1
|
Skobeleva K, Wang G, Kaznacheyeva E. STIM Proteins: The Gas and Brake of Calcium Entry in Neurons. Neurosci Bull 2024:10.1007/s12264-024-01272-5. [PMID: 39266936 DOI: 10.1007/s12264-024-01272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/22/2024] [Indexed: 09/14/2024] Open
Abstract
Stromal interaction molecules (STIM)s are Ca2+ sensors in internal Ca2+ stores of the endoplasmic reticulum. They activate the store-operated Ca2+ channels, which are the main source of Ca2+ entry in non-excitable cells. Moreover, STIM proteins interact with other Ca2+ channel subunits and active transporters, making STIMs an important intermediate molecule in orchestrating a wide variety of Ca2+ influxes into excitable cells. Nevertheless, little is known about the role of STIM proteins in brain functioning. Being involved in many signaling pathways, STIMs replenish internal Ca2+ stores in neurons and mediate synaptic transmission and neuronal excitability. Ca2+ dyshomeostasis is a signature of many pathological conditions of the brain, including neurodegenerative diseases, injuries, stroke, and epilepsy. STIMs play a role in these disturbances not only by supporting abnormal store-operated Ca2+ entry but also by regulating Ca2+ influx through other channels. Here, we review the present knowledge of STIMs in neurons and their involvement in brain pathology.
Collapse
Affiliation(s)
- Ksenia Skobeleva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Elena Kaznacheyeva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064.
| |
Collapse
|
2
|
Ames S, Brooks J, Jones E, Morehouse J, Cortez-Thomas F, Desta D, Stirling DP. NKCC1 inhibition reduces periaxonal swelling, increases white matter sparing, and improves neurological recovery after contusive SCI. Neurobiol Dis 2024; 199:106611. [PMID: 39032797 DOI: 10.1016/j.nbd.2024.106611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024] Open
Abstract
Ultrastructural studies of contusive spinal cord injury (SCI) in mammals have shown that the most prominent acute changes in white matter are periaxonal swelling and separation of myelin away from their axon, axonal swelling, and axonal spheroid formation. However, the underlying cellular and molecular mechanisms that cause periaxonal swelling and the functional consequences are poorly understood. We hypothesized that periaxonal swelling and loss of connectivity between the axo-myelinic interface impedes neurological recovery by disrupting conduction velocity, and glial to axonal trophic support resulting in axonal swelling and spheroid formation. Utilizing in vivo longitudinal imaging of Thy1YFP+ axons and myelin labeled with Nile red, we reveal that periaxonal swelling significantly increases acutely following a contusive SCI (T13, 30 kdyn, IH Impactor) versus baseline recordings (laminectomy only) and often precedes axonal spheroid formation. In addition, using longitudinal imaging to determine the fate of myelinated fibers acutely after SCI, we show that ∼73% of myelinated fibers present with periaxonal swelling at 1 h post SCI and ∼ 51% of those fibers transition to axonal spheroids by 4 h post SCI. Next, we assessed whether cation-chloride cotransporters present within the internode contributed to periaxonal swelling and whether their modulation would increase white matter sparing and improve neurological recovery following a moderate contusive SCI (T9, 50 kdyn). Mechanistically, activation of the cation-chloride cotransporter KCC2 did not improve neurological recovery and acute axonal survival, but did improve chronic tissue sparing. In distinction, the NKKC1 antagonist bumetanide improved neurological recovery, tissue sparing, and axonal survival, in part through preventing periaxonal swelling and disruption of the axo-myelinic interface. Collectively, these data reveal a novel neuroprotective target to prevent periaxonal swelling and improve neurological recovery after SCI.
Collapse
Affiliation(s)
- Spencer Ames
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY, USA 40202
| | - Jesse Brooks
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY, USA 40202
| | - Emma Jones
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY, USA 40202
| | - Johnny Morehouse
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY, USA 40202
| | - Francisco Cortez-Thomas
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY, USA 40202; Bioengineering, University of Louisville, School of Medicine, Louisville, KY, USA 40202
| | - Dereje Desta
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY, USA 40202
| | - David P Stirling
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY, USA 40202; Departments of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY, USA 40202; Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, KY, USA 40202.
