department of Software Science, Faculty of Information Technology, Tallinn University of Technology, Akadeemia tee 15 a, 12618, Tallinn, Estonia
| | - Michael Ruzhansky
- Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Ghent, Belgium; School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
9
|
Galkin M, Priss A, Kyriukha Y, Shvadchak V. Navigating α-Synuclein Aggregation Inhibition: Methods, Mechanisms, and Molecular Targets. CHEM REC 2024; 24:e202300282. [PMID: 37919046 DOI: 10.1002/tcr.202300282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/08/2023] [Indexed: 11/04/2023]
Abstract
Parkinson's disease is a yet incurable, age-related neurodegenerative disorder characterized by the aggregation of small neuronal protein α-synuclein into amyloid fibrils. Inhibition of this process is a prospective strategy for developing a disease-modifying treatment. We overview here small molecule, peptide, and protein inhibitors of α-synuclein fibrillization reported to date. Special attention was paid to the specificity of inhibitors and critical analysis of their action mechanisms. Namely, the importance of oxidation of polyphenols and cross-linking of α-synuclein into inhibitory dimers was highlighted. We also compared strategies of targeting monomeric, oligomeric, and fibrillar α-synuclein species, thoroughly discussed the strong and weak sides of different approaches to testing the inhibitors.
Collapse
Affiliation(s)
- Maksym Galkin
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Anastasiia Priss
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Yevhenii Kyriukha
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States
| | - Volodymyr Shvadchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
10
|
Eva L, Pleș H, Covache-Busuioc RA, Glavan LA, Bratu BG, Bordeianu A, Dumitrascu DI, Corlatescu AD, Ciurea AV. A Comprehensive Review on Neuroimmunology: Insights from Multiple Sclerosis to Future Therapeutic Developments. Biomedicines 2023; 11:2489. [PMID: 37760930 PMCID: PMC10526343 DOI: 10.3390/biomedicines11092489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
This review delves into neuroimmunology, focusing on its relevance to multiple sclerosis (MS) and potential treatment advancements. Neuroimmunology explores the intricate relationship between the immune system and the central nervous system (CNS). Understanding these mechanisms is vital for grasping the pathophysiology of diseases like MS and for devising innovative treatments. This review introduces foundational neuroimmunology concepts, emphasizing the role of immune cells, cytokines, and blood-brain barrier in CNS stability. It highlights how their dysregulation can contribute to MS and discusses genetic and environmental factors influencing MS susceptibility. Cutting-edge research methods, from omics techniques to advanced imaging, have revolutionized our understanding of MS, offering valuable diagnostic and prognostic tools. This review also touches on the intriguing gut-brain axis, examining how gut microbiota impacts neuroimmunological processes and its potential therapeutic implications. Current MS treatments, from immunomodulatory drugs to disease-modifying therapies, are discussed alongside promising experimental approaches. The potential of personalized medicine, cell-based treatments, and gene therapy in MS management is also explored. In conclusion, this review underscores neuroimmunology's significance in MS research, suggesting that a deeper understanding could pave the way for more tailored and effective treatments for MS and similar conditions. Continued research and collaboration in neuroimmunology are essential for enhancing patient outcomes.
Collapse
Affiliation(s)
- Lucian Eva
- Clinical Emergency Hospital “Prof. Dr. Nicolae Oblu”, 700309 Iasi, Romania;
| | - Horia Pleș
- Department of Neurosurgery, Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (L.A.G.); (B.-G.B.); (A.B.); (D.-I.D.); (A.D.C.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (L.A.G.); (B.-G.B.); (A.B.); (D.-I.D.); (A.D.C.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (L.A.G.); (B.-G.B.); (A.B.); (D.-I.D.); (A.D.C.); (A.V.C.)
| | - Andrei Bordeianu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (L.A.G.); (B.-G.B.); (A.B.); (D.-I.D.); (A.D.C.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (L.A.G.); (B.-G.B.); (A.B.); (D.-I.D.); (A.D.C.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (L.A.G.); (B.-G.B.); (A.B.); (D.-I.D.); (A.D.C.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (L.A.G.); (B.-G.B.); (A.B.); (D.-I.D.); (A.D.C.); (A.V.C.)
| |
Collapse
|
11
|
Rodger AT, ALNasser M, Carter WG. Are Therapies That Target α-Synuclein Effective at Halting Parkinson's Disease Progression? A Systematic Review. Int J Mol Sci 2023; 24:11022. [PMID: 37446200 DOI: 10.3390/ijms241311022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
There are currently no pharmacological treatments available that completely halt or reverse the progression of Parkinson's Disease (PD). Hence, there is an unmet need for neuroprotective therapies. Lewy bodies are a neuropathological hallmark of PD and contain aggregated α-synuclein (α-syn) which is thought to be neurotoxic and therefore a suitable target for therapeutic interventions. To investigate this further, a systematic review was undertaken to evaluate whether anti-α-syn therapies are effective at preventing PD progression in preclinical in vivo models of PD and via current human clinical trials. An electronic literature search was performed using MEDLINE and EMBASE (Ovid), PubMed, the Web of Science Core Collection, and Cochrane databases to collate clinical evidence that investigated the targeting of α-syn. Novel preclinical anti-α-syn therapeutics provided a significant reduction of α-syn aggregations. Biochemical and immunohistochemical analysis of rodent brain tissue demonstrated that treatments reduced α-syn-associated pathology and rescued dopaminergic neuronal loss. Some of the clinical studies did not provide endpoints since they had not yet been completed or were terminated before completion. Completed clinical trials displayed significant tolerability and efficacy at reducing α-syn in patients with PD with minimal adverse effects. Collectively, this review highlights the capacity of anti-α-syn therapies to reduce the accumulation of α-syn in both preclinical and clinical trials. Hence, there is potential and optimism to target α-syn with further clinical trials to restrict dopaminergic neuronal loss and PD progression and/or provide prophylactic protection to avoid the onset of α-syn-induced PD.
Collapse
Affiliation(s)
- Abbie T Rodger
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK
| | - Maryam ALNasser
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Wayne G Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK
| |
Collapse
|
12
|
Mohamed W, Kumar J, Alghamdi BS, Soliman AH, Toshihide Y. Neurodegeneration and inflammation crosstalk: Therapeutic targets and perspectives. IBRO Neurosci Rep 2023; 14:95-110. [PMID: 37388502 PMCID: PMC10300452 DOI: 10.1016/j.ibneur.2022.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/19/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Glia, which was formerly considered to exist just to connect neurons, now plays a key function in a wide range of physiological events, including formation of memory, learning, neuroplasticity, synaptic plasticity, energy consumption, and homeostasis of ions. Glial cells regulate the brain's immune responses and confers nutritional and structural aid to neurons, making them an important player in a broad range of neurological disorders. Alzheimer's, ALS, Parkinson's, frontotemporal dementia (FTD), and epilepsy are a few of the neurodegenerative diseases that have been linked to microglia and astroglia cells, in particular. Synapse growth is aided by glial cell activity, and this activity has an effect on neuronal signalling. Each glial malfunction in diverse neurodegenerative diseases is distinct, and we will discuss its significance in the progression of the illness, as well as its potential for future treatment.
Collapse
Affiliation(s)
- Wael Mohamed
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Menoufia, Egypt
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, UKM Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
13
|
Identification of Parkinson's disease-associated chromatin regulators. Sci Rep 2023; 13:3084. [PMID: 36813848 PMCID: PMC9947017 DOI: 10.1038/s41598-023-30236-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Parkinson's disease (PD) is a common neurological disorder that causes quiescent tremors, motor delays, depression, and sleep disturbances. Existing treatments can only improve symptoms, not stop progression or cure the disease, but effective treatments can significantly improve patients' quality of life. There is growing evidence that chromatin regulatory proteins (CRs) are involved in a variety of biological processes, including inflammation, apoptosis, autophagy, and proliferation. But the relationship of chromatin regulators in Parkinson's disease has not been studied. Therefore, we aim to investigate the role of CRs in the pathogenesis of Parkinson's disease. We collected 870 chromatin regulatory factors from previous studies and downloaded data on patients with PD from the GEO database. 64 differentially expressed genes were screened, the interaction network was constructed and the key genes with the top 20 scores were calculated. Then we discussed its correlation with the immune function of PD. Finally, we screened potential drugs and miRNAs. Five genes related to the immune function of PD, BANF1, PCGF5, WDR5, RYBP and BRD2, were obtained by using the absolute value of correlation greater than 0.4. And the disease prediction model showed good predictive efficiency. We also screened 10 related drugs and 12 related miRNAs, which provided a reference for the treatment of PD. BANF1, PCGF5, WDR5, RYBP and BRD2 are related to the immune process of Parkinson's disease and can predict the occurrence of Parkinson's disease, which is expected to become a new target for the diagnosis and treatment of Parkinson's disease.
