1
|
Li YM, Xu XH, Ren LN, Xu XF, Dai YL, Yang RR, Jin CQ. The diagnostic value of neutrophil to lymphocyte ratio, albumin to fibrinogen ratio, and lymphocyte to monocyte ratio in Parkinson's disease: a retrospective study. Front Neurol 2024; 15:1450221. [PMID: 39286804 PMCID: PMC11402719 DOI: 10.3389/fneur.2024.1450221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Background Parkinson's disease (PD) is a prevalent disorder of the central nervous system, marked by the degeneration of dopamine (DA) neurons in the ventral midbrain. In the pathogenesis of PD, inflammation hypothesis has been concerned. This study aims to investigate clinical indicators of peripheral inflammation in PD patients and to explore the diagnostic value of neutrophil-to-lymphocyte ratio (NLR), albumin-to-fibrinogen ratio (AFR), and lymphocyte-to-monocyte ratio (LMR) in assessing PD risk. Methods This study included 186 patients with PD and 201 matched healthy controls (HC) with baseline data. Firstly, the differences of hematological indicators between PD group and healthy participants were compared and analyzed. Univariate and multivariate regression analyses were then conducted. Smooth curve fitting was applied to further validate the relationships between NLR, LMR, AFR, and PD. Subsequently, subgroup analysis was conducted in PD group according to different duration of disease and Hoehn and Yahr (H&Y) stage, comparing differences in clinical indicators. Finally, the receiver operating characteristic (ROC) curve was employed to assess the diagnostic value of NLR, LMR, and AFR in PD. Results Compared to the HC group, the PD group showed significantly higher levels of hypertension, diabetes, neutrophil count, monocyte count, CRP, homocysteine, fibrinogen, and NLR. Conversely, levels of LMR, AFR, lymphocyte count, HDL, LDL, TG, TC, uric acid, and albumin were significantly lower. The multivariate regression model indicated that NLR (OR = 1.79, 95% CI: 1.39-2.31, p < 0.001), LMR (OR = 0.75, 95% CI: 0.66-0.85, p < 0.001), and AFR (OR = 0.79, 95% CI: 0.73-0.85, p < 0.001) were significant factors associated with PD. Smooth curve fitting revealed that NLR was positively linked to PD risk, whereas AFR and LMR were inversely associated with it. In ROC curve analysis, the AUC of AFR was 0.7290, the sensitivity was 63.98%, and the specificity was 76.00%. The AUC of NLR was 0.6200, the sensitivity was 50.54%, and the specificity was 71.50%. The AUC of LMR was 0.6253, the sensitivity was 48.39%, and the specificity was 73.00%. The AUC of the combination was 0.7498, the sensitivity was 74.19%, and the specificity was 64.00%. Conclusion Our findings indicate that NLR, LMR, and AFR are significantly associated with Parkinson's disease and may serve as diagnostic markers.