| |
Collapse
|
3
|
Ames S, Adams K, Geisen ME, Stirling DP. Ca 2+-induced myelin pathology precedes axonal spheroid formation and is mediated in part by store-operated Ca 2+ entry after spinal cord injury. Neural Regen Res 2023; 18:2720-2726. [PMID: 37449636 DOI: 10.4103/1673-5374.373656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The formation of axonal spheroid is a common feature following spinal cord injury. To further understand the source of Ca2+ that mediates axonal spheroid formation, we used our previously characterized ex vivo mouse spinal cord model that allows precise perturbation of extracellular Ca2+. We performed two-photon excitation imaging of spinal cords isolated from Thy1YFP+ transgenic mice and applied the lipophilic dye, Nile red, to record dynamic changes in dorsal column axons and their myelin sheaths respectively. We selectively released Ca2+ from internal stores using the Ca2+ ionophore ionomycin in the presence or absence of external Ca2+. We reported that ionomycin dose-dependently induces pathological changes in myelin and pronounced axonal spheroid formation in the presence of normal 2 mM Ca2+ artificial cerebrospinal fluid. In contrast, removal of external Ca2+ significantly decreased ionomycin-induced myelin and axonal spheroid formation at 2 hours but not at 1 hour after treatment. Using mice that express a neuron-specific Ca2+ indicator in spinal cord axons, we confirmed that ionomycin induced significant increases in intra-axonal Ca2+, but not in the absence of external Ca2+. Periaxonal swelling and the resultant disruption in the axo-myelinic interface often precedes and is negatively correlated with axonal spheroid formation. Pretreatment with YM58483 (500 nM), a well-established blocker of store-operated Ca2+ entry, significantly decreased myelin injury and axonal spheroid formation. Collectively, these data reveal that ionomycin-induced depletion of internal Ca2+ stores and subsequent external Ca2+ entry through store-operated Ca2+ entry contributes to pathological changes in myelin and axonal spheroid formation, providing new targets to protect central myelinated fibers.
Collapse
Affiliation(s)
- Spencer Ames
- Kentucky Spinal Cord Injury Research Center; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Kia Adams
- Kentucky Spinal Cord Injury Research Center; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Mariah E Geisen
- Kentucky Spinal Cord Injury Research Center; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY, USA
| | - David P Stirling
- Kentucky Spinal Cord Injury Research Center; Department of Neurological Surgery; Anatomical Sciences and Neurobiology; Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY, USA
| |
Collapse
|
4
|
Orem BC, Morehouse JR, Ames S, Burke DA, Magnuson DS, Stirling DP. Direct Ryanodine Receptor-2 Knockout in Primary Afferent Fibers Modestly Affects Neurological Recovery after Contusive Spinal Cord Injury. Neurotrauma Rep 2022; 3:433-446. [PMID: 36337076 PMCID: PMC9622210 DOI: 10.1089/neur.2022.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Neuronal ryanodine receptors (RyR) release calcium from internal stores and play a key role in synaptic plasticity, learning, and memory. Dysregulation of RyR function contributes to neurodegeneration and negatively impacts neurological recovery after spinal cord injury (SCI). However, the individual role of RyR isoforms and the underlying mechanisms remain poorly understood. To determine whether RyR2 plays a direct role in axonal fate and functional recovery after SCI, we bred Advillin-Cre: tdTomato (Ai9) reporter mice with "floxed" RyR2 mice to directly knock out (KO) RyR2 function in dorsal root ganglion neurons and their spinal projections. Adult 6- to 8-week-old RyR2KO and littermate controls were subjected to a contusive SCI and their dorsal column axons were imaged in vivo using two-photon excitation microscopy. We found that direct RyR2KO in dorsal column primary afferents did not significantly alter secondary axonal degeneration after SCI. We next assessed behavioral recovery after SCI and found that direct RyR2KO in primary afferents worsened open-field locomotor scores (Basso Mouse Scale subscore) compared to littermate controls. However, both TreadScan™ gait analysis and overground kinematic gait analysis tests revealed subtle, but no fundamental, differences in gait patterns between the two groups after SCI. Subsequent removal of spared afferent fibers using a dorsal column crush revealed similar outcomes in both groups. Analysis of primary afferents at the lumbar (L3-L5) level similarly revealed no noticeable differences between groups. Together, our results support a modest contribution of dorsal column primary afferent RyR2 in neurological recovery after SCI.
