1
|
Dumelie JG, Chen Q, Miller D, Attarwala N, Gross SS, Jaffrey SR. Biomolecular condensates create phospholipid-enriched microenvironments. Nat Chem Biol 2024; 20:302-313. [PMID: 37973889 PMCID: PMC10922641 DOI: 10.1038/s41589-023-01474-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/08/2023] [Indexed: 11/19/2023]
Abstract
Proteins and RNA can phase separate from the aqueous cellular environment to form subcellular compartments called condensates. This process results in a protein-RNA mixture that is chemically different from the surrounding aqueous phase. Here, we use mass spectrometry to characterize the metabolomes of condensates. To test this, we prepared mixtures of phase-separated proteins and extracts of cellular metabolites and identified metabolites enriched in the condensate phase. Among the most condensate-enriched metabolites were phospholipids, due primarily to the hydrophobicity of their fatty acyl moieties. We found that phospholipids can alter the number and size of phase-separated condensates and in some cases alter their morphology. Finally, we found that phospholipids partition into a diverse set of endogenous condensates as well as artificial condensates expressed in cells. Overall, these data show that many condensates are protein-RNA-lipid mixtures with chemical microenvironments that are ideally suited to facilitate phospholipid biology and signaling.
Collapse
Affiliation(s)
- Jason G Dumelie
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Dawson Miller
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Nabeel Attarwala
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Steven S Gross
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
2
|
Fujii J, Osaki T, Soma Y, Matsuda Y. Critical Roles of the Cysteine-Glutathione Axis in the Production of γ-Glutamyl Peptides in the Nervous System. Int J Mol Sci 2023; 24:ijms24098044. [PMID: 37175751 PMCID: PMC10179188 DOI: 10.3390/ijms24098044] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
γ-Glutamyl moiety that is attached to the cysteine (Cys) residue in glutathione (GSH) protects it from peptidase-mediated degradation. The sulfhydryl group of the Cys residue represents most of the functions of GSH, which include electron donation to peroxidases, protection of reactive sulfhydryl in proteins via glutaredoxin, and glutathione conjugation of xenobiotics, whereas Cys-derived sulfur is also a pivotal component of some redox-responsive molecules. The amount of Cys that is available tends to restrict the capacity of GSH synthesis. In in vitro systems, cystine is the major form in the extracellular milieu, and a specific cystine transporter, xCT, is essential for survival in most lines of cells and in many primary cultivated cells as well. A reduction in the supply of Cys causes GPX4 to be inhibited due to insufficient GSH synthesis, which leads to iron-dependent necrotic cell death, ferroptosis. Cells generally cannot take up GSH without the removal of γ-glutamyl moiety by γ-glutamyl transferase (GGT) on the cell surface. Meanwhile, the Cys-GSH axis is essentially common to certain types of cells; primarily, neuronal cells that contain a unique metabolic system for intercellular communication concerning γ-glutamyl peptides. After a general description of metabolic processes concerning the Cys-GSH axis, we provide an overview and discuss the significance of GSH-related compounds in the nervous system.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Tsukasa Osaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Yuya Soma
- Graduate School of Nursing, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Yumi Matsuda
- Graduate School of Nursing, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
3
|
Fels JA, Dash J, Leslie K, Manfredi G, Kawamata H. Effects of
PB‐TURSO
on the transcriptional and metabolic landscape of sporadic
ALS
fibroblasts. Ann Clin Transl Neurol 2022; 9:1551-1564. [PMID: 36083004 PMCID: PMC9539390 DOI: 10.1002/acn3.51648] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/02/2022] [Accepted: 07/22/2022] [Indexed: 11/09/2022] Open
Abstract
Objective Methods Results Interpretation
Collapse
Affiliation(s)
- Jasmine A. Fels
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine 407 East 61st Street New York New York 10065 USA
- Neuroscience Graduate Program Weill Cornell Graduate School of Medical Sciences 1300 York Ave New York New York 10065 USA
| | - Jalia Dash
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine 407 East 61st Street New York New York 10065 USA
| | - Kent Leslie
- Amylyx Pharmaceuticals 43 Thorndike Street Cambridge Massachusetts 02141 USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine 407 East 61st Street New York New York 10065 USA
| | - Hibiki Kawamata
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine 407 East 61st Street New York New York 10065 USA
| |
Collapse
|
4
|
Altered TDP-43 Structure and Function: Key Insights into Aberrant RNA, Mitochondrial, and Cellular and Systemic Metabolism in Amyotrophic Lateral Sclerosis. Metabolites 2022; 12:metabo12080709. [PMID: 36005581 PMCID: PMC9415507 DOI: 10.3390/metabo12080709] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neuromuscular disorder with no cure available and limited treatment options. ALS is a highly heterogeneous disease, whereby patients present with vastly different phenotypes. Despite this heterogeneity, over 97% of patients will exhibit pathological TAR-DNA binding protein-43 (TDP-43) cytoplasmic inclusions. TDP-43 is a ubiquitously expressed RNA binding protein with the capacity to bind over 6000 RNA and DNA targets—particularly those involved in RNA, mitochondrial, and lipid metabolism. Here, we review the unique structure and function of TDP-43 and its role in affecting the aforementioned metabolic processes in ALS. Considering evidence published specifically in TDP-43-relevant in vitro, in vivo, and ex vivo models we posit that TDP-43 acts in a positive feedback loop with mRNA transcription/translation, stress granules, cytoplasmic aggregates, and mitochondrial proteins causing a relentless cycle of disease-like pathology eventuating in neuronal toxicity. Given its undeniable presence in ALS pathology, TDP-43 presents as a promising target for mechanistic disease modelling and future therapeutic investigations.