Collapse
Affiliation(s)
- Yi-Ming Li
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
- Medical Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xiao-Hu Xu
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
- Medical Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Li-Na Ren
- Medical Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xiao-Fan Xu
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
- Medical Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Yi-Long Dai
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
- Medical Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Rui-Rui Yang
- Neurology Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Cheng-Qiang Jin
- Medical Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
2
|
Lucero J, Gurnani A, Weinberg J, Shih LC. Neutrophil-to-lymphocyte ratio and longitudinal cognitive performance in Parkinson's disease. Ann Clin Transl Neurol 2024; 11:2301-2313. [PMID: 39031909 PMCID: PMC11537143 DOI: 10.1002/acn3.52144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024] Open
Abstract
OBJECTIVE Previous studies have suggested a link between peripheral inflammation and cognitive outcomes in the general population and individuals with Parkinson's disease (PD). We sought to test the association between peripheral inflammation, measured by the neutrophil-to-lymphocyte ratio (NLR), cognitive performance, and mild cognitive impairment (MCI) status in individuals with PD. METHODS A retrospective, longitudinal analysis was carried out using data from the Parkinson's Progression Markers Initiative (PPMI), including 422 participants with PD followed over 5 years. Cognitive performance was assessed using a neuropsychological battery including the Montreal Cognitive Assessment (MoCA) and tests of verbal learning, visuospatial function, processing speed, and executive function. Mixed-effect regression models were used to analyze the association between NLR, cognitive performance, and MCI status, controlling for age, sex, education, APOE genotype, and motor severity. RESULTS There was a negative association between NLR and MoCA, even after adjusting for covariates (b = -0.12, p = 0.033). MoCA scores for individuals in the high NLR category exhibited a more rapid decline over time compared to the low NLR group (b = -0.16, p = 0.012). Increased NLR was associated with decreased performance across all cognitive domains. However, NLR was not associated with MCI status over 5 years of follow-up. INTERPRETATION This study demonstrates a link between elevated NLR and cognitive performance in PD, but not with MCI status over 5 years. This suggests that NLR is more strongly associated with day-to-day cognitive performance than with incident MCI, but this requires further study in more heterogeneous cohorts.
Collapse
Affiliation(s)
- Jenniffer Lucero
- Department of NeurologyBoston University Chobanian and Avedisian School of MedicineBostonMassachusetts02118USA
- Department of NeurologyBoston Medical CenterBostonMassachusetts02118USA
| | - Ashita Gurnani
- Department of NeurologyBoston University Chobanian and Avedisian School of MedicineBostonMassachusetts02118USA
| | - Janice Weinberg
- Department of BiostatisticsBoston University School of Public HealthBoston02118MassachusettsUSA
| | - Ludy C Shih
- Department of NeurologyBoston University Chobanian and Avedisian School of MedicineBostonMassachusetts02118USA
- Department of NeurologyBoston Medical CenterBostonMassachusetts02118USA
| |
Collapse
|
3
|
Sun X, Gu R, Bai J. Differentiation and regulation of CD4 + T cell subsets in Parkinson's disease. Cell Mol Life Sci 2024; 81:352. [PMID: 39153043 PMCID: PMC11335276 DOI: 10.1007/s00018-024-05402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and its hallmark pathological features are the loss of dopaminergic (DA) neurons in the midbrain substantia nigra pars compacta (SNpc) and the accumulation of alpha-synuclein (α-syn). It has been shown that the integrity of the blood-brain barrier (BBB) is damaged in PD patients, and a large number of infiltrating T cells and inflammatory cytokines have been detected in the cerebrospinal fluid (CSF) and brain parenchyma of PD patients and PD animal models, including significant change in the number and proportion of different CD4+ T cell subsets. This suggests that the neuroinflammatory response caused by CD4+ T cells is an important risk factor for the development of PD. Here, we systematically review the differentiation of CD4+ T cell subsets, and focus on describing the functions and mechanisms of different CD4+ T cell subsets and their secreted cytokines in PD. We also summarize the current immunotherapy targeting CD4+ T cells with a view to providing assistance in the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650500, China
| | - Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
- Southwest United Graduate School, Kunming, 650500, China.
| |
Collapse
|
4
|
Yang Y, Zhang Z. α-Synuclein pathology from the body to the brain: so many seeds so close to the central soil. Neural Regen Res 2024; 19:1463-1472. [PMID: 38051888 PMCID: PMC10883481 DOI: 10.4103/1673-5374.387967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/24/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT α-Synuclein is a protein that mainly exists in the presynaptic terminals. Abnormal folding and accumulation of α-synuclein are found in several neurodegenerative diseases, including Parkinson's disease. Aggregated and highly phosphorylated α-synuclein constitutes the main component of Lewy bodies in the brain, the pathological hallmark of Parkinson's disease. For decades, much attention has been focused on the accumulation of α-synuclein in the brain parenchyma rather than considering Parkinson's disease as a systemic disease. Recent evidence demonstrates that, at least in some patients, the initial α-synuclein pathology originates in the peripheral organs and spreads to the brain. Injection of α-synuclein preformed fibrils into the gastrointestinal tract triggers the gut-to-brain propagation of α-synuclein pathology. However, whether α-synuclein pathology can occur spontaneously in peripheral organs independent of exogenous α-synuclein preformed fibrils or pathological α-synuclein leakage from the central nervous system remains under investigation. In this review, we aimed to summarize the role of peripheral α-synuclein pathology in the pathogenesis of Parkinson's disease. We also discuss the pathways by which α-synuclein pathology spreads from the body to the brain.
