1
|
Yin W, Ma H, Qu Y, Ren J, Sun Y, Guo ZN, Yang Y. Exosomes: the next-generation therapeutic platform for ischemic stroke. Neural Regen Res 2025; 20:1221-1235. [PMID: 39075892 PMCID: PMC11624871 DOI: 10.4103/nrr.nrr-d-23-02051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 07/31/2024] Open
Abstract
Current therapeutic strategies for ischemic stroke fall short of the desired objective of neurological functional recovery. Therefore, there is an urgent need to develop new methods for the treatment of this condition. Exosomes are natural cell-derived vesicles that mediate signal transduction between cells under physiological and pathological conditions. They have low immunogenicity, good stability, high delivery efficiency, and the ability to cross the blood-brain barrier. These physiological properties of exosomes have the potential to lead to new breakthroughs in the treatment of ischemic stroke. The rapid development of nanotechnology has advanced the application of engineered exosomes, which can effectively improve targeting ability, enhance therapeutic efficacy, and minimize the dosages needed. Advances in technology have also driven clinical translational research on exosomes. In this review, we describe the therapeutic effects of exosomes and their positive roles in current treatment strategies for ischemic stroke, including their anti-inflammation, anti-apoptosis, autophagy-regulation, angiogenesis, neurogenesis, and glial scar formation reduction effects. However, it is worth noting that, despite their significant therapeutic potential, there remains a dearth of standardized characterization methods and efficient isolation techniques capable of producing highly purified exosomes. Future optimization strategies should prioritize the exploration of suitable isolation techniques and the establishment of unified workflows to effectively harness exosomes for diagnostic or therapeutic applications in ischemic stroke. Ultimately, our review aims to summarize our understanding of exosome-based treatment prospects in ischemic stroke and foster innovative ideas for the development of exosome-based therapies.
Collapse
Affiliation(s)
- Wenjing Yin
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hongyin Ma
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Qu
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jiaxin Ren
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yingying Sun
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Yang
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
2
|
Tang W, Cheng R, Gao MY, Hu MJ, Zhang L, Wang Q, Li XY, Yan W, Wang XY, Yang HM, Cheng J, Hua ZC. A novel annexin dimer targets microglial phagocytosis of astrocytes to protect the brain-blood barrier after cerebral ischemia. Acta Pharmacol Sin 2024:10.1038/s41401-024-01432-3. [PMID: 39663418 DOI: 10.1038/s41401-024-01432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024] Open
Abstract
Despite the vital role of astrocytes in preserving blood-brain barrier (BBB) integrity, their therapeutic potential as targets in ischemic stroke-induced barrier disruption remains underexplored. We previously reported externalization of phosphatidylserine (PS) on astrocytic membranes concurrent with the emergence of PS externalization in neurons. PS externalization of astrocytes induced microglial phagocytosis of astrocytes, resulting in reduced astrocyte-vascular coupling and subsequent BBB breakdown. Annexin A5 (ANXA5) belongs to the superfamily of calcium (Ca2+)- and phospholipid-binding proteins. Here, we report two X-ray structures of human ANXA5, including monomeric ANXA5 (1.42 Å) and dimeric ANXA5 (1.80 Å). Through the combination of molecular docking and functional analysis, we explored the mechanism of action of ANXA5 in stroke treatment. In addition, we observed a clear increase in therapeutic efficacy corresponding to the increased affinity of ANXA5 for PS. In summary, the phagocytosis of PS-externalized astrocytes by microglia has emerged as a critical mechanism driving BBB breakdown after ischemia. Our findings offer valuable structural insight into ANXA5 as an innovative pharmacological target for safeguarding blood-brain barrier integrity after cerebral ischemia. These insights may facilitate the development of novel PS-targeting medications aimed at achieving enhanced efficacy with minimal side effects.