Collapse
|
14
|
Paccione N, Rahmani M, Barcia E, Negro S. Antiparkinsonian Agents in Investigational Polymeric Micro- and Nano-Systems. Pharmaceutics 2022; 15:pharmaceutics15010013. [PMID: 36678642 PMCID: PMC9866990 DOI: 10.3390/pharmaceutics15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative disease characterized by progressive destruction of dopaminergic tissue in the central nervous system (CNS). To date, there is no cure for the disease, with current pharmacological treatments aimed at controlling the symptoms. Therefore, there is an unmet need for new treatments for PD. In addition to new therapeutic options, there exists the need for improved efficiency of the existing ones, as many agents have difficulties in crossing the blood-brain barrier (BBB) to achieve therapeutic levels in the CNS or exhibit inappropriate pharmacokinetic profiles, thereby limiting their clinical benefits. To overcome these limitations, an interesting approach is the use of drug delivery systems, such as polymeric microparticles (MPs) and nanoparticles (NPs) that allow for the controlled release of the active ingredients targeting to the desired site of action, increasing the bioavailability and efficacy of treatments, as well as reducing the number of administrations and adverse effects. Here we review the polymeric micro- and nano-systems under investigation as potential new therapies for PD.
Collapse
Affiliation(s)
- Nicola Paccione
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Mahdieh Rahmani
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913941741
| | - Emilia Barcia
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Sofía Negro
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| |
Collapse
|
15
|
Shin JW, An S, Kim D, Kim H, Ahn J, Eom J, You WK, Yun H, Lee B, Sung B, Jung J, Kim S, Son Y, Sung E, Lee H, Lee S, Song D, Pak Y, Sandhu JK, Haqqani AS, Stanimirovic DB, Yoo J, Kim D, Maeng S, Lee J, Lee SH. Grabody B, an IGF1 receptor-based shuttle, mediates efficient delivery of biologics across the blood-brain barrier. CELL REPORTS METHODS 2022; 2:100338. [PMID: 36452865 PMCID: PMC9701613 DOI: 10.1016/j.crmeth.2022.100338] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 07/26/2021] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Effective delivery of therapeutics to the brain is challenging. Molecular shuttles use receptors expressed on brain endothelial cells to deliver therapeutics. Antibodies targeting transferrin receptor (TfR) have been widely developed as molecular shuttles. However, the TfR-based approach raises concerns about safety and developmental burden. Here, we report insulin-like growth factor 1 receptor (IGF1R) as an ideal target for the molecular shuttle. We also describe Grabody B, an antibody against IGF1R, as a molecular shuttle. Grabody B has broad cross-species reactivity and does not interfere with IGF1R-mediated signaling. We demonstrate that administration of Grabody B-fused anti-alpha-synuclein (α-Syn) antibody induces better improvement in neuropathology and behavior in a Parkinson's disease animal model than the therapeutic antibody alone due to its superior serum pharmacokinetics and enhanced brain exposure. The results indicate that IGF1R is an ideal shuttle target and Grabody B is a safe and efficient molecular shuttle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hyesu Yun
- ABL Bio, Inc., Seongnam-si, South Korea
| | - Bora Lee
- ABL Bio, Inc., Seongnam-si, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sungho Maeng
- Department of Comprehensive Health Science, Kyung Hee University, Yongin-si, South Korea
| | - Jeonghun Lee
- Department of Comprehensive Health Science, Kyung Hee University, Yongin-si, South Korea
| | | |
Collapse
|
16
|
Salahi S, Mousavi MA, Azizi G, Hossein-Khannazer N, Vosough M. Stem Cell-based and Advanced Therapeutic Modalities for Parkinson's Disease: A Risk-effectiveness Patient-centered Analysis. Curr Neuropharmacol 2022; 20:2320-2345. [PMID: 35105291 PMCID: PMC9890289 DOI: 10.2174/1570159x20666220201100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/29/2022] Open
Abstract
Treatment of Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, is currently considered a challenging issue since it causes substantial disability, poor quality of life, and mortality. Despite remarkable progress in advanced conventional therapeutic interventions, the global burden of the disease has nearly doubled, prompting us to assess the riskeffectiveness of different treatment modalities. Each protocol could be considered as the best alternative treatment depending on the patient's situation. Prescription of levodopa, the most effective available medicine for this disorder, has been associated with many complications, i.e., multiple episodes of "off-time" and treatment resistance. Other medications, which are typically used in combination with levodopa, may have several adverse effects as well. As a result, the therapies that are more in line with human physiology and make the least interference with other pathways are worth investigating. On the other hand, remaining and persistent symptoms after therapy and the lack of effective response to the conventional approaches have raised expectations towards innovative alternative approaches, such as stem cell-based therapy. It is critical to not overlook the unexplored side effects of innovative approaches due to the limited number of research. In this review, we aimed to compare the efficacy and risk of advanced therapies with innovative cell-based and stemcell- based modalities in PD patients. This paper recapitulated the underlying factors/conditions, which could lead us to more practical and established therapeutic outcomes with more advantages and few complications. It could be an initial step to reconsider the therapeutic blueprint for patients with Parkinson's disease.
Collapse
Affiliation(s)
- Sarvenaz Salahi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Alsadat Mousavi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research, Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
17
|
Lysosomal exocytosis releases pathogenic α-synuclein species from neurons in synucleinopathy models. Nat Commun 2022; 13:4918. [PMID: 35995799 PMCID: PMC9395532 DOI: 10.1038/s41467-022-32625-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Considerable evidence supports the release of pathogenic aggregates of the neuronal protein α-Synuclein (αSyn) into the extracellular space. While this release is proposed to instigate the neuron-to-neuron transmission and spread of αSyn pathology in synucleinopathies including Parkinson’s disease, the molecular-cellular mechanism(s) remain unclear. To study this, we generated a new mouse model to specifically immunoisolate neuronal lysosomes, and established a long-term culture model where αSyn aggregates are produced within neurons without the addition of exogenous fibrils. We show that neuronally generated pathogenic species of αSyn accumulate within neuronal lysosomes in mouse brains and primary neurons. We then find that neurons release these pathogenic αSyn species via SNARE-dependent lysosomal exocytosis. The released aggregates are non-membrane enveloped and seeding-competent. Additionally, we find that this release is dependent on neuronal activity and cytosolic Ca2+. These results propose lysosomal exocytosis as a central mechanism for the release of aggregated and degradation-resistant proteins from neurons. Release of α-synuclein aggregates by neurons instigates spread of pathology in synucleinopathies, but the mechanism remains unclear. Here the authors show that neuronally generated α-synuclein aggregates accumulate within neuronal lysosomes and are released via SNARE-dependent lysosomal exocytosis.
Collapse
|
18
|
Badrah A, Al-Tuwairqi S. Modeling the dynamics of innate immune response to Parkinson disease with therapeutic approach. Phys Biol 2022; 19. [PMID: 35901788 DOI: 10.1088/1478-3975/ac8516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/28/2022] [Indexed: 11/12/2022]
Abstract
This paper aims to mathematically model the dynamics of Parkinson's disease with therapeutic strategies. The constructed model consists of five state variables: healthy neurons, infected neurons, extracellular $\alpha$-syn, active microglia, and resting microglia. The qualitative analysis of the model produced an unstable free equilibrium point and a stable endemic equilibrium point. Moreover, these results are validated by numerical experiments with different initial values. Two therapeutic interventions, reduction of extracellular $\alpha$-syn and reduction of inflammation induced by activated microglia in the central nervous system, are investigated. It is observed that the latter has no apparent effect in delaying the deterioration of neurons. However, treatment to reduce extracellular $\alpha$-syn preserves neurons and delays the onset of Parkinson's disease, whether alone or in combination with another treatment.