Collapse
Affiliation(s)
- Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
5
|
Zhong X, Qiang Y, Wang L, Zhang Y, Li J, Feng J, Cheng W, Tan L, Yu J. Peripheral immunity and risk of incident brain disorders: a prospective cohort study of 161,968 participants. Transl Psychiatry 2023; 13:382. [PMID: 38071240 PMCID: PMC10710500 DOI: 10.1038/s41398-023-02683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Whether peripheral immunity prospectively influences brain health remains controversial. This study aims to investigate the longitudinal associations between peripheral immunity markers with incident brain disorders. A total of 161,968 eligible participants from the UK Biobank were included. We investigated the linear and non-linear effects of peripheral immunity markers including differential leukocytes counts, their derived ratios and C-reactive protein (CRP) on the risk of dementia, Parkinson's disease (PD), stroke, schizophrenia, bipolar affective disorder (BPAD), major depressive disorder (MDD) and anxiety, using Cox proportional hazard models and restricted cubic spline models. Linear regression models were used to explore potential mechanisms driven by brain structures. During a median follow-up of 9.66 years, 16,241 participants developed brain disorders. Individuals with elevated innate immunity markers including neutrophils, monocytes, platelets, neutrophil-to-lymphocyte ratio (NLR), and systemic immune-inflammation index (SII) had an increased risk of brain disorders. Among these markers, neutrophils exhibited the most significant correlation with risk of dementia (hazard ratio 1.08, 95% confidence interval 1.04-1.12), stroke (HR 1.06, 95% CI 1.03-1.09), MDD (HR 1.13, 95% CI 1.10-1.16) and anxiety (HR 1.07, 95% CI 1.04-1.10). Subgroup analysis revealed age-specific and sex-specific associations between innate immunity markers with risk of dementia and MDD. Neuroimaging analysis highlighted the associations between peripheral immunity markers and alterations in multiple cortical, subcortical regions and white matter tracts, typically implicated in dementia and psychiatric disorders. These findings support the hypothesis that neuroinflammation is important to the etiology of various brain disorders, offering new insights into their potential therapeutic approaches.
Collapse
Affiliation(s)
- Xiaoling Zhong
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Department of Neurology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, China
| | - Yixuan Qiang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological diseases, Shanghai, China
| | - Ling Wang
- Department of Neurology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, China
| | - Yaru Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological diseases, Shanghai, China
| | - Jieqiong Li
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jianfeng Feng
- The Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Wei Cheng
- The Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Jintai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological diseases, Shanghai, China.
| |
Collapse
|
6
|
Wu JJ, Wei Z. Advances in the study of the effects of gut microflora on microglia in Alzheimer's disease. Front Mol Neurosci 2023; 16:1295916. [PMID: 38098943 PMCID: PMC10720669 DOI: 10.3389/fnmol.2023.1295916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023] Open
Abstract
Alzheimer's disease (AD) is a central nervous system (CNS) degenerative disorder, is caused by various factors including β-amyloid toxicity, hyperphosphorylation of tau protein, oxidative stress, and others. The dysfunction of microglia has been associated with the onset and advancement of different neurodevelopmental and neurodegenerative disorders, such as AD. The gut of mammals harbors a vast and complex population of microorganisms, commonly referred to as the microbiota. There's a growing recognition that these gut microbes are intrinsically intertwined with mammalian physiology. Through the circulation of metabolites, they establish metabolic symbiosis, enhance immune function, and establish communication with different remote cells, including those in the brain. The gut microbiome plays a crucial part in influencing the development and performance of microglia, as indicated by recent preclinical studies. Dysbiosis of the intestinal flora leads to alterations in the microglia transcriptome that regulate the interconversion of microglia subtypes. This conversation explores recent research that clarifies how gut bacteria, their byproducts, and harmful elements affect the activation and characteristics of microglia. This understanding opens doors to innovative microbial-based therapeutic strategies for early identification and treatment goals in AD.