Collapse
Affiliation(s)
- Wei Tang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Rong Cheng
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Meng-Yue Gao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Min-Jin Hu
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China
| | - Lu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Qiang Wang
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China
| | - Xin-Yu Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Wei Yan
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China
| | - Xiao-Ying Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hai-Mei Yang
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China
| | - Jian Cheng
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China.
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China.
- Faculty of Pharmaceutical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
3
|
Yang J, Cao C, Liu J, Liu Y, Lu J, Yu H, Li X, Wu J, Yu Z, Li H, Chen G. Dystrophin 71 deficiency causes impaired aquaporin-4 polarization contributing to glymphatic dysfunction and brain edema in cerebral ischemia. Neurobiol Dis 2024; 199:106586. [PMID: 38950712 DOI: 10.1016/j.nbd.2024.106586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024] Open
Abstract
OBJECTIVE The glymphatic system serves as a perivascular pathway that aids in clearing liquid and solute waste from the brain, thereby enhancing neurological function. Disorders in glymphatic drainage contribute to the development of vasogenic edema following cerebral ischemia, although the molecular mechanisms involved remain poorly understood. This study aims to determine whether a deficiency in dystrophin 71 (DP71) leads to aquaporin-4 (AQP4) depolarization, contributing to glymphatic dysfunction in cerebral ischemia and resulting in brain edema. METHODS A mice model of middle cerebral artery occlusion and reperfusion was used. A fluorescence tracer was injected into the cortex and evaluated glymphatic clearance. To investigate the role of DP71 in maintaining AQP4 polarization, an adeno-associated virus with the astrocyte promoter was used to overexpress Dp71. The expression and distribution of DP71 and AQP4 were analyzed using immunoblotting, immunofluorescence, and co-immunoprecipitation techniques. The behavior ability of mice was evaluated by open field test. Open-access transcriptome sequencing data were used to analyze the functional changes of astrocytes after cerebral ischemia. MG132 was used to inhibit the ubiquitin-proteasome system. The ubiquitination of DP71 was detected by immunoblotting and co-immunoprecipitation. RESULTS During the vasogenic edema stage following cerebral ischemia, a decline in the efflux of interstitial fluid tracer was observed. DP71 and AQP4 were co-localized and interacted with each other in the perivascular astrocyte endfeet. After cerebral ischemia, there was a notable reduction in DP71 protein expression, accompanied by AQP4 depolarization and proliferation of reactive astrocytes. Increased DP71 expression restored glymphatic drainage and reduced brain edema. AQP4 depolarization, reactive astrocyte proliferation, and the behavior of mice were improved. After cerebral ischemia, DP71 was degraded by ubiquitination, and MG132 inhibited the decrease of DP71 protein level. CONCLUSION AQP4 depolarization after cerebral ischemia leads to glymphatic clearance disorder and aggravates cerebral edema. DP71 plays a pivotal role in regulating AQP4 polarization and consequently influences glymphatic function. Changes in DP71 expression are associated with the ubiquitin-proteasome system. This study offers a novel perspective on the pathogenesis of brain edema following cerebral ischemia.
Collapse
Affiliation(s)
- Jian Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Chang Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiale Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Yangyang Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Jinxin Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - HaoYun Yu
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China.
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China.