Collapse
Affiliation(s)
- Asma Badrah
- Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia, Jeddah, 21589, SAUDI ARABIA
| | - Salma Al-Tuwairqi
- Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia, Jeddah, 21589, SAUDI ARABIA
| |
Collapse
|
19
|
Sidoroff V, Bower P, Stefanova N, Fanciulli A, Stankovic I, Poewe W, Seppi K, Wenning GK, Krismer F. Disease-Modifying Therapies for Multiple System Atrophy: Where Are We in 2022? JOURNAL OF PARKINSON'S DISEASE 2022; 12:1369-1387. [PMID: 35491799 PMCID: PMC9398078 DOI: 10.3233/jpd-223183] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple system atrophy is a rapidly progressive and fatal neurodegenerative disorder. While numerous preclinical studies suggested efficacy of potentially disease modifying agents, none of those were proven to be effective in large-scale clinical trials. Three major strategies are currently pursued in preclinical and clinical studies attempting to slow down disease progression. These target α-synuclein, neuroinflammation, and restoration of neurotrophic support. This review provides a comprehensive overview on ongoing preclinical and clinical developments of disease modifying therapies. Furthermore, we will focus on potential shortcomings of previous studies that can be avoided to improve data quality in future studies of this rare disease.
Collapse
Affiliation(s)
- Victoria Sidoroff
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Pam Bower
- The Multiple System Atrophy Coalition, Inc., McLean, VA, USA
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Iva Stankovic
- Neurology Clinic, University Clinical Center of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Werner Poewe
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
Zhao N, Francis NL, Song S, Kholodovych V, Calvelli HR, Hoop CL, Pang ZP, Baum J, Uhrich KE, Moghe PV. CD36-Binding Amphiphilic Nanoparticles for Attenuation of Alpha Synuclein-Induced Microglial Activation. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100120. [PMID: 36051821 PMCID: PMC9426437 DOI: 10.1002/anbr.202100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neuroinflammation is one of the hallmarks contributing to Parkinson's Disease (PD) pathology, where microglial activation occurs as one of the earliest events, triggered by extracellular alpha synuclein (aSYN) binding to the CD36 receptor. Here, CD36-binding nanoparticles (NPs) containing synthetic tartaric acid-based amphiphilic polymers (AMs) were rationally designed to inhibit this aSYN-CD36 binding. In silico docking revealed that four AMs with varying alkyl side chain lengths presented differential levels of CD36 binding affinity and that an optimal alkyl chain length would promote the strongest inhibitory activity towards aSYN-CD36 interactions. In vitro competitive binding assays indicated that the inhibitory activity of AM-based NPs plateaued at intermediate side chain lengths of 12- and 18-carbons, supporting the in silico docking predictions. These 12- and 18-carbon length AM NPs also had significantly stronger effects on reducing aSYN internalization and inhibiting the production of the proinflammatory molecules TNF-α and nitric oxide from aSYN-challenged microglia. All four NPs modulated the gene expression of aSYN-challenged microglia, downregulating the expression of the proinflammatory genes TNF, IL-6, and IL-1β, and upregulating the expression of the anti-inflammatory genes TGF-β and Arg1. Overall, this work represents a novel polymeric nanotechnology platform that can be used to modulate aSYN-induced microglial activation in PD.
Collapse
Affiliation(s)
- Nanxia Zhao
- Department of Chemical and Biochemical Engineering, 98 Brett Rd, Rutgers University, NJ, 08854 USA
| | - Nicola L. Francis
- Department of Biomedical Engineering, 599 Taylor Rd., Rutgers University, NJ, 08854 USA
| | - Shuang Song
- Department of Chemistry, 501 Big Springs Rd., University of California, Riverside, CA, 92507 USA
| | - Vladyslav Kholodovych
- Office of Advanced Research Computing, 96 Frelinghuysen Road, Rutgers University, NJ, 08854 USA
| | - Hannah R. Calvelli
- Department of Molecular Biology & Biochemistry, 604 Allison Rd, Rutgers University, NJ, 08854 USA
| | - Cody L. Hoop
- Department of Chemistry & Chemical Biology, 123 Bevier Rd, Rutgers University, NJ, 08854 USA
| | - Zhiping P. Pang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 604 Allison Rd, Rutgers University, NJ, 08854 USA
- Child Health Institute of New Jersey, 89 French St, New Brunswick, NJ, 08901 USA
| | - Jean Baum
- Department of Chemistry & Chemical Biology, 123 Bevier Rd, Rutgers University, NJ, 08854 USA
| | - Kathryn E. Uhrich
- Department of Chemistry, 501 Big Springs Rd., University of California, Riverside, CA, 92507 USA
| | - Prabhas V. Moghe
- Department of Chemical and Biochemical Engineering, 98 Brett Rd, Rutgers University, NJ, 08854 USA
- Department of Biomedical Engineering, 599 Taylor Rd., Rutgers University, NJ, 08854 USA
| |
Collapse
|
21
|
Vijayakumar D, Jankovic J. Slowing Parkinson's Disease Progression with Vaccination and Other Immunotherapies. CNS Drugs 2022; 36:327-343. [PMID: 35212935 DOI: 10.1007/s40263-022-00903-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/23/2022] [Indexed: 12/29/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. There are several recognized pathways leading up to dopaminergic neuron loss in the substantia nigra pars compacta and other cells in the brain as a result of age-related, genetic, environmental, and other processes. Of these, the most prominent is the role played by the protein α-synuclein, which aggregates and is the primary component of Lewy bodies, the histopathological hallmark of PD. The latest disease-modifying treatment options being investigated in PD are active and passive immunization against α-synuclein. There are currently five different monoclonal antibodies investigated as passive immunization and three drugs being studied as active immunization modalities in PD. These work through different mechanisms but with a common goal-to minimize or prevent α-synuclein-driven neurotoxicity by reducing α-synuclein synthesis, increasing α-synuclein degradation, and preventing aggregation and propagation from cell to cell. These promising strategies, along with other potential therapies, may favorably alter disease progression in PD.
Collapse
Affiliation(s)
- Dhanya Vijayakumar
- Department of Medicine, Prisma Health Upstate, The University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA
| | - Joseph Jankovic
- Distinguished Chair in Movement Disorders, Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Baylor St. Luke's Medical Center at the McNair Campus, 7200 Cambridge, 9th Floor, Suite 9A, Houston, TX, 77030-4202, USA.
| |
Collapse
|
22
|
Gouda NA, Elkamhawy A, Cho J. Emerging Therapeutic Strategies for Parkinson’s Disease and Future Prospects: A 2021 Update. Biomedicines 2022; 10:biomedicines10020371. [PMID: 35203580 PMCID: PMC8962417 DOI: 10.3390/biomedicines10020371] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder pathologically distinguished by degeneration of dopaminergic neurons in the substantia nigra pars compacta. Muscle rigidity, tremor, and bradykinesia are all clinical motor hallmarks of PD. Several pathways have been implicated in PD etiology, including mitochondrial dysfunction, impaired protein clearance, and neuroinflammation, but how these factors interact remains incompletely understood. Although many breakthroughs in PD therapy have been accomplished, there is currently no cure for PD, only trials to alleviate the related motor symptoms. To reduce or stop the clinical progression and mobility impairment, a disease-modifying approach that can directly target the etiology rather than offering symptomatic alleviation remains a major unmet clinical need in the management of PD. In this review, we briefly introduce current treatments and pathophysiology of PD. In addition, we address the novel innovative therapeutic targets for PD therapy, including α-synuclein, autophagy, neurodegeneration, neuroinflammation, and others. Several immunomodulatory approaches and stem cell research currently in clinical trials with PD patients are also discussed. Moreover, preclinical studies and clinical trials evaluating the efficacy of novel and repurposed therapeutic agents and their pragmatic applications with encouraging outcomes are summarized. Finally, molecular biomarkers under active investigation are presented as potentially valuable tools for early PD diagnosis.
Collapse
Affiliation(s)
- Noha A. Gouda
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang 10326, Korea; (N.A.G.); (A.E.)
| | - Ahmed Elkamhawy
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang 10326, Korea; (N.A.G.); (A.E.)
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Jungsook Cho
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang 10326, Korea; (N.A.G.); (A.E.)