Collapse
Affiliation(s)
- Jin-Jing Wu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhe Wei
- School of Medicine, Lishui University, Lishui, Zhejiang, China
- Institute of Breast Oncology, Lishui University Medical College, Lishui, Zhejiang, China
| |
Collapse
|
7
|
Grembecka B, Majkutewicz I, Harackiewicz O, Wrona D. Deep-Brain Subthalamic Nucleus Stimulation Enhances Food-Related Motivation by Influencing Neuroinflammation and Anxiety Levels in a Rat Model of Early-Stage Parkinson's Disease. Int J Mol Sci 2023; 24:16916. [PMID: 38069238 PMCID: PMC10706602 DOI: 10.3390/ijms242316916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Deep-brain subthalamic nucleus stimulation (DBS-STN) has become a well-established therapeutic option for advanced Parkinson's disease (PD). While the motor benefits of DBS-STN are widely acknowledged, the neuropsychiatric effects are still being investigated. Beyond its immediate effects on neuronal circuits, emerging research suggests that DBS-STN might also modulate the peripheral inflammation and neuroinflammation. In this work, we assessed the effects of DBS-STN on food-related motivation, food intake pattern, and the level of anxiety and compared them with markers of cellular and immune activation in nigrostriatal and mesolimbic areas in rats with the 6-OHDA model of early PD. To evaluate the potential mechanism of observed effects, we also measured corticosterone concentration in plasma and leukocyte distribution in peripheral blood. We found that DBS-STN applied during neurodegeneration has beneficial effects on food intake pattern and motivation and reduces anxiety. These behavioral effects occur with reduced percentages of IL-6-labeled cells in the ventral tegmental area and substantia nigra pars compacta in the stimulated brain hemisphere. At the same brain structures, the cFos cell activations were confirmed. Simultaneously, the corticosterone plasma concentration was elevated, and the peripheral blood lymphocytes were reduced after DBS-STN. We believe that comprehending the relationship between the effects of DBS-STN on inflammation and its therapeutic results is essential for optimizing DBS therapy in PD.
Collapse
Affiliation(s)
- Beata Grembecka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (I.M.); (O.H.); (D.W.)
| | | | | | | |
Collapse
|
8
|
Hepp DH, van Wageningen TA, Kuiper KL, van Dijk KD, Oosterveld LP, Berendse HW, van de Berg WDJ. Inflammatory Blood Biomarkers Are Associated with Long-Term Clinical Disease Severity in Parkinson's Disease. Int J Mol Sci 2023; 24:14915. [PMID: 37834363 PMCID: PMC10573398 DOI: 10.3390/ijms241914915] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
An altered immune response has been identified as a pathophysiological factor in Parkinson's disease (PD). We aimed to identify blood immunity-associated proteins that discriminate PD from controls and that are associated with long-term disease severity in PD patients. Immune response-derived proteins in blood plasma were measured using Proximity Extension Technology by OLINK in a cohort of PD patients (N = 66) and age-matched healthy controls (N = 52). In a selection of 30 PD patients, we evaluated changes in protein levels 7-10 years after the baseline and assessed correlations with motor and cognitive assessments. Data from the Parkinson's Disease Biomarkers Program (PDBP) cohort and the Parkinson's Progression Markers Initiative (PPMI) cohort were used for independent validation. PD patients showed an altered immune response compared to controls based on a panel of four proteins (IL-12B, OPG, CXCL11, and CSF-1). The expression levels of five inflammation-associated proteins (CCL23, CCL25, TNFRSF9, TGF-alpha, and VEGFA) increased over time in PD and were partially associated with more severe motor and cognitive symptoms at follow-up. Increased CCL23 levels were associated with cognitive decline and the APOE4 genotype. Our findings provide further evidence for an altered immune response in PD that is associated with disease severity in PD over a long period of time.