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
4
|
Wang Z, Xue F, Zhang J, Wang Y, Hu E, Zheng Y, Luo X, Li H, Qiao B. The cornel Iridoid glycoside attenuated brain edema of the cerebral ischemia/reperfusion rats by modulating the polarized aquaporin 4. Fitoterapia 2024; 177:106098. [PMID: 38950636 DOI: 10.1016/j.fitote.2024.106098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
Brain edema after ischemic stroke could worsen cerebral injury in patients who received intravenous thrombolysis. Cornus officinalis Sieb. et Zucc., a long-established traditional Chinese medicine, is beneficial to the treatment of neurodegenerative diseases including ischemic stroke. In particular, its major component, cornel iridoid glycoside (CIG), was evidenced to exhibit neuroprotective effects against cerebral ischemic/reperfusion injury (CIR/I). Aimed to explore the effects of the CIG on brain edema of the CIR/I rats, the CIG was analyzed with the main constituents by using HPLC. The molecular docking analysis was performed between the CIG constituents and AQP4-M23. TGN-020, an AQP4 inhibitor, was used as a comparison. In the in vivo experiments, the rats were pre-treated with the CIG and were injured by performing middle cerebral artery occlusion/reperfusion (MCAO/R). After 24 h, the rats were examined for neurological function, pathological changes, brain edema, and polarized Aqp4 expressions in the brain. The HPLC analysis indicated that the CIG was composed of morroniside and loganin. The molecular docking analysis showed that both morroniside and loganin displayed lower binding energies to AQP4-M23 than TGN-020. The CIG pre-treated rats exhibited fewer neurological function deficits, minimized brain swelling, and reduced lesion volumes compared to the MCAO/R rats. In the peri-infarct and infarct regions, the CIG pre-treatment restored the polarized Aqp4 expression which was lost in the MCAO/R rats. The results suggested that the CIG could attenuate brain edema of the cerebral ischemia/reperfusion rats by modulating the polarized Aqp4 through the interaction of AQP4-M23 with morroniside and loganin.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China; Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Fangli Xue
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China; Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Jianmei Zhang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China; Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Yourui Wang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China; Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Enjie Hu
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China; Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Yelin Zheng
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China; Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Xiaoting Luo
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China; Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London WC1E 6BT, United Kingdom
| | - Boling Qiao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China; Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province 710069, PR China.
| |
Collapse
|
5
|
Wu S, Ren XS, Shi Y. Early and enduring: Targeting the endothelium for blood-brain barrier protection. J Cereb Blood Flow Metab 2024; 44:1674-1676. [PMID: 38907363 PMCID: PMC11418723 DOI: 10.1177/0271678x241264086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/08/2024] [Indexed: 06/23/2024]
Abstract
The disruption of the blood-brain barrier marks a pivotal early pathological event in ischemic stroke that significantly contributes to subsequent permanent damage. Here we delve into the ramifications of a study conducted by Xu and colleagues, which underscores the essential role of the protein peroxiredoxin-4 in cerebrovascular endothelial cells. Peroxiredoxin-4 was shown to preserve blood-brain barrier integrity during the early stages after cerebral ischemia and reperfusion, ultimately leading to improved long-term outcomes.
Collapse
Affiliation(s)
- Silin Wu
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Xuefang Sophie Ren
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Yejie Shi
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Martínez-Torres AM, Morán J. Aquaporin 4 and the endocannabinoid system: a potential therapeutic target in brain injury. Exp Brain Res 2024; 242:2041-2058. [PMID: 39043897 PMCID: PMC11306651 DOI: 10.1007/s00221-024-06896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
Brain edema is a critical complication arising from stroke and traumatic brain injury (TBI) with an important impact on patient recovery and can lead to long-term consequences. Therapeutic options to reduce edema progression are limited with variable patient outcomes. Aquaporin 4 (AQP4) is a water channel that allows bidirectional water diffusion across the astrocyte membrane and participates in the distinct phases of cerebral edema. The absence or inhibition of this channel has been demonstrated to ameliorate edema and brain damage. The endocannabinoid system (ECS) is a neuromodulator system with a wide expression in the brain and its activation has shown neuroprotective properties in diverse models of neuronal damage. This review describes and discusses the major features of ECS and AQP4 and their role during brain damage, observing that ECS stimulation reduces edema and injury size in diverse models of brain damage, however, the relationship between AQP4 expression and dynamics and ECS activation remains unclear. The research on these topics holds promising therapeutic implications for the treatment of brain edema following stroke and TBI.