- Correspondence:
| |
Collapse
|
23
|
Salemi M, Lanza G, Mogavero MP, Cosentino FII, Borgione E, Iorio R, Ventola GM, Marchese G, Salluzzo MG, Ravo M, Ferri R. A Transcriptome Analysis of mRNAs and Long Non-Coding RNAs in Patients with Parkinson's Disease. Int J Mol Sci 2022; 23:1535. [PMID: 35163455 PMCID: PMC8836138 DOI: 10.3390/ijms23031535] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. The number of cases of PD is expected to double by 2030, representing a heavy burden on the healthcare system. Clinical symptoms include the progressive loss of dopaminergic neurons in the substantia nigra of the midbrain, which leads to striatal dopamine deficiency and, subsequently, causes motor dysfunction. Certainly, the study of the transcriptome of the various RNAs plays a crucial role in the study of this neurodegenerative disease. In fact, the aim of this study was to evaluate the transcriptome in a cohort of subjects with PD compared with a control cohort. In particular we focused on mRNAs and long non-coding RNAs (lncRNA), using the Illumina NextSeq 550 DX System. Differential expression analysis revealed 716 transcripts with padj ≤ 0.05; among these, 630 were mRNA (coding protein), lncRNA, and MT_tRNA. Ingenuity pathway analysis (IPA, Qiagen) was used to perform the functional and pathway analysis. The highest statistically significant pathways were: IL-15 signaling, B cell receptor signaling, systemic lupus erythematosus in B cell signaling pathway, communication between innate and adaptive immune cells, and melatonin degradation II. Our findings further reinforce the important roles of mitochondria and lncRNA in PD and, in parallel, further support the concept of inverse comorbidity between PD and some cancers.
Collapse
Affiliation(s)
- Michele Salemi
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (G.L.); (F.I.I.C.); (E.B.); (M.G.S.); (R.F.)
| | - Giuseppe Lanza
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (G.L.); (F.I.I.C.); (E.B.); (M.G.S.); (R.F.)
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
| | | | - Filomena I. I. Cosentino
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (G.L.); (F.I.I.C.); (E.B.); (M.G.S.); (R.F.)
| | - Eugenia Borgione
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (G.L.); (F.I.I.C.); (E.B.); (M.G.S.); (R.F.)
| | - Roberta Iorio
- Genomix4Life Srl, 84081 Baronissi, Italy; (R.I.); (G.M.V.); (G.M.); (M.R.)
- Genome Research Center for Health—CRGS, 84081 Baronissi, Italy
| | - Giovanna Maria Ventola
- Genomix4Life Srl, 84081 Baronissi, Italy; (R.I.); (G.M.V.); (G.M.); (M.R.)
- Genome Research Center for Health—CRGS, 84081 Baronissi, Italy
| | - Giovanna Marchese
- Genomix4Life Srl, 84081 Baronissi, Italy; (R.I.); (G.M.V.); (G.M.); (M.R.)
- Genome Research Center for Health—CRGS, 84081 Baronissi, Italy
| | - Maria Grazia Salluzzo
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (G.L.); (F.I.I.C.); (E.B.); (M.G.S.); (R.F.)
| | - Maria Ravo
- Genomix4Life Srl, 84081 Baronissi, Italy; (R.I.); (G.M.V.); (G.M.); (M.R.)
- Genome Research Center for Health—CRGS, 84081 Baronissi, Italy
| | - Raffaele Ferri
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (G.L.); (F.I.I.C.); (E.B.); (M.G.S.); (R.F.)
| |
Collapse
|
24
|
A Transcriptome Analysis of mRNAs and Long Non-Coding RNAs in Patients with Parkinson's Disease. Int J Mol Sci 2022. [PMID: 35163455 DOI: 10.3390/ijms23031535.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. The number of cases of PD is expected to double by 2030, representing a heavy burden on the healthcare system. Clinical symptoms include the progressive loss of dopaminergic neurons in the substantia nigra of the midbrain, which leads to striatal dopamine deficiency and, subsequently, causes motor dysfunction. Certainly, the study of the transcriptome of the various RNAs plays a crucial role in the study of this neurodegenerative disease. In fact, the aim of this study was to evaluate the transcriptome in a cohort of subjects with PD compared with a control cohort. In particular we focused on mRNAs and long non-coding RNAs (lncRNA), using the Illumina NextSeq 550 DX System. Differential expression analysis revealed 716 transcripts with padj ≤ 0.05; among these, 630 were mRNA (coding protein), lncRNA, and MT_tRNA. Ingenuity pathway analysis (IPA, Qiagen) was used to perform the functional and pathway analysis. The highest statistically significant pathways were: IL-15 signaling, B cell receptor signaling, systemic lupus erythematosus in B cell signaling pathway, communication between innate and adaptive immune cells, and melatonin degradation II. Our findings further reinforce the important roles of mitochondria and lncRNA in PD and, in parallel, further support the concept of inverse comorbidity between PD and some cancers.
Collapse
|
25
|
Kim C, Hovakimyan A, Zagorski K, Antonyan T, Petrushina I, Davtyan H, Chailyan G, Hasselmann J, Iba M, Adame A, Rockenstein E, Szabo M, Blurton-Jones M, Cribbs DH, Ghochikyan A, Masliah E, Agadjanyan MG. Efficacy and immunogenicity of MultiTEP-based DNA vaccines targeting human α-synuclein: prelude for IND enabling studies. NPJ Vaccines 2022; 7:1. [PMID: 35013319 PMCID: PMC8748802 DOI: 10.1038/s41541-021-00424-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Accumulation of misfolded proteins such as amyloid-β (Aβ), tau, and α-synuclein (α-Syn) in the brain leads to synaptic dysfunction, neuronal damage, and the onset of relevant neurodegenerative disorder/s. Dementia with Lewy bodies (DLB) and Parkinson's disease (PD) are characterized by the aberrant accumulation of α-Syn intracytoplasmic Lewy body inclusions and dystrophic Lewy neurites resulting in neurodegeneration associated with inflammation. Cell to cell propagation of α-Syn aggregates is implicated in the progression of PD/DLB, and high concentrations of anti-α-Syn antibodies could inhibit/reduce the spreading of this pathological molecule in the brain. To ensure sufficient therapeutic concentrations of anti-α-Syn antibodies in the periphery and CNS, we developed four α-Syn DNA vaccines based on the universal MultiTEP platform technology designed especially for the elderly with immunosenescence. Here, we are reporting on the efficacy and immunogenicity of these vaccines targeting three B-cell epitopes of hα-Syn aa85-99 (PV-1947D), aa109-126 (PV-1948D), aa126-140 (PV-1949D) separately or simultaneously (PV-1950D) in a mouse model of synucleinopathies mimicking PD/DLB. All vaccines induced high titers of antibodies specific to hα-Syn that significantly reduced PD/DLB-like pathology in hα-Syn D line mice. The most significant reduction of the total and protein kinase resistant hα-Syn, as well as neurodegeneration, were observed in various brain regions of mice vaccinated with PV-1949D and PV-1950D in a sex-dependent manner. Based on these preclinical data, we selected the PV-1950D vaccine for future IND enabling preclinical studies and clinical development.
Collapse
Affiliation(s)
- Changyoun Kim
- Laboratory of Neurogenetics, National Institute of Aging, National Institute of Health, Bethesda, MD, USA
| | - Armine Hovakimyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Karen Zagorski
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Tatevik Antonyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Irina Petrushina
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, USA
| | - Hayk Davtyan
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, USA
| | - Gor Chailyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Jonathan Hasselmann
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, USA
| | - Michiyo Iba
- Laboratory of Neurogenetics, National Institute of Aging, National Institute of Health, Bethesda, MD, USA
| | - Anthony Adame
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Marcell Szabo
- Laboratory of Neurogenetics, National Institute of Aging, National Institute of Health, Bethesda, MD, USA
| | - Mathew Blurton-Jones
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, USA
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Eliezer Masliah
- Laboratory of Neurogenetics, National Institute of Aging, National Institute of Health, Bethesda, MD, USA.
| | - Michael G Agadjanyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA.
| |
Collapse
|
26
|
Menon S, Kofoed RH, Nabbouh F, Xhima K, Al-Fahoum Y, Langman T, Mount HTJ, Shihabuddin LS, Sardi SP, Fraser PE, Watts JC, Aubert I, Tandon A. Viral alpha-synuclein knockdown prevents spreading synucleinopathy. Brain Commun 2021; 3:fcab247. [PMID: 34761222 PMCID: PMC8576194 DOI: 10.1093/braincomms/fcab247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022] Open
Abstract
The accumulation of aggregated alpha-synuclein (α-syn) in Parkinson's disease, dementia with Lewy bodies and multiple system atrophy is thought to involve a common prion-like mechanism, whereby misfolded α-syn provides a conformational template for further accumulation of pathological α-syn. We tested whether silencing α-syn gene expression could reduce native non-aggregated α-syn substrate and thereby disrupt the propagation of pathological α-syn initiated by seeding with synucleinopathy-affected mouse brain homogenates. Unilateral intracerebral injections of adeno-associated virus serotype-1 encoding microRNA targeting the α-syn gene reduced the extent and severity of both the α-syn pathology and motor deficits. Importantly, a moderate 50% reduction in α-syn was sufficient to prevent the spread of α-syn pathology to distal brain regions. Our study combines behavioural, immunohistochemical and biochemical data that strongly support α-syn knockdown gene therapy for synucleinopathies.
