1
|
Foliaki ST, Race B, Williams K, Baune C, Groveman BR, Haigh CL. Reduced SOD2 expression does not influence prion disease course or pathology in mice. PLoS One 2021; 16:e0259597. [PMID: 34735539 PMCID: PMC8568125 DOI: 10.1371/journal.pone.0259597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/21/2021] [Indexed: 12/02/2022] Open
Abstract
Prion diseases are progressive, neurodegenerative diseases affecting humans and animals. Also known as the transmissible spongiform encephalopathies, for the hallmark spongiform change seen in the brain, these diseases manifest increased oxidative damage early in disease and changes in antioxidant enzymes in terminal brain tissue. Superoxide dismutase 2 (SOD2) is an antioxidant enzyme that is critical for life. SOD2 knock-out mice can only be kept alive for several weeks post-birth and only with antioxidant therapy. However, this results in the development of a spongiform encephalopathy. Consequently, we hypothesized that reduced levels of SOD2 may accelerate prion disease progression and play a critical role in the formation of spongiform change. Using SOD2 heterozygous knock-out and litter mate wild-type controls, we examined neuronal long-term potentiation, disease duration, pathology, and degree of spongiform change in mice infected with three strains of mouse adapted scrapie. No influence of the reduced SOD2 expression was observed in any parameter measured for any strain. We conclude that changes relating to SOD2 during prion disease are most likely secondary to the disease processes causing toxicity and do not influence the development of spongiform pathology.
Collapse
Affiliation(s)
- Simote T. Foliaki
- Prion Cell Biology Unit, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Brent Race
- Veterinary Biology Unit, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Katie Williams
- Prion Cell Biology Unit, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Chase Baune
- Veterinary Biology Unit, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Bradley R. Groveman
- Prion Cell Biology Unit, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Cathryn L. Haigh
- Prion Cell Biology Unit, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
- * E-mail:
| |
Collapse
|