Collapse
Affiliation(s)
- Ben C. Orem
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA.,Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Johnny R. Morehouse
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Spencer Ames
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Darlene A. Burke
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - David S.K. Magnuson
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA.,Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky, USA.,Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - David P. Stirling
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA.,Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky, USA.,Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky, USA.,Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, Kentucky, USA.,*Address correspondence to: David P. Stirling, PhD, Departments of Neurological Surgery, Microbiology and Immunology, and Anatomical Sciences and Neurobiology, KY Spinal Cord Injury Research Center, University of Louisville, 511 South Floyd Street, MDR Building, Room 608, Louisville, KY 40202, USA.
| |
Collapse
|
5
|
Shawer H, Norman K, Cheng CW, Foster R, Beech DJ, Bailey MA. ORAI1 Ca 2+ Channel as a Therapeutic Target in Pathological Vascular Remodelling. Front Cell Dev Biol 2021; 9:653812. [PMID: 33937254 PMCID: PMC8083964 DOI: 10.3389/fcell.2021.653812] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
In the adult, vascular smooth muscle cells (VSMC) are normally physiologically quiescent, arranged circumferentially in one or more layers within blood vessel walls. Remodelling of native VSMC to a proliferative state for vascular development, adaptation or repair is driven by platelet-derived growth factor (PDGF). A key effector downstream of PDGF receptors is store-operated calcium entry (SOCE) mediated through the plasma membrane calcium ion channel, ORAI1, which is activated by the endoplasmic reticulum (ER) calcium store sensor, stromal interaction molecule-1 (STIM1). This SOCE was shown to play fundamental roles in the pathological remodelling of VSMC. Exciting transgenic lineage-tracing studies have revealed that the contribution of the phenotypically-modulated VSMC in atherosclerotic plaque formation is more significant than previously appreciated, and growing evidence supports the relevance of ORAI1 signalling in this pathologic remodelling. ORAI1 has also emerged as an attractive potential therapeutic target as it is accessible to extracellular compound inhibition. This is further supported by the progression of several ORAI1 inhibitors into clinical trials. Here we discuss the current knowledge of ORAI1-mediated signalling in pathologic vascular remodelling, particularly in the settings of atherosclerotic cardiovascular diseases (CVDs) and neointimal hyperplasia, and the recent developments in our understanding of the mechanisms by which ORAI1 coordinates VSMC phenotypic remodelling, through the activation of key transcription factor, nuclear factor of activated T-cell (NFAT). In addition, we discuss advances in therapeutic strategies aimed at the ORAI1 target.
Collapse
Affiliation(s)
- Heba Shawer
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Katherine Norman
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Chew W Cheng
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Richard Foster
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - David J Beech
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Marc A Bailey
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
6
|
Orem BC, Rajaee A, Stirling DP. IP 3R-mediated intra-axonal Ca 2+ release contributes to secondary axonal degeneration following contusive spinal cord injury. Neurobiol Dis 2020; 146:105123. [PMID: 33011333 DOI: 10.1016/j.nbd.2020.105123] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 01/11/2023] Open
Abstract
Secondary axonal loss contributes to the persistent functional disability following trauma. Consequently, preserving axons following spinal cord injury (SCI) is a major therapeutic goal to improve neurological outcome; however, the complex molecular mechanisms that mediate secondary axonal degeneration remain unclear. We previously showed that IP3R-mediated Ca2+ release contributes to axonal dieback and axonal loss following an ex vivo laser-induced SCI. Nevertheless, targeting IP3R in a clinically relevant in vivo model of SCI and determining its contribution to secondary axonal degeneration has yet to be explored. Here we used intravital two-photon excitation microscopy to assess the role of IP3R in secondary axonal degeneration in real-time after a contusive-SCI in vivo. To visualize Ca2+ changes specifically in spinal axons over time, adult 6-8 week-old triple transgenic Avil-Cre:Ai9:Ai95 (sensory neuron-specific expression of tdTomato and the genetic calcium indicator GCaMP6f) mice were subjected to a mild (30 kdyn) T12 contusive-SCI and received delayed treatment with the IP3R blocker 2-APB (100 μM, intrathecal delivery at 3, and 24 h following injury) or vehicle control. To determine the IP3R subtype involved, we knocked-down IP3R3 using capped phosphodiester oligonucleotides. Delayed treatment with 2-APB significantly reduced axonal spheroids, increased axonal survival, and reduced intra-axonal Ca2+ accumulation within dorsal column axons at 24 h following SCI in vivo. Additionally, knockdown of IP3R3 yielded increased axon survival 24 h post-SCI. These results suggest that IP3R-mediated Ca2+ release contributes to secondary axonal degeneration in vivo following SCI.
Collapse
Affiliation(s)
- Ben C Orem
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Arezoo Rajaee
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Departments of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - David P Stirling
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Departments of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|