Collapse
Affiliation(s)
- Ari Misael Martínez-Torres
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Apartado Postal 70-253, 04510, Ciudad de Mexico, México
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Apartado Postal 70-253, 04510, Ciudad de Mexico, México.
| |
Collapse
|
7
|
Agarwal N, Fan A, Huang X, Dehkharghani S, van der Kolk A. ISMRM Clinical Focus Meeting 2023: "Imaging the Fire in the Brain". J Magn Reson Imaging 2024. [PMID: 39193867 DOI: 10.1002/jmri.29587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024] Open
Abstract
Set during the Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM), the "Clinical Focus Meeting" (CFM) aims to bridge the gap between innovative magnetic resonance imaging (MRI) scientific research and daily patient care. This initiative is dedicated to maximizing the impact of MRI technology on healthcare outcomes for patients. At the 2023 Annual Meeting, clinicians and scientists from across the globe were invited to discuss neuroinflammation from various angles (entitled "Imaging the Fire in the Brain"). Topics ranged from fundamental mechanisms and biomarkers of neuroinflammation to the role of different contrast mechanisms, including both proton and non-proton techniques, in brain tumors, autoimmune disorders, and pediatric neuroinflammatory diseases. Discussions also delved into how systemic inflammation can trigger neuroinflammation and the role of the gut-brain axis in causing brain inflammation. Neuroinflammation arises from various external and internal factors and serves as a vital mechanism to mitigate tissue damage and provide neuroprotection. Nonetheless, excessive neuroinflammatory responses can lead to significant tissue injury and subsequent neurological impairments. Prolonged neuroinflammation can result in cellular apoptosis and neurodegeneration, posing severe consequences. MRI can be used to visualize these consequences, by detecting blood-brain barrier damage, characterizing brain lesions, quantifying edema, and identifying specific metabolites. It also facilitates monitoring of chronic changes in both the brain and spinal cord over time, potentially leading to better patient outcomes. This paper represents a summary of the 2023 CFM, and is intended to guide the enthusiastic MR user to several key and novel sequences that MRI offers to image pathophysiologic processes underlying acute and chronic neuroinflammation. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Nivedita Agarwal
- Diagnostic Imaging and Neuroradiology Unit, IRCCS Scientific Institute E. Medea, Bosisio Parini, Lecco, Italy
| | - Audrey Fan
- Department of Neurology, University of California Davis Health, Sacramento, California, USA
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Seena Dehkharghani
- Department of Radiology, Albert Einstein College of Medicine-Montefiore Health, New York, New York, USA
| | - Anja van der Kolk
- Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Liu T, Zhang M, Zhang J, Kang N, Zheng L, Ding Z. Targeted Delivery of Macrophage Membrane Biomimetic Liposomes Through Intranasal Administration for Treatment of Ischemic Stroke. Int J Nanomedicine 2024; 19:6177-6199. [PMID: 38911498 PMCID: PMC11194020 DOI: 10.2147/ijn.s458656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
Purpose Ginsenoside Rg3 (Rg3) and Panax notoginseng saponins (PNS) can be used for ischemic stroke treatment, however, the lack of targeting to the ischemic region limits the therapeutic effect. To address this, we leveraged the affinity of macrophage membrane proteins for inflamed brain microvascular endothelial cells to develop a macrophage membrane-cloaked liposome loaded with Rg3 and PNS (MM-Lip-Rg3/PNS), which can precisely target brain lesion region through intranasal administration. Methods MM-Lip-Rg3/PNS was prepared by co-extrusion method and was performed by characterization, stability, surface protein, and morphology. The cellular uptake, immune escape ability, and blood-brain barrier crossing ability of MM-Lip-Rg3/PNS were studied in vitro. The in vivo brain targeting, biodistribution and anti-ischemic efficacy of MM-Lip-Rg3/PNS were evaluated in MACO rats, and we determined the diversity of the nasal brain pathway through the olfactory nerve blockade model in rats. Finally, the pharmacokinetics and brain targeting index of MM-Lip-Rg3/PNS were investigated. Results Our results indicated that MM-Lip-Rg3/PNS