1
|
Clayton EL, Huggon L, Cousin MA, Mizielinska S. Synaptopathy: presynaptic convergence in frontotemporal dementia and amyotrophic lateral sclerosis. Brain 2024; 147:2289-2307. [PMID: 38451707 PMCID: PMC11224618 DOI: 10.1093/brain/awae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Frontotemporal dementia and amyotrophic lateral sclerosis are common forms of neurodegenerative disease that share overlapping genetics and pathologies. Crucially, no significantly disease-modifying treatments are available for either disease. Identifying the earliest changes that initiate neuronal dysfunction is important for designing effective intervention therapeutics. The genes mutated in genetic forms of frontotemporal dementia and amyotrophic lateral sclerosis have diverse cellular functions, and multiple disease mechanisms have been proposed for both. Identification of a convergent disease mechanism in frontotemporal dementia and amyotrophic lateral sclerosis would focus research for a targetable pathway, which could potentially effectively treat all forms of frontotemporal dementia and amyotrophic lateral sclerosis (both familial and sporadic). Synaptopathies are diseases resulting from physiological dysfunction of synapses, and define the earliest stages in multiple neuronal diseases, with synapse loss a key feature in dementia. At the presynapse, the process of synaptic vesicle recruitment, fusion and recycling is necessary for activity-dependent neurotransmitter release. The unique distal location of the presynaptic terminal means the tight spatio-temporal control of presynaptic homeostasis is dependent on efficient local protein translation and degradation. Recently, numerous publications have shown that mutations associated with frontotemporal dementia and amyotrophic lateral sclerosis present with synaptopathy characterized by presynaptic dysfunction. This review will describe the complex local signalling and membrane trafficking events that occur at the presynapse to facilitate neurotransmission and will summarize recent publications linking frontotemporal dementia/amyotrophic lateral sclerosis genetic mutations to presynaptic function. This evidence indicates that presynaptic synaptopathy is an early and convergent event in frontotemporal dementia and amyotrophic lateral sclerosis and illustrates the need for further research in this area, to identify potential therapeutic targets with the ability to impact this convergent pathomechanism.
Collapse
Affiliation(s)
- Emma L Clayton
- UK Dementia Research Institute at King’s College London, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| | - Laura Huggon
- UK Dementia Research Institute at King’s College London, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sarah Mizielinska
- UK Dementia Research Institute at King’s College London, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| |
Collapse
|
2
|
Zhang T, Bao L, Chen H. Review of Phenotypic Heterogeneity of Neuronal Intranuclear Inclusion Disease and NOTCH2NLC-Related GGC Repeat Expansion Disorders. Neurol Genet 2024; 10:e200132. [PMID: 38586597 PMCID: PMC10997217 DOI: 10.1212/nxg.0000000000200132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/05/2024] [Indexed: 04/09/2024]
Abstract
Neuronal intranuclear inclusion disease (NIID) is an underdiagnosed neurodegenerative disorder caused by pathogenic GGC expansions in NOTCH2NLC. However, an increasing number of reports of NOTCH2NLC GGC expansions in patients with Alzheimer disease, essential tremor, Parkinson disease, amyotrophic lateral sclerosis, and oculopharyngodistal myopathy have led to the proposal of a new concept known as NOTCH2NLC-related GGC repeat expansion disorders (NREDs). The majority of studies have mainly focused on screening for NOTCH2NLC GGC repeat variation in populations previously diagnosed with the associated disease, subsequently presenting it as a novel causative gene for the condition. These studies appear to be clinically relevant but do have their limitations because they may incorrectly regard the lack of MRI abnormalities as an exclusion criterion for NIID or overlook concomitant clinical presentations not typically observed in the associated diseases. Besides, in many instances within these reports, patients lack pathologic evidence or undergo long-term follow-up to conclusively rule out NIID. In this review, we will systematically review the research on NOTCH2NLC 5' untranslated region GGC repeat expansions and their association with related neurologic disorders, explaining the limitations of the relevant reports. Furthermore, we will integrate subsequent studies to further demonstrate that these patients actually experienced distinct clinical phenotypes of NIID.
Collapse
Affiliation(s)
- Tao Zhang
- From the Department of Neurology (T.Z., L.B., H.C.), the Affiliated Hospital of Xuzhou Medical University; and Department of Neurology (L.B.), Xuzhou Medical University, China
| | - Lei Bao
- From the Department of Neurology (T.Z., L.B., H.C.), the Affiliated Hospital of Xuzhou Medical University; and Department of Neurology (L.B.), Xuzhou Medical University, China
| | - Hao Chen
- From the Department of Neurology (T.Z., L.B., H.C.), the Affiliated Hospital of Xuzhou Medical University; and Department of Neurology (L.B.), Xuzhou Medical University, China
| |
Collapse
|
3
|
Rayner SL, Hogan A, Davidson JM, Cheng F, Luu L, Morsch M, Blair I, Chung R, Lee A. Cyclin F, Neurodegeneration, and the Pathogenesis of ALS/FTD. Neuroscientist 2024; 30:214-228. [PMID: 36062310 DOI: 10.1177/10738584221120182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron disease and is characterized by the degeneration of upper and lower motor neurons of the brain and spinal cord. ALS is also linked clinically, genetically, and pathologically to a form of dementia known as frontotemporal dementia (FTD). Identifying gene mutations that cause ALS/FTD has provided valuable insight into the disease process. Several ALS/FTD-causing mutations occur within proteins with roles in protein clearance systems. This includes ALS/FTD mutations in CCNF, which encodes the protein cyclin F: a component of a multiprotein E3 ubiquitin ligase that mediates the ubiquitylation of substrates for their timely degradation. In this review, we provide an update on the link between ALS/FTD CCNF mutations and neurodegeneration.