Collapse
Affiliation(s)
- Sindhu Menon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON M5T 0S8, Canada
| | - Rikke H Kofoed
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Fadl Nabbouh
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON M5T 0S8, Canada
| | - Kristiana Xhima
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Yasmeen Al-Fahoum
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON M5T 0S8, Canada
| | - Tammy Langman
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON M5T 0S8, Canada
| | - Howard T J Mount
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON M5T 0S8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Lamya S Shihabuddin
- Sanofi, Framingham, MA 01701, USA
- Present address: 5AM Ventures, Boston, MA, USA
| | | | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON M5T 0S8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON M5T 0S8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Isabelle Aubert
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON M5T 0S8, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Correspondence to: Anurag Tandon, PhD Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower Rm. 4KD481, 60 Leonard Ave, Toronto, ON M5T 0S8, Canada E-mail:
| |
Collapse
|
27
|
Peptide-Based Vaccines for Neurodegenerative Diseases: Recent Endeavors and Future Perspectives. Vaccines (Basel) 2021; 9:vaccines9111278. [PMID: 34835209 PMCID: PMC8622585 DOI: 10.3390/vaccines9111278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
The development of peptide-based vaccines for treating human neurodegenerative diseases has been the eventual aim of many research endeavors, although no active immunotherapies have been approved for clinical use till now. A typical example of such endeavors is the effort to develop vaccines for Alzheimer’s disease based on the beta-amyloid peptide, which continues to be intensively investigated despite previous setbacks. In this paper, recent developments in peptide-based vaccines which target beta-amyloid as well as tau protein and α-synuclein are presented. Particular focus has been directed toward peptide epitopes and formulation systems selected/developed and employed to enhance vaccine efficacy and safety. Results from both, human clinical trials and animal preclinical studies conducted mainly in transgenic mice have been included. Future perspectives on the topic are also briefly discussed.
Collapse
|
28
|
Haque ME, Akther M, Azam S, Kim IS, Lin Y, Lee YH, Choi DK. Targeting α-synuclein aggregation and its role in mitochondrial dysfunction in Parkinson's disease. Br J Pharmacol 2021; 179:23-45. [PMID: 34528272 DOI: 10.1111/bph.15684] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022] Open
Abstract
Lewy bodies that contain aggregated α-synuclein (α-syn) in the dopaminergic (DA) neuron are the main culprit behind neurodegeneration in Parkinson's disease (PD). Besides, mitochondrial dysfunction has a well established and prominent role in the pathogenesis of PD. However, the exact mechanism by which α-syn causes dopaminergic neuronal loss was unclear. Recent evidence suggests that aggregated α-syn localises in the mitochondria and contributes to oxidative stress-mediated apoptosis in neurons. Therefore, the involvement of aggregated α-syn in mitochondrial dysfunction-mediated neuronal loss has made it an emerging drug target for the treatment of PD. However, the exact mechanism by which α-syn permeabilises through the mitochondrial membrane and affects the electron transport chain remains under investigation. In the present study, we describe mitochondria-α-syn interactions and how α-syn aggregation modulates mitochondrial homeostasis in PD pathogenesis. We also discuss recent therapeutic interventions targeting α-syn aggregation that may help researchers to design novel therapeutic treatments for PD.
Collapse
Affiliation(s)
- Md Ezazul Haque
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju, Republic of Korea
| | - Mahbuba Akther
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju, Republic of Korea
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju, Republic of Korea
| | - In-Su Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, Republic of Korea
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chung Buk, Republic of Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chung Buk, Republic of Korea.,Department of Bio-analytical Science, University of Science and Technology, Daejeon, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea.,Research Headquarters, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju, Republic of Korea.,Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
29
|
Poewe W, Volc D, Seppi K, Medori R, Lührs P, Kutzelnigg A, Djamshidian A, Thun-Hohenstein C, Meissner WG, Rascol O, Schneeberger A, Staffler G, Poewe W, Seppi K, Djamshidian A, deMarzi R, Heim B, Mangesius S, Stolz R, Wachowicz K, Volc D, Thun-Hohenstein C, Riha C, Schneeberger A, Bürger V, Galabova G. Safety and Tolerability of Active Immunotherapy Targeting α-Synuclein with PD03A in Patients with Early Parkinson's Disease: A Randomized, Placebo-Controlled, Phase 1 Study. JOURNAL OF PARKINSONS DISEASE 2021; 11:1079-1089. [PMID: 34092654 PMCID: PMC8461711 DOI: 10.3233/jpd-212594] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: Immunotherapies targeting α-synuclein aim to limit its extracellular spread in the brain and prevent progression of pathology in Parkinson’s disease (PD). PD03A is a specific active immunotherapy (SAIT) involving immunization with a short peptide formulation. Objective: This phase 1 study characterized the safety and tolerability of PD03A in patients with early PD. A key secondary objective was to evaluate immunological activity following immunization. Methods: This was a phase 1 study of two different doses of PD03A versus placebo in PD patients. Patients were randomized (1:1:1) to receive four priming plus one booster vaccination of PD03A 15μg, PD03A 75μg or placebo and were followed for 52 weeks. Results: Overall, 36 patients were randomized, of which 35 received five immunizations and completed the study. All patients experienced at least one adverse event. Transient local injection site reactions affected all but two patients; otherwise most AEs were considered unrelated to study treatment. A substantial IgG antibody response against PD03 was observed with a maximum titer achieved at Week-12. Differences in titers between both active groups versus placebo were statistically significant from the second immunization at Week-8 until Week-52. Conclusion: The safety profile and positive antibody response of PD03A supports the further development of active immunotherapeutic approaches for the treatment of PD.
Collapse
Affiliation(s)
- Werner Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Dieter Volc
- PROSENEX Study Center at Privatklinik Confraternitaet, Vienna, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | | | | | | | - Atbin Djamshidian
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Wassilios G Meissner
- Service de Neurologie, CRMR Atrophie Multisystématisée, CHU Bordeaux and Université Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Olivier Rascol
- Toulouse Parkinson Expert Center, Departments of Neurosciences and Clinical Pharmacology, Centre d'Investigation Clinique de Toulouse CIC1436, NS-Park/FCRIN Network, and NeuroToul COEN Center, University Hospital of Toulouse, INSERM, University of Toulouse, Toulouse, France
| | | | | | | | | | - Werner Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Atbin Djamshidian
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Roberto deMarzi
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Beatrice Heim
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Raphaela Stolz
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Dieter Volc
- PROSENEX Study Center at Privatklinik Confraternitaet, Vienna, Austria
| | | | - Constanze Riha
- PROSENEX Study Center at Privatklinik Confraternitaet, Vienna, Austria
| | | | | | | |
Collapse
|
30
|
Pellerin K, Rubino SJ, Burns JC, Smith BA, McCarl CA, Zhu J, Jandreski L, Cullen P, Carlile TM, Li A, Rebollar JV, Sybulski J, Reynolds TL, Zhang B, Basile R, Tang H, Harp CP, Pellerin A, Silbereis J, Franchimont N, Cahir-McFarland E, Ransohoff RM, Cameron TO, Mingueneau M. MOG autoantibodies trigger a tightly-controlled FcR and BTK-driven microglia proliferative response. Brain 2021; 144:2361-2374. [PMID: 34145876 DOI: 10.1093/brain/awab231] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Autoantibodies are a hallmark of numerous neurologic disorders, including multiple sclerosis (MS), autoimmune encephalitides and neuromyelitis optica (NMO). While well understood in peripheral myeloid cells, the pathophysiological significance of autoantibody-induced Fc receptor (FcR) signaling in microglia remains unknown, in part due to the lack of a robust in vivo model. Moreover, application of therapeutic antibodies for neurodegenerative disease also highlights the importance of understanding FcR signaling in microglia. Here, we describe a novel in vivo experimental paradigm that allows for selective engagement of Fc receptors within the CNS by peripherally injecting anti-myelin oligodendrocyte glycoprotein (MOG) monoclonal antibodies (mAbs) in normal wild-type mice. MOG antigen-bound immunoglobulins were detected throughout the CNS and triggered a rapid and tightly regulated proliferative response in both brain and spinal cord microglia. This microglial response was abrogated when anti-MOG antibodies were deprived of Fc effector function or injected into Fc γ R knockout mice and was associated with the downregulation of FcRs in microglia, but not peripheral myeloid cells, establishing that this response was dependent on central FcR engagement. Downstream of FcRs, Bruton's tyrosine kinase (BTK) was a required signaling node for this response, as microglia proliferation was amplified in BTKE41K knock-in mice expressing a constitutively active form of BTK and blunted in mice treated with a CNS penetrant small molecule inhibitor of BTK. Finally, this response was associated with transient and stringently regulated changes in gene expression predominantly related to cellular proliferation, which markedly differed from transcriptional programs typically associated with FcR engagement in peripheral myeloid cells. Together, these results establish a physiologically-meaningful functional response to FcR and BTK signaling in microglia while providing a novel in vivo tool to further dissect the roles of microglia-specific FcR and BTK-driven responses to both pathogenic and therapeutic antibodies in CNS homeostasis and disease.