Collapse
Affiliation(s)
- Dagmar H. Hepp
- Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (D.H.H.)
- Department of Neurology, Amsterdam UMC Location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands;
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Thecla A. van Wageningen
- Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (D.H.H.)
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Kirsten L. Kuiper
- Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (D.H.H.)
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Karin D. van Dijk
- Sleep Wake Centre, Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, The Netherlands
| | - Linda P. Oosterveld
- Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (D.H.H.)
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Henk W. Berendse
- Department of Neurology, Amsterdam UMC Location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands;
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Wilma D. J. van de Berg
- Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (D.H.H.)
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
9
|
Schließer P, Struebing FL, Northoff BH, Kurz A, Rémi J, Holdt L, Höglinger GU, Herms J, Koeglsperger T. Detection of a Parkinson's Disease-Specific MicroRNA Signature in Nasal and Oral Swabs. Mov Disord 2023; 38:1706-1715. [PMID: 37382573 DOI: 10.1002/mds.29515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Biomaterials from oral and nasal swabs provide, in theory, a potential resource for biomarker development. However, their diagnostic value has not yet been investigated in the context of Parkinson's disease (PD) and associated conditions. OBJECTIVE We have previously identified a PD-specific microRNA (miRNA) signature in gut biopsies. In this work, we aimed to investigate the expression of miRNAs in routine buccal (oral) and nasal swabs obtained from cases with idiopathic PD and isolated rapid eye movement sleep behavior disorder (iRBD), a prodromal symptom that often precedes α-synucleinopathies. We aimed to address their value as a diagnostic biomarker for PD and their mechanistic contribution to PD onset and progression. METHODS Healthy control cases (n = 28), cases with PD (n = 29), and cases with iRBD (n = 8) were prospectively recruited to undergo routine buccal and nasal swabs. Total RNA was extracted from the swab material, and the expression of a predefined set of miRNAs was quantified by quantitative real-time polymerase chain reaction. RESULTS Statistical analysis revealed a significantly increased expression of hsa-miR-1260a in cases who had PD. Interestingly, hsa-miR-1260a expression levels correlated with diseases severity, as well as olfactory function, in the PD and iRBD cohorts. Mechanistically, hsa-miR-1260a segregated to Golgi-associated cellular processes with a potential role in mucosal plasma cells. Predicted hsa-miR-1260a target gene expression was reduced in iRBD and PD groups. CONCLUSIONS Our work demonstrates oral and nasal swabs as a valuable biomarker pool in PD and associated neurodegenerative conditions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Patricia Schließer
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Felix L Struebing
- Department of Translational Brain Research, German Centre for Neurodegenerative Diseases, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig Maximilian University, Munich, Germany
| | - Bernd H Northoff
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Anna Kurz
- Department of Gynaecology and Obstetrics, Klinikum Landsberg am Lech, Landsberg, Germany
| | - Jan Rémi
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lesca Holdt
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Günter U Höglinger
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases e.V. (DZNE) Munich, Munich, Germany
| | - Jochen Herms
- Department of Translational Brain Research, German Centre for Neurodegenerative Diseases, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig Maximilian University, Munich, Germany
| | - Thomas Koeglsperger
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Translational Brain Research, German Centre for Neurodegenerative Diseases, Munich, Germany
| |
Collapse
|
10
|
Nascimento GC, Santos BM, Pedrazzi JF, Silva-Amaral D, Bortolanza M, Harris GT, Del Bel E, Branco LG. Effects of hydrogen gas inhalation on L-DOPA-induced dyskinesia. Brain Behav Immun Health 2023; 30:100623. [PMID: 37096172 PMCID: PMC10121822 DOI: 10.1016/j.bbih.2023.100623] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/07/2023] [Accepted: 04/07/2023] [Indexed: 04/26/2023] Open