Collapse
|
5
|
Fels JA, Casalena G, Konrad C, Holmes HE, Dellinger RW, Manfredi G. Gene expression profiles in sporadic ALS fibroblasts define disease subtypes and the metabolic effects of the investigational drug EH301. Hum Mol Genet 2022; 31:3458-3477. [PMID: 35652455 DOI: 10.1093/hmg/ddac118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/04/2022] [Accepted: 05/17/2022] [Indexed: 01/18/2023] Open
Abstract
Metabolic alterations shared between the nervous system and skin fibroblasts have emerged in ALS. Recently, we found that a subgroup of sporadic ALS (sALS) fibroblasts (sALS1) is characterized by metabolic profiles distinct from other sALS cases (sALS2) and controls, suggesting that metabolic therapies could be effective in sALS. The metabolic modulators nicotinamide riboside and pterostilbene (EH301) are under clinical development for the treatment of ALS. Here, we studied the transcriptome and metabolome of sALS cells to understand the molecular bases of sALS metabotypes and the impact of EH301. Metabolomics and transcriptomics were investigated at baseline and after EH301 treatment. Moreover, weighted gene co-expression network analysis (WGCNA) was used to investigate the association of metabolic and clinical features. We found that the sALS1 transcriptome is distinct from sALS2 and that EH301 modifies gene expression differently in sALS1, sALS2, and controls. Furthermore, EH301 had strong protective effects against metabolic stress, an effect linked to anti-inflammatory and antioxidant pathways. WGCNA revealed that ALS functional rating scale and metabotypes are associated with gene modules enriched for cell cycle, immunity, autophagy, and metabolism genes, which are modified by EH301. Meta-analysis of publicly available transcriptomics data from induced motor neurons by Answer ALS confirmed functional associations of genes correlated with disease traits. A subset of genes differentially expressed in sALS fibroblasts was used in a machine learning model to predict disease progression. In conclusion, multi-omics analyses highlighted differential metabolic and transcriptomic profiles in patient-derived fibroblast sALS, which translate into differential responses to the investigational drug EH301.
Collapse
Affiliation(s)
- Jasmine A Fels
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065.,Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Ave, New York, NY 10065
| | - Gabriella Casalena
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
| | - Csaba Konrad
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
| | | | | | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
| |
Collapse
|
6
|
Satarker S, Bojja SL, Gurram PC, Mudgal J, Arora D, Nampoothiri M. Astrocytic Glutamatergic Transmission and Its Implications in Neurodegenerative Disorders. Cells 2022; 11:cells11071139. [PMID: 35406702 PMCID: PMC8997779 DOI: 10.3390/cells11071139] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/12/2022] [Accepted: 03/13/2022] [Indexed: 12/11/2022] Open
Abstract
Several neurodegenerative disorders involve impaired neurotransmission, and glutamatergic neurotransmission sets a prototypical example. Glutamate is a predominant excitatory neurotransmitter where the astrocytes play a pivotal role in maintaining the extracellular levels through release and uptake mechanisms. Astrocytes modulate calcium-mediated excitability and release several neurotransmitters and neuromodulators, including glutamate, and significantly modulate neurotransmission. Accumulating evidence supports the concept of excitotoxicity caused by astrocytic glutamatergic release in pathological conditions. Thus, the current review highlights different vesicular and non-vesicular mechanisms of astrocytic glutamate release and their implication in neurodegenerative diseases. As in presynaptic neurons, the vesicular release of astrocytic glutamate is also primarily meditated by calcium-mediated exocytosis. V-ATPase is crucial in the acidification and maintenance of the gradient that facilitates the vesicular storage of glutamate. Along with these, several other components, such as cystine/glutamate antiporter, hemichannels, BEST-1, TREK-1, purinergic receptors and so forth, also contribute to glutamate release under physiological and pathological conditions. Events of hampered glutamate uptake could promote inflamed astrocytes to trigger repetitive release of glutamate. This could be favorable towards the development and worsening of neurodegenerative diseases. Therefore, across neurodegenerative diseases, we review the relations between defective glutamatergic signaling and astrocytic vesicular and non-vesicular events in glutamate homeostasis. The optimum regulation of astrocytic glutamatergic transmission could pave the way for the management of these diseases and add to their therapeutic value.