Collapse
Affiliation(s)
- Kathryn Pellerin
- Multiple Sclerosis and Neurorepair Research Unit, Biogen, Cambridge, USA
| | - Stephen J Rubino
- Multiple Sclerosis and Neurorepair Research Unit, Biogen, Cambridge, USA
| | - Jeremy C Burns
- Multiple Sclerosis and Neurorepair Research Unit, Biogen, Cambridge, USA
| | | | | | - Jing Zhu
- Translational Biology, Biogen, Cambridge, USA
| | | | | | | | - Angela Li
- Multiple Sclerosis and Neurorepair Research Unit, Biogen, Cambridge, USA
| | | | | | | | | | - Rebecca Basile
- Multiple Sclerosis and Neurorepair Research Unit, Biogen, Cambridge, USA
| | - Hao Tang
- Multiple Sclerosis and Neurorepair Research Unit, Biogen, Cambridge, USA
| | | | - Alex Pellerin
- Multiple Sclerosis and Neurorepair Research Unit, Biogen, Cambridge, USA
| | - John Silbereis
- Multiple Sclerosis and Neurorepair Research Unit, Biogen, Cambridge, USA
| | | | | | | | | | - Michael Mingueneau
- Multiple Sclerosis and Neurorepair Research Unit, Biogen, Cambridge, USA
| |
Collapse
|
31
|
Dos Santos AB, Skaanning LK, Mikkelsen E, Romero-Leguizamón CR, Kristensen MP, Klein AB, Thaneshwaran S, Langkilde AE, Kohlmeier KA. α-Synuclein Responses in the Laterodorsal Tegmentum, the Pedunculopontine Tegmentum, and the Substantia Nigra: Implications for Early Appearance of Sleep Disorders in Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 11:1773-1790. [PMID: 34151857 DOI: 10.3233/jpd-212554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder associated with insoluble pathological aggregates of the protein α-synuclein. While PD is diagnosed by motor symptoms putatively due to aggregated α-synuclein-mediated damage to substantia nigra (SN) neurons, up to a decade before motor symptom appearance, patients exhibit sleep disorders (SDs). Therefore, we hypothesized that α-synuclein, which can be present in monomeric, fibril, and other forms, has deleterious cellular actions on sleep-control nuclei. OBJECTIVE We investigated whether native monomer and fibril forms of α-synuclein have effects on neuronal function, calcium dynamics, and cell-death-induction in two sleep-controlling nuclei: the laterodorsal tegmentum (LDT), and the pedunculopontine tegmentum (PPT), as well as the motor-controlling SN. METHODS Size exclusion chromatography, Thioflavin T emission, and circular dichroism spectroscopy were used to isolate structurally defined forms of recombinant, human α-synuclein. Neuronal and viability effects of characterized monomeric and fibril forms of α-synuclein were determined on LDT, PPT, and SN neurons using electrophysiology, calcium imaging, and neurotoxicity assays. RESULTS In LDT and PPT, both forms of α-synuclein induced excitation and increased calcium, and the monomeric form heightened putatively excitotoxic neuronal death, whereas, in the SN we saw inhibition, decreased intracellular calcium, and monomeric α-synuclein was not associated with heightened cell death. CONCLUSION Nucleus-specific differential effects suggest mechanistic underpinnings of SDs' prodromal appearance in PD. While speculative, we hypothesize that the monomeric form of α-synuclein compromises functionality of sleep-control neurons, leading to the presence of SDs decades prior to motor dysfunction.
Collapse
Affiliation(s)
| | - Line K Skaanning
- Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Eyd Mikkelsen
- Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Anders B Klein
- Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Kristi A Kohlmeier
- Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Priss A, Afitska K, Galkin M, Yushchenko DA, Shvadchak VV. Rationally Designed Protein-Based Inhibitor of α-Synuclein Fibrillization in Cells. J Med Chem 2021; 64:6827-6837. [PMID: 33970620 DOI: 10.1021/acs.jmedchem.1c00086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Misfolding of the neuronal protein α-synuclein (αSyn) into amyloid fibrils is involved in the development of Parkinson's disease (PD), and inhibition of this process is considered to be a promising therapeutic approach. In this work, we engineered protein inhibitors that bind to fibrils with higher affinity than the monomeric αSyn. They were developed based on the recent structural data of the αSyn fibrils and were shown to prevent fibril elongation upon binding to fibril ends. These inhibitors are highly selective to the misfolded αSyn, nontoxic, and active in cytosol in small concentrations. The best-performing inhibitor shows IC50 ∼10 nM in a cell-based assay, which corresponds to the ∼1:60 molar ratio to αSyn. It can suppress the formation of αSyn aggregates in cells that can be potentially used to slow down the spreading of the pathological aggregates from cell to cell during the course of the PD.
Collapse
Affiliation(s)
- Anastasiia Priss
- Academy of Sciences of the Czech Republic, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, Prague 16610, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | - Kseniia Afitska
- Academy of Sciences of the Czech Republic, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, Prague 16610, Czech Republic
| | - Maksym Galkin
- Academy of Sciences of the Czech Republic, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, Prague 16610, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | - Dmytro A Yushchenko
- Academy of Sciences of the Czech Republic, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, Prague 16610, Czech Republic.,Miltenyi Biotec GmbH, Friedrich-Ebert-Straße 68, Bergisch Gladbach D-51429, Germany
| | - Volodymyr V Shvadchak
- Academy of Sciences of the Czech Republic, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, Prague 16610, Czech Republic
| |
Collapse
|
33
|
Vedam-Mai V. Harnessing the immune system for the treatment of Parkinson's disease. Brain Res 2021; 1758:147308. [PMID: 33524380 DOI: 10.1016/j.brainres.2021.147308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/11/2020] [Accepted: 01/16/2021] [Indexed: 01/03/2023]
Abstract
Current treatment options for Parkinson's disease (PD) typically aim to replace dopamine, and hence only provide symptomatic relief. However, in the long run, this approach alone loses its efficacy as it is associated with debilitating side effects. Hence there is an unmet clinical need for addressing levodopa resistant symptoms, and an urgency to develop therapies that can halt or prevent the course of PD. The premise that α-syn can transmit from cell-to-cell in a prion like manner has opened up the possibility for the use of immunotherapy in PD. There is evidence for inflammation in PD as is evidenced by microglial activation, as well as the involvement of the peripheral immune system in PD, and peripheral inflammation can exacerbate dopaminergic degeneration as seen in animal models of the disease. However, mechanisms that link the immune system with PD are not clear, and the sequence of immune responses with respect to PD are still unknown. Nevertheless, our present knowledge offers avenues for the development of immune-based therapies for PD. In order to successfully employ such strategies, we must comprehend the state of the peripheral immune system during the course of PD. This review describes the developments in the field of both active and passive immunotherapies in the treatment of PD, and highlights the crucial need for future research for clarifying the role of inflammation and immunity in this debilitating disease.