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia is a side effect of Parkinson's disease treatment and it is characterized by atypical involuntary movements. A link between neuroinflammation and L-DOPA-induced dyskinesia has been documented. Hydrogen gas (H2) has neuroprotective effects in Parkinson's disease models and has a major anti-inflammatory effect. Our objective is to test the hypothesis that H2 inhalation reduces L-DOPA-induced dyskinesia. 15 days after 6-hydroxydopamine lesions of dopaminergic neurons were made (microinjection into the medial forebrain bundle), chronic L-DOPA treatment (15 days) was performed. Rats were exposed to H2 (2% gas mixture, 1 h) or air (controls) before L-DOPA injection. Abnormal involuntary movements and locomotor activity were conducted. Striatal microglia and astrocyte was analyzed and striatal and plasma samples for cytokines evaluation were collected after the abnormal involuntary movements analysis. H2 inhalation attenuated L-DOPA-induced dyskinesia. The gas therapy did not impair the improvement of locomotor activity achieved by L-DOPA treatment. H2 inhalation reduced activated microglia in the lesioned striatum, which is consistent with the observed reduced pro-inflammatory cytokines levels. Display of abnormal involuntary movements was positively correlated with plasma IL-1β and striatal TNF-α levels and negatively correlated with striatal IL-10 levels. Prophylactic H2 inhalation decreases abnormal involuntary movements in a preclinical L-DOPA-induced dyskinesia model. The H2 antidyskinetic effect was associated with decreased striatal and peripheral inflammation. This finding has a translational importance to L-DOPA-treated parkinsonian patients' well-being.
Collapse
Affiliation(s)
- Glauce C. Nascimento
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Basic and Oral Biology, Ribeirão Preto Dentistry Faculty, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Bruna M. Santos
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Josephs' Hospital and Medical Center, Phoenix, AZ, USA
| | - João F. Pedrazzi
- Neuroscience Graduate Program, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Danyelle Silva-Amaral
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mariza Bortolanza
- Department of Basic and Oral Biology, Ribeirão Preto Dentistry Faculty, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Grant T. Harris
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Josephs' Hospital and Medical Center, Phoenix, AZ, USA
| | - Elaine Del Bel
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Basic and Oral Biology, Ribeirão Preto Dentistry Faculty, University of São Paulo, Ribeirão Preto, SP, Brazil
- Neuroscience Graduate Program, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz G.S. Branco
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Basic and Oral Biology, Ribeirão Preto Dentistry Faculty, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
11
|
Guo TT, Zhang Z, Sun Y, Zhu RY, Wang FX, Ma LJ, Jiang L, Liu HD. Neuroprotective Effects of Sodium Butyrate by Restoring Gut Microbiota and Inhibiting TLR4 Signaling in Mice with MPTP-Induced Parkinson's Disease. Nutrients 2023; 15:nu15040930. [PMID: 36839287 PMCID: PMC9960062 DOI: 10.3390/nu15040930] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Parkinson's disease (PD) is a prevalent type of neurodegenerative disease. There is mounting evidence that the gut microbiota is involved in the pathogenesis of PD. Sodium butyrate (NaB) can regulate gut microbiota and improve brain functioning in neurological disorders. Hence, we examined whether the neuroprotective function of NaB on PD was mediated by the modulation of gut microbial dysbiosis and revealed its possible mechanisms. Mice were administered 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 7 consecutive days to construct the PD model. NaB gavage was given 2 h after the daily MPTP injections for 21 days. NaB improved the motor functioning of PD mice, increased striatal neurotransmitter levels, and reduced the death of dopaminergic neurons. The 16S rRNA sequencing analysis revealed that NaB restored the gut microbial dysbiosis. NaB also attenuated the intestinal barrier's disruption and reduced serum, colon, and striatal pro-inflammatory cytokines, along with inhibiting the overactivation of glial cells, suggesting an inhibitory effect on inflammation from NaB throughout the gut-brain axis of the PD mice. Mechanistic studies revealed that NaB treatment suppressed the TLR4/MyD88/NF-kB pathway in the colon and striatum. In summary, NaB had a neuroprotective impact on the PD mice, likely linked to its regulation of gut microbiota to inhibit gut-brain axis inflammation.