was spherical with a shell-core structure. MM-Lip-Rg3/PNS can avoid mononuclear phagocytosis, actively bind to inflammatory endothelial cells, and have the ability to cross the blood-brain barrier. Moreover, MM-Lip-Rg3/PNS could specifically target ischemic sites, even microglia, increase the cumulative number of drugs in the brain, improve the inflammatory environment of the brain, and reduce the infarct size. By comparing olfactory nerve-blocking rats with normal rats, it was found that there are direct and indirect pathways for nasal entry into the brain. Pharmacokinetics demonstrated that MM-Lip-Rg3/PNS exhibited stronger brain targeting and prolonged drug half-life. Conclusion MM-Lip-Rg3/PNS might contribute to the accumulation of Rg3 and PNS in the ischemic brain area to improve treatment efficacy. This biomimetic nano-drug delivery system provides a new and promising strategy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Tianshu Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Mengfan Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Naijin Kang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Linlin Zheng
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Zhiying Ding
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
9
|
Seyedaghamiri F, Geranmayeh MH, Ghadiri T, Ebrahimi-Kalan A, Hosseini L. A new insight into the role of pericytes in ischemic stroke. Acta Neurol Belg 2024; 124:767-774. [PMID: 37805645 DOI: 10.1007/s13760-023-02391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023]
Abstract
The functional structure of the blood-brain barrier (BBB) deteriorates after stroke by developing diffuse microvascular and neurovascular dysfunction and loss of white matter integrity. This causes nervous tissue injury and causes sensory and motor disabilities in stroke patients. Improving the integrity of the BBB and neurovascular remodeling after stroke can promote post-stroke injury conditions. Pericytes are contractile cells abundant in the BBB and sandwiched between astrocytes and endothelial cells of the microvessels. Stroke could lead to the degeneration of pericytes in the BBB. However, recent evidence shows that promoting pericytes enhances BBB integrity and neurovascular remodeling. Furthermore, pericytes achieve multipotent properties under hypoxic conditions, allowing them to transdifferentiate into the brain resident cells such as microglia. Microglia regulate immunity and inflammatory response after stroke. The current review studies recent findings in the intervening mechanisms underlying the regulatory effect of pericytes in BBB recovery after stroke.
Collapse
Affiliation(s)
- Fatemehsadat Seyedaghamiri
- Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Tahereh Ghadiri
- Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Wu X, Jiang Z, Xu D, Zhang R, Li H. Pre-thrombolysis serum sodium concentration is associated with post-thrombolysis symptomatic intracranial hemorrhage in ischemic stroke patients. Front Neurol 2024; 15:1341522. [PMID: 38882691 PMCID: PMC11178046 DOI: 10.3389/fneur.2024.1341522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Background and aim Symptomatic intracranial hemorrhage (sICH) was the most serious complication associated with alteplase intravenous thrombolysis (IVT) in acute ischemic stroke (AIS) patients. However, the relationship between serum sodium levels and post-thrombolysis symptomatic intracranial hemorrhage has not been investigated. Therefore, the aim of this study was to investigate the relationship between pre-thrombolysis serum sodium levels and sICH after IVT, as well as to explore the optimal pre-thrombolysis serum sodium levels for lowering the risk of sICH following IVT. Methods From July 1, 2017 to April 30, 2023, out-of-hospital AIS patients who received IVT in the emergency department were enrolled in this study. Serum sodium levels were measured at admission prior to IVT, and National Institutes of Health Stroke Scale scores were continuously assessed during and after thrombolysis. Routine follow-up neuroimaging was performed between 22 to 36 h after IVT. Initially, three logistic regression models and restricted cubic splines (RCS) were established to investigate the relationship between serum sodium levels and post-thrombolysis sICH. Furthermore, to evaluate the predictive value of serum sodium for post-thrombolysis sICH, we compared area under the receiver operating