Collapse
Affiliation(s)
| | - Alison Hogan
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | | | - Flora Cheng
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Luan Luu
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Marco Morsch
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Ian Blair
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Roger Chung
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Albert Lee
- Macquarie Medical School, Macquarie University, Sydney, Australia
| |
Collapse
|
4
|
Liang P, Zhang J, Wang B. Emerging Roles of Ubiquitination in Biomolecular Condensates. Cells 2023; 12:2329. [PMID: 37759550 PMCID: PMC10527650 DOI: 10.3390/cells12182329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Biomolecular condensates are dynamic non-membrane-bound macromolecular high-order assemblies that participate in a growing list of cellular processes, such as transcription, the cell cycle, etc. Disturbed dynamics of biomolecular condensates are associated with many diseases, including cancer and neurodegeneration. Extensive efforts have been devoted to uncovering the molecular and biochemical grammar governing the dynamics of biomolecular condensates and establishing the critical roles of protein posttranslational modifications (PTMs) in this process. Here, we summarize the regulatory roles of ubiquitination (a major form of cellular PTM) in the dynamics of biomolecular condensates. We propose that these regulatory mechanisms can be harnessed to combat many diseases.
Collapse
Affiliation(s)
- Peigang Liang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China; (P.L.); (J.Z.)
| | - Jiaqi Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China; (P.L.); (J.Z.)
| | - Bo Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China; (P.L.); (J.Z.)
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| |
Collapse
|
5
|
Davidson JM, Wu SSL, Rayner SL, Cheng F, Duncan K, Russo C, Newbery M, Ding K, Scherer NM, Balez R, García-Redondo A, Rábano A, Rosa-Fernandes L, Ooi L, Williams KL, Morsch M, Blair IP, Di Ieva A, Yang S, Chung RS, Lee A. The E3 Ubiquitin Ligase SCF Cyclin F Promotes Sequestosome-1/p62 Insolubility and Foci Formation and is Dysregulated in ALS and FTD Pathogenesis. Mol Neurobiol 2023; 60:5034-5054. [PMID: 37243816 PMCID: PMC10415446 DOI: 10.1007/s12035-023-03355-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 04/15/2023] [Indexed: 05/29/2023]
Abstract
Amyotrophic lateral sclerosis (ALS)- and frontotemporal dementia (FTD)-linked mutations in CCNF have been shown to cause dysregulation to protein homeostasis. CCNF encodes for cyclin F, which is part of the cyclin F-E3 ligase complex SCFcyclinF known to ubiquitylate substrates for proteasomal degradation. In this study, we identified a function of cyclin F to regulate substrate solubility and show how cyclin F mechanistically underlies ALS and FTD disease pathogenesis. We demonstrated that ALS and FTD-associated protein sequestosome-1/p62 (p62) was a canonical substrate of cyclin F which was ubiquitylated by the SCFcyclinF complex. We found that SCFcyclin F ubiquitylated p62 at lysine(K)281, and that K281 regulated the propensity of p62 to aggregate. Further, cyclin F expression promoted the aggregation of p62 into the insoluble fraction, which corresponded to an increased number of p62 foci. Notably, ALS and FTD-linked mutant cyclin F p.S621G aberrantly ubiquitylated p62, dysregulated p62 solubility in neuronal-like cells, patient-derived fibroblasts and induced pluripotent stem cells and dysregulated p62 foci formation. Consistently, motor neurons from patient spinal cord tissue exhibited increased p62 ubiquitylation. We suggest that the p.S621G mutation impairs the functions of cyclin F to promote p62 foci formation and shift p62 into the insoluble fraction, which may be associated to aberrant mutant cyclin F-mediated ubiquitylation of p62. Given that p62 dysregulation is common across the ALS and FTD spectrum, our study provides insights into p62 regulation and demonstrates that ALS and FTD-linked cyclin F mutant p.S621G can drive p62 pathogenesis associated with ALS and FTD.