Collapse
Affiliation(s)
- Tong-Tong Guo
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zheng Zhang
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yan Sun
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Rui-Yang Zhu
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Fei-Xia Wang
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Lian-Ju Ma
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
| | - Lin Jiang
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
| | - Han-Deng Liu
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
- Correspondence: ; Tel.: +86-23-65712090
| |
Collapse
|
12
|
Outeiro TF, El-Agnaf OM. The immune system in Parkinson's disease: From biology to diagnosis and therapeutic targets. Neurobiol Dis 2023; 177:105995. [PMID: 36627029 DOI: 10.1016/j.nbd.2023.105995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Gottingen, Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK; Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.
| | - Omar M El-Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; Biological and Biomedical Sciences Division, College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
13
|
Bartl M, Dakna M, Schade S, Otte B, Wicke T, Lang E, Starke M, Ebentheuer J, Weber S, Toischer K, Schnelle M, Sixel-Döring F, Trenkwalder C, Mollenhauer B. Blood Markers of Inflammation, Neurodegeneration, and Cardiovascular Risk in Early Parkinson's Disease. Mov Disord 2023; 38:68-81. [PMID: 36267007 DOI: 10.1002/mds.29257] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Recent studies point toward a significant impact of cardiovascular processes and inflammation on Parkinson's disease (PD) progression. OBJECTIVE The aim of this study was to assess established markers of neuronal function, inflammation, and cardiovascular risk by high-throughput sandwich immune multiplex panels in deeply phenotyped PD. METHODS Proximity Extension Assay technology on 273 markers was applied in plasma of 109 drug-naive at baseline (BL) patients with PD (BL, 2-, 4-, and 6-year follow-up [FU]) and 96 healthy control patients (HCs; 2- and 4-year FU) from the de novo Parkinson's cohort. BL plasma from 74 individuals (37 patients with PD, 37 healthy control patients) on the same platform from the Parkinson Progression Marker Initiative was used for independent validation. Correlation analysis of the identified markers and 6 years of clinical FU, including motor and cognitive progression, was evaluated. RESULTS At BL, 35 plasma markers were differentially expressed in PD, showing downregulation of atherosclerotic risk markers, eg, E-selectin and ß2 -integrin. In contrast, we found a reduction of markers of the plasminogen activation system, eg, urokinase plasminogen activator. Neurospecific markers indicated increased levels of peripheral proteins of neurodegeneration and inflammation, such as fibroblast growth factor 21 and peptidase inhibitor 3. Several markers, including interleukin-6 and cystatin B, correlated with cognitive decline and progression of motor symptoms during FU. These findings were independently validated in the Parkinson Progression Marker Initiative. CONCLUSIONS We identified and validated possible PD plasma biomarker candidates for state, fate, and disease progression, elucidating new molecular processes with reduced endothelial/atherosclerotic processes, increased thromboembolic risk, and neuroinflammation. Further investigations and validation in independent and larger longitudinal cohorts are needed. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Michael Bartl
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Mohammed Dakna
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Sebastian Schade
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany.,Paracelsus-Elena-Klinik, Kassel, Germany
| | - Birgit Otte
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | | | | | | | | | - Sandrina Weber
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany.,Paracelsus-Elena-Klinik, Kassel, Germany
| | - Karl Toischer
- Department of Cardiology, University Medical Center Goettingen, Goettingen, Germany
| | - Moritz Schnelle