characteristic curve (AUROC) and net reclassification improvement (NRI) before and after incorporating serum sodium into traditional models. Finally, subgroup analysis was conducted to explore interactions between serum sodium levels and other variables. Results A total of 784 AIS patients who underwent IVT were enrolled, among whom 47 (6.0%) experienced sICH. The median serum sodium concentration for all patients was 139.10 [interquartile ranges (IQR): 137.40-141.00] mmol/L. Patients who developed sICH had lower serum sodium levels than those without sICH [138.20(IQR:136.00-140.20) vs. 139.20(IQR:137.40-141.00), p = 0.031]. Logistic regression analysis (model 3) revealed a 14% reduction in the risk of post-thrombolysis sICH for every 1 mmol/L increase in serum sodium levels after adjusting for confounding variables (p < 0.001). The risk of post-thrombolysis sICH was minimized within the serum sodium range of 139.1-140.9 mmol/L compared to serum sodium concentration below 137.0 mmol/L [odds ratio (OR) = 0.33, 95% confidence interval (CI): 0.13-0.81] in model3. Furthermore, there was a significant trend of decreasing risk for sICH as serum sodium concentrations increased across the four quartiles (P for trend = 0.036). The RCS analysis indicated a statistically significant reduction in the risk of sICH as serum sodium levels increased when the concentration was below 139.1 mmol/L. Incorporating serum sodium into traditional models improved their predictive performance, resulting in higher AUROC and NRI values. Subgroup analysis suggested that early infarct signs (EIS) appeared to moderate the relationship between serum sodium and sICH (p < 0.05). Conclusion Lower serum sodium levels were identified as independent risk factors for post-thrombolysis sICH. Maintaining pre-thrombolysis serum sodium concentrations above 139.1 mmol/L may help reduce the risk of post-thrombolysis sICH.
Collapse
Affiliation(s)
- Xiaolan Wu
- Department of Neurology, Dongyang People's Hospital, Affiliated to Wenzhou Medical University, Dongyang, China
| | - Zhuangzhuang Jiang
- Department of Neurology, Dongyang People's Hospital, Affiliated to Wenzhou Medical University, Dongyang, China
| | - Dongjuan Xu
- Department of Neurology, Dongyang People's Hospital, Affiliated to Wenzhou Medical University, Dongyang, China
| | - Rufang Zhang
- Department of Neurology, Dongyang People's Hospital, Affiliated to Wenzhou Medical University, Dongyang, China
| | - Hongfei Li
- Department of Neurology, Dongyang People's Hospital, Affiliated to Wenzhou Medical University, Dongyang, China
| |
Collapse
|
11
|
Dai M, Yang J, Wang Z, Xue F, Wang Y, Hu E, Gong Y, Routledge MN, Qiao B. Aquaporins alteration revealed kidney damages in cerebral ischemia/reperfusion rats. Heliyon 2024; 10:e31532. [PMID: 38807874 PMCID: PMC11130722 DOI: 10.1016/j.heliyon.2024.e31532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Background Restoration of blood supply is a desired goal for the treatment of acute ischemic stroke. However, the restoration often leads to cerebral ischemia-reperfusion injury (CIR/I), which greatly increases the risk of non-neural organ damage. In particular, the acute kidney injury might be one of the most common complications. Aims The study aimed to understand the damage occurred and the potential molecular mechanisms. Methods The study was explored on the CIR/I rats generated by performing middle cerebral artery occlusion/reperfusion (MCAO/Reperfusion). The rats were evaluated with injury on the brains, followed by the non-neural organs including kidneys, livers, colons and stomachs. They were examined further with histopathological changes, and gene expression alterations by using RT-qPCR of ten aquaporins (Aqps) subtypes including Aqp1~Aqp9 and Aqp11. Furthermore, the Aqps expression profiles were constructed for each organ and analyzed by performing Principle Component Analysis. In addition, immunohistochemistry was explored to look at the protein expression of Aqp1, Aqp2, Aqp3 and Aqp4 in the rat kidneys. Results There was a prominent down-regulation profile in the MCAO/Reperfusion rat kidneys. The protein expression of Aqp1, Aqp2, Aqp3 and Aqp4 was decreased in the kidneys of the MCAO/Reperfusion rats. We suggested that the kidney was in the highest risk to be damaged following the CIR/I. Down-regulation of Aqp2, Aqp3 and Aqp4 was involved in the acute kidney injury induced by the CIR/I.