Collapse
Affiliation(s)
- Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.S.); (S.L.B.); (P.C.G.); (J.M.)
| | - Sree Lalitha Bojja
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.S.); (S.L.B.); (P.C.G.); (J.M.)
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.S.); (S.L.B.); (P.C.G.); (J.M.)
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.S.); (S.L.B.); (P.C.G.); (J.M.)
| | - Devinder Arora
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.S.); (S.L.B.); (P.C.G.); (J.M.)
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.S.); (S.L.B.); (P.C.G.); (J.M.)
- Correspondence:
| |
Collapse
|
7
|
de Lima NS, da Costa CCP, Assunção LDP, Santos KDF, Bento DDCP, da Silva Reis AA, Santos RDS. One-carbon metabolism pathway genes and their non-association with the development of amyotrophic lateral sclerosis. J Cell Biochem 2022; 123:620-627. [PMID: 34994003 DOI: 10.1002/jcb.30208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/29/2021] [Accepted: 12/23/2021] [Indexed: 11/08/2022]
Abstract
Although of unknown etiology, some mechanisms associated with the metabolic cycle of folate are speculated to be related to the genesis of amyotrophic lateral sclerosis (ALS). Thus, the aim of the study was to analyze the role of genetic polymorphisms rs1051266 in SLC19A1 gene and rs1805087 in MTR gene and their associations with ALS development. A case-control study was conducted with 101 individuals with ALS and 119 individuals without diagnosis of neurodegenerative diseases, from the Brazilian central population. The polymorphisms were determined using the polymerase chain reaction-restriction fragment length polymorphism technique. The results showed no statistically significant differences, even when genotypes were analyzed by the dominant, recessive, codominant, and overdominant inheritance models. It was observed a statistical significance relating alcohol consumption with individuals in the case group (p = 0.01). Therefore, the need for more studies to evaluate the influence of genetic variants is highlighted, seeking to provide information on the etiopathogenesis of ALS.
Collapse
Affiliation(s)
- Nayane S de Lima
- Molecular Pathology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil
| | - Caroline C P da Costa
- Molecular Pathology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil
| | - Leandro do P Assunção
- Molecular Pathology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil
| | - Kamilla de F Santos
- Molecular Pathology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil
| | - Dhiogo da C P Bento
- Molecular Pathology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil.,Neuromuscular Disease Clinic, Rehabilitation and Readaptation Medical Center Dr. Henrique Santillo (CRER), Goiânia-GO, Brazil
| | - Angela A da Silva Reis
- Molecular Pathology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil.,Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil
| | - Rodrigo da S Santos
- Molecular Pathology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil.,Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil
| |
Collapse
|
8
|
Maudsley S, Leysen H, van Gastel J, Martin B. Systems Pharmacology: Enabling Multidimensional Therapeutics. COMPREHENSIVE PHARMACOLOGY 2022:725-769. [DOI: 10.1016/b978-0-12-820472-6.00017-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Coppedè F. One-carbon epigenetics and redox biology of neurodegeneration. Free Radic Biol Med 2021; 170:19-33. [PMID: 33307166 DOI: 10.1016/j.freeradbiomed.2020.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
One-carbon metabolism provides the methyl groups for both DNA and histone tail methylation reactions, two of the main epigenetic processes that tightly regulate the chromatin structure and gene expression levels. Several enzymes involved in one-carbon metabolism, as well as several epigenetic enzymes, are regulated by intracellular metabolites and redox cofactors, but their expression levels are in turn regulated by epigenetic modifications, in such a way that metabolism and gene expression reciprocally regulate each other to maintain homeostasis and regulate cell growth, survival, differentiation and response to environmental stimuli. Increasing evidence highlights the contribution of impaired one-carbon metabolism and epigenetic modifications in neurodegeneration. This article provides an overview of DNA and histone tail methylation changes in major neurodegenerative disorders, namely Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis, discussing the contribution of oxidative stress and impaired one-carbon and redox metabolism to their onset and progression.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| |
Collapse
|