Collapse
|
34
|
Zhang LY, Jin QQ, Hölscher C, Li L. Glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide dual receptor agonist DA-CH5 is superior to exendin-4 in protecting neurons in the 6-hydroxydopamine rat Parkinson model. Neural Regen Res 2021; 16:1660-1670. [PMID: 33433498 PMCID: PMC8323666 DOI: 10.4103/1673-5374.303045] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Patients with Parkinson's disease (PD) have impaired insulin signaling in the brain. Incretin hormones, including glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), can re-sensitize insulin signaling. In a recent phase II clinical trial, the first GLP-1 mimic, exendin-4, has shown reliable curative effect in patients with PD. DA-CH5 is a novel GLP-1/GIP receptor unimolecular co-agonist with a novel peptide sequence added to cross the blood-brain barrier. Here we showed that both exendin-4 and DA-CH5 protected against 6-hydroxydopamine (6-OHDA) cytotoxicity, inhibited apoptosis, improved mitogenesis and induced autophagy flux in SH-SY5Y cells via activation of the insulin receptor substrate-1 (IRS-1)/alpha serine/threonine-protein kinase (Akt)/cAMP response element-binding protein (CREB) pathway. We also found that DA-CH5 (10 nmol/kg) daily intraperitoneal administration for 30 days post-lesion alleviated motor dysfunction in rats and prevented stereotactic unilateral administration of 6-OHDA induced dopaminergic neurons loss in the substantia nigra pars compacta. However, DA-CH5 showed curative effects in reducing the levels of α-synuclein and the levels of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-1β). It was also more effective than exendin-4 in inhibiting apoptotic process and protecting mitochondrial functions. In addition, insulin resistance was largely alleviated and the expression of autophagy-related proteins was up-regulated in PD model rats after DA-CH5 treatment. These results in this study indicate DA-CH5 plays a therapeutic role in the 6-OHDA-unilaterally lesioned PD rat model and is superior to GLP-1 analogue exendin-4. The study was approved by the Animal Ethics Committee of Shanxi Medical University of China.
Collapse
Affiliation(s)
- Ling-Yu Zhang
- Gerontology Institute, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Qian-Qian Jin
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Christian Hölscher
- Department of Neurology, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi Province; Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Lin Li
- Gerontology Institute, Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
35
|
Antibody Fragments as Tools for Elucidating Structure-Toxicity Relationships and for Diagnostic/Therapeutic Targeting of Neurotoxic Amyloid Oligomers. Int J Mol Sci 2020; 21:ijms21238920. [PMID: 33255488 PMCID: PMC7727795 DOI: 10.3390/ijms21238920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
The accumulation of amyloid protein aggregates in tissues is the basis for the onset of diseases known as amyloidoses. Intriguingly, many amyloidoses impact the central nervous system (CNS) and usually are devastating diseases. It is increasingly apparent that neurotoxic soluble oligomers formed by amyloidogenic proteins are the primary molecular drivers of these diseases, making them lucrative diagnostic and therapeutic targets. One promising diagnostic/therapeutic strategy has been the development of antibody fragments against amyloid oligomers. Antibody fragments, such as fragment antigen-binding (Fab), scFv (single chain variable fragments), and VHH (heavy chain variable domain or single-domain antibodies) are an alternative to full-length IgGs as diagnostics and therapeutics for a variety of diseases, mainly because of their increased tissue penetration (lower MW compared to IgG), decreased inflammatory potential (lack of Fc domain), and facile production (low structural complexity). Furthermore, through the use of in vitro-based ligand selection, it has been possible to identify antibody fragments presenting marked conformational selectivity. In this review, we summarize significant reports on antibody fragments selective for oligomers associated with prevalent CNS amyloidoses. We discuss promising results obtained using antibody fragments as both diagnostic and therapeutic agents against these diseases. In addition, the use of antibody fragments, particularly scFv and VHH, in the isolation of unique oligomeric assemblies is discussed as a strategy to unravel conformational moieties responsible for neurotoxicity. We envision that advances in this field may lead to the development of novel oligomer-selective antibody fragments with superior selectivity and, hopefully, good clinical outcomes.
Collapse
|
36
|
Marogianni C, Sokratous M, Dardiotis E, Hadjigeorgiou GM, Bogdanos D, Xiromerisiou G. Neurodegeneration and Inflammation-An Interesting Interplay in Parkinson's Disease. Int J Mol Sci 2020; 21:E8421. [PMID: 33182554 PMCID: PMC7697354 DOI: 10.3390/ijms21228421] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, caused by, so far, unknown pathogenetic mechanisms. There is no doubt that pro-inflammatory immune-mediated mechanisms are pivotal to the pathogenicity and progression of the disease. In this review, we highlight the binary role of microglia activation in the pathophysiology of the disorder, both neuroprotective and neuromodulatory. We present how the expression of several cytokines implicated in dopaminergic neurons (DA) degeneration could be used as biomarkers for PD. Viral infections have been studied and correlated to the disease progression, usually operating as trigger factors for the inflammatory process. The gut-brain axis and the possible contribution of the peripheral bowel inflammation to neuronal death, mainly dopaminergic neurons, seems to be a main contributor of brain neuroinflammation. The role of the immune system has also been analyzed implicating a-synuclein in the activation of innate and adaptive immunity. We also discuss therapeutic approaches concerning PD and neuroinflammation, which have been studied in experimental and in vitro models and data stemming from epidemiological studies.
Collapse
Affiliation(s)
- Chrysoula Marogianni
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (C.M.); (M.S.); (E.D.)
| | - Maria Sokratous
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (C.M.); (M.S.); (E.D.)
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (C.M.); (M.S.); (E.D.)
| | | | - Dimitrios Bogdanos
- Department of Internal Medicine, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece;
| | - Georgia Xiromerisiou
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (C.M.); (M.S.); (E.D.)
| |
Collapse
|
37
|
Paolone G. From the Gut to the Brain and Back: Therapeutic Approaches for the Treatment of Network Dysfunction in Parkinson's Disease. Front Neurol 2020; 11:557928. [PMID: 33117258 PMCID: PMC7575743 DOI: 10.3389/fneur.2020.557928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is a complex, multisystem, progressive, degenerative disorder characterized by severe, debilitating motor dysfunction, cognitive impairments, and mood disorders. Although preclinical research has traditionally focused on the motor deficits resulting from the loss of nigrostriatal dopaminergic neurons, up to two thirds of PD patients present separate and distinct behavioral changes. Loss of basal forebrain cholinergic neurons occurs as early as the loss of dopaminergic cells and contributes to the cognitive decline in PD. In addition, attentional deficits can limit posture control and movement efficacy caused by dopaminergic cell loss. Complicating the picture further is intracellular α-synuclein accumulation beginning in the enteric nervous system and diffusing to the substantia nigra through the dorsal motor neurons of the vagus nerve. It seems that α-synuclein's role is that of mediating dopamine synthesis, storage, and release, and its function has not been completely understood. Treating a complex, multistage network disorder, such as PD, likely requires a multipronged approach. Here, we describe a few approaches that could be used alone or perhaps in combination to achieve a greater mosaic of behavioral benefit. These include (1) using encapsulated, genetically modified cells as delivery vehicles for administering neuroprotective trophic factors, such as GDNF, in a direct and sustained means to the brain; (2) immunotherapeutic interventions, such as vaccination or the use of monoclonal antibodies against aggregated, pathological α-synuclein; (3) the continuous infusion of levodopa-carbidopa through an intestinal gel pad to attenuate the loss of dopaminergic function and manage the motor and non-motor complications in PD patients; and (4) specific rehabilitation treatment programs for drug-refractory motor complications.