Collapse
Affiliation(s)
- Jennilee M Davidson
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia.
| | - Sharlynn S L Wu
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Stephanie L Rayner
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Flora Cheng
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Kimberley Duncan
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Carlo Russo
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Michelle Newbery
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW, 2522, Australia
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Kunjie Ding
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Natalie M Scherer
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Rachelle Balez
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW, 2522, Australia
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Alberto García-Redondo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U-723), Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre de Madrid, SERMAS, Madrid, Spain
| | - Alberto Rábano
- Neuropathology Department and CIEN Tissue Bank, Alzheimer's Centre Reina Sofia-CIEN Foundation, 28031, Madrid, Spain
| | - Livia Rosa-Fernandes
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW, 2522, Australia
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Kelly L Williams
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Marco Morsch
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Ian P Blair
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Shu Yang
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Roger S Chung
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW, 2109, Australia
| |
Collapse
|
6
|
Pinkerton M, Lourenco G, Pacheco MT, Halliday GM, Kiernan MC, Tan RH. Survival in sporadic ALS is associated with lower p62 burden in the spinal cord. J Neuropathol Exp Neurol 2023; 82:769-773. [PMID: 37414530 PMCID: PMC10440721 DOI: 10.1093/jnen/nlad051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
The autophagy marker p62 appears as a consistent component of pathological aggregates in amyotrophic lateral sclerosis (ALS) and its modulation to facilitate protein degradation has been proposed as a potential therapeutic target. Importantly, recent studies have implicated diffuse phosphorylated TDP-43 inclusions that are immuno-negative for p62 in more rapid disease, highlighting the need for better understanding of p62 involvement in ALS pathogenesis. The present study set out to assess p62 pathology in the motor neurons of 31 patients with sporadic ALS that had either a short (<2 years) or longer (4-7 years) disease duration to determine its association with pTDP-43 pathology, motor neuron loss, and survival in sporadic disease. Our results identified significantly more cytoplasmic p62 aggregates in the spinal cord of patients with a shorter survival. Disease duration demonstrated a negative association with p62 burden and density of remaining motor neurons in the spinal cord, suggesting that survival in sporadic ALS is associated with the successful clearance of lower motor neurons with p62 aggregates. These findings implicate the autophagy pathway in ALS survival and provide support for further study of p62 as a potential prognostic biomarker in ALS.
Collapse
Affiliation(s)
- Monica Pinkerton
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Guinevere Lourenco
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | | | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Rachel H Tan
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
7
|
Current advances in neuronal intranuclear inclusion disease. Neurol Sci 2023; 44:1881-1889. [PMID: 36795299 DOI: 10.1007/s10072-023-06677-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a rare but probably underdiagnosed neurodegenerative disorder due to pathogenic GGC expansions in the NOTCH2NLC gene. In this review, we summarize recent developments in the inheritance features, pathogenesis, and histopathologic and radiologic features of NIID that subvert the previous perceptions of NIID. GGC repeat sizes determine the age of onset and clinical phenotypes of NIID patients. Anticipation may be absent in NIID but paternal bias is observed in NIID pedigrees. Eosinophilic intranuclear inclusions in skin tissues once considered pathological hallmarks of NIID can also present in other GGC repeat diseases. Diffusion-weighted imaging (DWI) hyperintensity along the corticomedullary junction once considered the imaging hallmark of NIID can frequently be absent in muscle weakness and parkinsonism phenotype of NIID. Besides, DWI abnormalities can appear years after the onset of predominant symptoms and may even disappear completely with disease progression. Moreover, continuous reports of NOTCH2NLC GGC expansions in patients with other neurodegenerative diseases lead to the proposal of a new concept of NOTCH2NLC-related GGC repeat expansion disorders (NRED). However, by reviewing the previous literature, we point out the limitations of these studies and provide evidence that these patients are actually suffering from neurodegenerative phenotypes of NIID.
Collapse
|
8
|
McCluskey G, Morrison KE, Donaghy C, Rene F, Duddy W, Duguez S. Extracellular Vesicles in Amyotrophic Lateral Sclerosis. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010121. [PMID: 36676070 PMCID: PMC9867379 DOI: 10.3390/life13010121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Amyotrophic Lateral Sclerosis is a progressive neurodegenerative disease and is the most common adult motor neuron disease. The disease pathogenesis is complex with the perturbation of multiple pathways proposed, including mitochondrial dysfunction, RNA processing, glutamate excitotoxicity, endoplasmic reticulum stress, protein homeostasis and endosomal transport/extracellular vesicle (EV) secretion. EVs are nanoscopic membrane-bound particles that are released from cells, involved in the intercellular communication of proteins, lipids and genetic material, and there is increasing evidence of their role in ALS. After discussing the biogenesis of EVs, we review their roles in the propagation of pathological proteins in ALS, such as TDP-43, SOD1 and FUS, and their contribution to disease pathology. We also discuss the ALS related genes which are involved in EV formation and vesicular trafficking, before considering the EV protein and RNA dysregulation found in ALS and how these have been investigated as potential biomarkers. Finally, we highlight the potential use of EVs as therapeutic agents in ALS, in particular EVs derived from mesenchymal stem cells and EVs as drug delivery vectors for potential treatment strategies.
Collapse
Affiliation(s)
- Gavin McCluskey
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Correspondence: (G.M.); (S.D.)
| | - Karen E. Morrison
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Faculty of Medicine, Health & Life Sciences, Queen’s University, Belfast BT9 6AG, UK
| | - Colette Donaghy
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
| | - Frederique Rene
- INSERM U1118, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, 67000 Strasbourg, France
| | - William Duddy
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
| | - Stephanie Duguez
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Correspondence: (G.M.); (S.D.)
| |
Collapse
|