- Department of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Friederike Sixel-Döring
- Paracelsus-Elena-Klinik, Kassel, Germany.,Department of Neurology, Philipps-University, Marburg, Germany
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Kassel, Germany.,Department of Neurosurgery, University Medical Center Goettingen, Goettingen, Germany
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany.,Paracelsus-Elena-Klinik, Kassel, Germany
| |
Collapse
|
14
|
Stem Cell Therapy for Sequestration of Traumatic Brain Injury-Induced Inflammation. Int J Mol Sci 2022; 23:ijms231810286. [PMID: 36142198 PMCID: PMC9499317 DOI: 10.3390/ijms231810286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of long-term neurological disabilities in the world. TBI is a signature disease for soldiers and veterans, but also affects civilians, including adults and children. Following TBI, the brain resident and immune cells turn into a “reactive” state, characterized by the production of inflammatory mediators that contribute to the development of cognitive deficits. Other injuries to the brain, including radiation exposure, may trigger TBI-like pathology, characterized by inflammation. Currently there are no treatments to prevent or reverse the deleterious consequences of brain trauma. The recognition that TBI predisposes stem cell alterations suggests that stem cell-based therapies stand as a potential treatment for TBI. Here, we discuss the inflamed brain after TBI and radiation injury. We further review the status of stem cells in the inflamed brain and the applications of cell therapy in sequestering inflammation in TBI.
Collapse
|
15
|
Zheng H, Qian X, Tian W, Cao L. Exploration of the Common Gene Characteristics and Molecular Mechanism of Parkinson's Disease and Crohn's Disease from Transcriptome Data. Brain Sci 2022; 12:brainsci12060774. [PMID: 35741659 PMCID: PMC9221146 DOI: 10.3390/brainsci12060774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, and the mechanism of its occurrence is still not fully elucidated. Accumulating evidence has suggested that the gut acts as a potential origin of PD pathogenesis. Recent studies have identified that inflammatory bowel disease acts as a risk factor for Parkinson's disease, although the underlying mechanisms remain elusive. The aim of this study was to further explore the molecular mechanism between PD and Crohn's disease (CD). The gene expression profiles of PD (GSE6613) and CD (GSE119600) were downloaded from the Gene Expression Omnibus (GEO) database and were identified as the common differentially expressed genes (DEGs) between the two diseases. Next, analyses were performed, including functional enrichment analysis, a protein-protein interaction network, core genes identification, and clinical correlation analysis. As a result, 178 common DEGs (113 upregulated genes and 65 downregulated genes) were found between PD and CD. The functional analysis found that they were enriched in regulated exocytosis, immune response, and lipid binding. Twelve essential hub genes including BUB1B, BUB3, DLGAP5, AURKC, CBL, PCNA, RAF1, LYN, RPL39L, MRPL13, RSL24D1, and MRPS11 were identified from the PPI network by using cytoHubba. In addition, inflammatory and metabolic pathways were jointly involved in these two diseases. After verifying expression levels in an independent dataset (GSE99039), a correlation analysis with clinical features showed that LYN and RAF1 genes were associated with the severity of PD. In conclusion, our study revealed the common pathogenesis of PD and CD. These common pathways and hub genes may provide novel insights for mechanism research.
Collapse
Affiliation(s)
- Haoran Zheng
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China;
- Department of Neurology Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China;
| | - Xiaohang Qian
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Wotu Tian
- Department of Neurology Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China;
| | - Li Cao
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China;
- Department of Neurology Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China;
- Correspondence:
| |
Collapse
|