Collapse
Affiliation(s)
- Giovanna Paolone
- Department of Diagnostic and Public Health - Section of Pharmacology, University of Verona, Verona, Italy
| |
Collapse
|
38
|
Hung AY, Schwarzschild MA. Approaches to Disease Modification for Parkinson's Disease: Clinical Trials and Lessons Learned. Neurotherapeutics 2020; 17:1393-1405. [PMID: 33205384 PMCID: PMC7851299 DOI: 10.1007/s13311-020-00964-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Despite many clinical trials over the last three decades, the goal of demonstrating that a treatment slows the progression of Parkinson's disease (PD) remains elusive. Research advances have shed new insight into cellular pathways contributing to PD pathogenesis and offer increasingly compelling therapeutic targets. Here we review recent and ongoing clinical trials employing novel strategies toward disease modification, including those targeting alpha-synuclein and those repurposing drugs approved for other indications. Active and passive immunotherapy approaches are being studied with the goal to modify the spread of alpha-synuclein pathology in the brain. Classes of currently available drugs that have been proposed to have potential disease-modifying effects for PD include calcium channel blockers, antioxidants, anti-inflammatory agents, iron-chelating agents, glucagon-like peptide 1 agonists, and cAbl tyrosine kinase inhibitors. The mechanistic diversity of these treatments offers hope, but to date, results from these trials have been disappointing. Nevertheless, they provide useful lessons in guiding future therapeutic development.
Collapse
Affiliation(s)
- Albert Y Hung
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA.
| | - Michael A Schwarzschild
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- MassGeneral Institute for Neurodegenerative Disease, 114 16th Street, Charlestown, MA, 02129, USA
| |
Collapse
|
39
|
Volc D, Poewe W, Kutzelnigg A, Lührs P, Thun-Hohenstein C, Schneeberger A, Galabova G, Majbour N, Vaikath N, El-Agnaf O, Winter D, Mihailovska E, Mairhofer A, Schwenke C, Staffler G, Medori R. Safety and immunogenicity of the α-synuclein active immunotherapeutic PD01A in patients with Parkinson's disease: a randomised, single-blinded, phase 1 trial. Lancet Neurol 2020; 19:591-600. [PMID: 32562684 DOI: 10.1016/s1474-4422(20)30136-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Robust evidence supports the role of α-synuclein pathology as a driver of neuronal dysfunction in Parkinson's disease. PD01A is a specific active immunotherapy with a short peptide formulation targeted against oligomeric α-synuclein. This phase 1 study assessed the safety and tolerability of the PD01A immunotherapeutic in patients with Parkinson's disease. METHODS We did a first-in-human, randomised, phase 1 study of immunisations with PD01A, followed by three consecutive study extensions. Patients aged 45-65 years with a clinical diagnosis of Parkinson's disease (≤4 years since diagnosis and Hoehn and Yahr Stage 1 to 2), imaging results (dopamine transporter single photon emission CT and MRI) consistent with their Parkinson's disease diagnosis, and on stable doses of Parkinson's disease medications for at least 3 months were recruited at a single private clinic in Vienna, Austria. Patients were randomly assigned (1:1), using a computer-generated sequence with varying block size, to receive four subcutaneous immunisations with either 15 μg or 75 μg PD01A injected into the upper arms and followed up initially for 52 weeks, followed by a further 39 weeks' follow-up. Patients were then randomly assigned (1:1) again to receive the first booster immunisation at 15 μg or 75 μg and were followed up for 24 weeks. All patients received a second booster immunisation of 75 μg and were followed up for an additional 52 weeks. Patients were masked to dose allocation. Primary (safety) analyses included all treated patients. These four studies were registered with EU Clinical Trials Register, EudraCT numbers 2011-002650-31, 2013-001774-20, 2014-002489-54, and 2015-004854-16. FINDINGS 32 patients were recruited between Feb 14, 2012, and Feb 6, 2013, and 24 were deemed eligible and randomly assigned to receive four PD01A priming immunisations. One patient had a diagnosis change to multiple system atrophy and was withdrawn and two patients withdrew consent during the studies. 21 (87%) of 24 patients received all six immunisations and completed 221-259 weeks in-study (two patients in the 15 μg dose group and one patient in the 75 μg dose group discontinued). All patients experienced at least one adverse event, but most of them were considered unrelated to study treatment (except for transient local injection site reactions, which affected all but one patient). Serial MRI assessments also ruled out inflammatory processes. Systemic treatment-related adverse events were fatigue (n=4), headache (n=3), myalgia (n=3), muscle rigidity (n=2), and tremor (n=2). The geometric group mean titre of antibodies against the immunising peptide PD01 increased from 1:46 at baseline to 1:3580 at week 12 in the 15 μg dose group, and from 1:76 to 1:2462 at week 12 in the 75 μg dose group. Antibody titres returned to baseline over 2 years, but could be rapidly reactivated after booster immunisation from week 116 onwards, reaching geometric group mean titres up to 1:20218. INTERPRETATION Repeated administrations of PD01A were safe and well tolerated over an extended period. Specific active immunotherapy resulted in a substantial humoral immune response with target engagement. Phase 2 studies are needed to further assess the safety and efficacy of PD01A for the treatment of Parkinson's disease. FUNDING AFFiRiS, Michael J Fox Foundation.
Collapse
Affiliation(s)
- Dieter Volc
- Confraternitaet-Privatklinik Josefstadt, Vienna, Austria
| | - Werner Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | - Nour Majbour
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Nishant Vaikath
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Omar El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | | | | | | | - Carsten Schwenke
- Schwenke Consulting: Strategies and Solutions in Statistics, Berlin, Germany
| | | | | |
Collapse
|
40
|
Nimmo J, Johnston DA, Dodart JC, MacGregor-Sharp MT, Weller RO, Nicoll JAR, Verma A, Carare RO. Peri-arterial pathways for clearance of α-Synuclein and tau from the brain: Implications for the pathogenesis of dementias and for immunotherapy. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2020; 12:e12070. [PMID: 32782922 PMCID: PMC7409108 DOI: 10.1002/dad2.12070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
Introduction Accumulation of amyloid beta (Aβ), α-synuclein (αSyn), and tau in dementias indicates their age-related failure of elimination from the brain. Aβ is eliminated along basement membranes in walls of cerebral arterioles and leptomeningeal arteries (intramural peri-arterial drainage [IPAD]); IPAD is impaired with age. We test the hypothesis that αSyn and tau are also eliminated from the normal brain along IPAD pathways. Methods Soluble αSyn or tau was injected into mouse hippocampus. Animals were perfused 5 minutes to 7 days post-injection. Blood vessels were identified by ROX-SE for light-sheet and immunolabeling for confocal microscopy. IPAD was quantified by measuring the proportion of arterioles with αSyn/tau. Results αSyn and tau are eliminated from the brain by IPAD but with different dynamics. Discussion Age-related failure of IPAD may play a role in the pathogenesis of synucleinopathies and tauopathies. αSyn persists within IPAD at 24 hours, which may affect immunotherapy for αSyn.
Collapse
Affiliation(s)
- Jacqui Nimmo
- Faculty of Medicine University of Southampton Southampton UK
| | | | - J C Dodart
- United Neuroscience Dublin Republic of Ireland
| | | | - Roy O Weller
- Faculty of Medicine University of Southampton Southampton UK
| | | | - Ajay Verma
- United Neuroscience Dublin Republic of Ireland
| | - Roxana O Carare
- Faculty of Medicine University of Southampton Southampton UK
| |
Collapse
|
41
|
Sim KY, Im KC, Park SG. The Functional Roles and Applications of Immunoglobulins in Neurodegenerative Disease. Int J Mol Sci 2020; 21:E5295. [PMID: 32722559 PMCID: PMC7432158 DOI: 10.3390/ijms21155295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Natural autoantibodies, immunoglobulins (Igs) that target self-proteins, are common in the plasma of healthy individuals; some of the autoantibodies play pathogenic roles in systemic or tissue-specific autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus. Recently, the field of autoantibody-associated diseases has expanded to encompass neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), with related studies examining the functions of Igs in the central nervous system (CNS). Recent evidence suggests that Igs have various effects in the CNS; these effects are associated with the prevention of neurodegeneration, as well as induction. Here, we summarize the functional roles of Igs with respect to neurodegenerative disease (AD and PD), focusing on the target antigens and effector cell types. In addition, we review the current knowledge about the roles of these antibodies as diagnostic markers and immunotherapies.
Collapse
Affiliation(s)
| | | | - Sung-Gyoo Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (K.-Y.S.); (K.C.I.)
| |
Collapse
|
42
|
Optimizing intracellular antibodies (intrabodies/nanobodies) to treat neurodegenerative disorders. Neurobiol Dis 2020; 134:104619. [DOI: 10.1016/j.nbd.2019.104619] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/05/2019] [Accepted: 09/19/2019] [Indexed: 01/27/2023] Open
|