2
|
Xu LL, Zhou XJ, Zhang H. An Update on the Genetics of IgA Nephropathy. J Clin Med 2023; 13:123. [PMID: 38202130 PMCID: PMC10780034 DOI: 10.3390/jcm13010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Immunoglobulin A (IgA) nephropathy (IgAN), the most common form of glomerulonephritis, is one of the leading causes of end-stage kidney disease (ESKD). It is widely believed that genetic factors play a significant role in the development of IgAN. Previous studies of IgAN have provided important insights to unravel the genetic architecture of IgAN and its potential pathogenic mechanisms. The genome-wide association studies (GWASs) together have identified over 30 risk loci for IgAN, which emphasizes the importance of IgA production and regulation in the pathogenesis of IgAN. Follow-up fine-mapping studies help to elucidate the candidate causal variant and the potential pathogenic molecular pathway and provide new potential therapeutic targets. With the rapid development of next-generation sequencing technologies, linkage studies based on whole-genome sequencing (WGS)/whole-exome sequencing (WES) also identify rare variants associated with IgAN, accounting for some of the missing heritability. The complexity of pathogenesis and phenotypic variability may be better understood by integrating genetics, epigenetics, and environment. We have compiled a review summarizing the latest advancements in genetic studies on IgAN. We similarly summarized relevant studies examining the involvement of epigenetics in the pathogenesis of IgAN. Future directions and challenges in this field are also proposed.
Collapse
Affiliation(s)
- Lin-Lin Xu
- Renal Division, Peking University First Hospital, Beijing 100034, China; (L.-L.X.); (H.Z.)
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100034, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Beijing 100034, China; (L.-L.X.); (H.Z.)
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100034, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Beijing 100034, China; (L.-L.X.); (H.Z.)
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100034, China
| |
Collapse
|
3
|
Ali M, Sung YJ, Wang F, Fernández MV, Morris JC, Fagan AM, Blennow K, Zetterberg H, Heslegrave A, Johansson PM, Svensson J, Nellgård B, Lleó A, Alcolea D, Clarimon J, Rami L, Molinuevo JL, Suárez-Calvet M, Morenas-Rodríguez E, Kleinberger G, Haass C, Ewers M, Levin J, Farlow MR, Perrin RJ, Cruchaga C. Leveraging large multi-center cohorts of Alzheimer disease endophenotypes to understand the role of Klotho heterozygosity on disease risk. PLoS One 2022; 17:e0267298. [PMID: 35617280 PMCID: PMC9135221 DOI: 10.1371/journal.pone.0267298] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
Two genetic variants in strong linkage disequilibrium (rs9536314 and rs9527025) in the Klotho (KL) gene, encoding a transmembrane protein, implicated in longevity and associated with brain resilience during normal aging, were recently shown to be associated with Alzheimer disease (AD) risk in cognitively normal participants who are APOE ε4 carriers. Specifically, the participants heterozygous for this variant (KL-SVHET+) showed lower risk of developing AD. Furthermore, a neuroprotective effect of KL-VSHET+ has been suggested against amyloid burden for cognitively normal participants, potentially mediated via the regulation of redox pathways. However, inconsistent associations and a smaller sample size of existing studies pose significant hurdles in drawing definitive conclusions. Here, we performed a well-powered association analysis between KL-VSHET+ and five different AD endophenotypes; brain amyloidosis measured by positron emission tomography (PET) scans (n = 5,541) or cerebrospinal fluid Aβ42 levels (CSF; n = 5,093), as well as biomarkers associated with tau pathology: the CSF Tau (n = 5,127), phosphorylated Tau (pTau181; n = 4,778) and inflammation: CSF soluble triggering receptor expressed on myeloid cells 2 (sTREM2; n = 2,123) levels. Our results found nominally significant associations of KL-VSHET+ status with biomarkers for brain amyloidosis (e.g., CSF Aβ positivity; odds ratio [OR] = 0.67 [95% CI, 0.55-0.78], β = 0.72, p = 0.007) and tau pathology (e.g., biomarker positivity for CSF Tau; OR = 0.39 [95% CI, 0.19-0.77], β = -0.94, p = 0.007, and pTau; OR = 0.50 [95% CI, 0.27-0.96], β = -0.68, p = 0.04) in cognitively normal participants, 60-80 years old, who are APOE e4-carriers. Our work supports previous findings, suggesting that the KL-VSHET+ on an APOE ε4 genotype background may modulate Aβ and tau pathology, thereby lowering the intensity of neurodegeneration and incidence of cognitive decline in older controls susceptible to AD.
Collapse
Affiliation(s)
- Muhammad Ali
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Neurogenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Neurogenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Fengxian Wang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Neurogenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Maria V. Fernández
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Neurogenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John C. Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Anne M. Fagan
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Per M. Johansson
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Anesthesiology and Intensive Care Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Johan Svensson
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | - Bengt Nellgård
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | - Alberto Lleó
- Neurology Department, Hospital de Sant Pau, Barcelona, Spain
| | - Daniel Alcolea
- Neurology Department, Hospital de Sant Pau, Barcelona, Spain
| | - Jordi Clarimon
- Neurology Department, Hospital de Sant Pau, Barcelona, Spain
| | - Lorena Rami
- IDIBAPS, Alzheimer´s Disease and Other Cognitive Disorders Unit, Neurology Service, ICN Hospital Clinic, Barcelona, Spain
| | - José Luis Molinuevo
- IDIBAPS, Alzheimer´s Disease and Other Cognitive Disorders Unit, Neurology Service, ICN Hospital Clinic, Barcelona, Spain
- Alzheimer´s Disease and Other Cognitive Disorders Unit, Neurology Service, ICN Hospital Clinic i Universitari, Barcelona, Spain
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Marc Suárez-Calvet
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
- Biomedical Center (BMC), Biochemistry, Ludwig‐Maximilians‐Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Estrella Morenas-Rodríguez
- Biomedical Center (BMC), Biochemistry, Ludwig‐Maximilians‐Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Gernot Kleinberger
- Biomedical Center (BMC), Biochemistry, Ludwig‐Maximilians‐Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Haass
- Biomedical Center (BMC), Biochemistry, Ludwig‐Maximilians‐Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Michael Ewers
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin R. Farlow
- Indiana Alzheimer Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Richard J. Perrin
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | | | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Neurogenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|