Collapse
Affiliation(s)
- Meng Dai
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China
| | - Jinglei Yang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China
| | - Zhaoyang Wang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China
| | - Fangli Xue
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China
| | - Yourui Wang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China
| | - Enjie Hu
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China
| | - Yunyun Gong
- School of Medicine, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Michael N. Routledge
- School of Medicine, University of Leicester, Leicester, LE1 7RH, United Kingdom
- Jiangsu University, Sch Food & Biol Engn, Zhenjiang, 212013, PR China
| | - Boling Qiao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China
| |
Collapse
|
12
|
Lai Y, Han J, Qiu D, Liu X, Sun K, Fan Y, Wang C, Zhang S. The protective effects of methylene blue on astrocytic swelling after cerebral ischemia-reperfusion injuries are mediated by Aquaporin-4 and metabotropic glutamate receptor 5 activation. Heliyon 2024; 10:e29483. [PMID: 38644842 PMCID: PMC11031768 DOI: 10.1016/j.heliyon.2024.e29483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024] Open
Abstract
Methylene blue (MB) was found to exert neuroprotective effect on different brain diseases, such as ischemic stroke. This study assessed the MB effects on ischemia induced brain edema and its role in the inhibition of aquaporin 4 (AQP4) and metabotropic glutamate receptor 5 (mGluR5) expression. Rats were exposed 1 h transient middle cerebral artery occlusion (tMCAO), and MB was injected intravenously following reperfusion (3 mg/kg). Magnetic resonance imaging (MRI) and 2,3,5-triphenyltetrazolium chloride (TTC) staining was performed 48 h after the onset of tMCAO to evaluate the brain infarction and edema. Brain tissues injuries as well as the glial fibrillary acidic protein (GFAP), AQP4 and mGluR5 expressions were detected. Oxygen and glucose deprivation/reoxygenation (OGD/R) was performed on primary astrocytes (ASTs) to induce cell swelling. MB was administered at the beginning of reoxygenation, and the perimeter of ASTs was measured by GFAP immunofluorescent staining. 3,5-dihydroxyphenylglycine (DHPG) and fenobam were given at 24 h before OGD to examine their effects on MB functions on AST swelling and AQP4 expression. MB remarkably decreased the volumes of T2WI and ADC lesions, as well as the cerebral swelling. Consistently, MB treatment significantly decreased GFAP, mGluR5 and AQP4 expression at 48 h after stroke. In the cultivated primary ASTs, OGD/R and DHPG significantly increased ASTs volume as well as AQP4 expression, which was reversed by MB and fenobam treatment. The obtained results highlight that MB decreases the post-ischemic brain swelling by regulating the activation of AQP4 and mGluR5, suggesting potential applications of MB on clinical ischemic stroke treatment.
Collapse
Affiliation(s)
- Yu Lai
- Department of Cardiovascular, The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, 050011, Hebei, China
| | - Jie Han
- Department of Cardiovascular, The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, 050011, Hebei, China
| | - Dongxian Qiu
- Department of Dermatology, The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, 050011, Hebei, China
| | - Xinyan Liu
- Medical Insurance Division, The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, 050011, Hebei, China
| | - Kan Sun
- Department of Cardiovascular, The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, 050011, Hebei, China
| | - Yuzhu Fan
- Department of Endocrinology, The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, 050011, Hebei, China
| | - Chunliang Wang
- Department of Cardiovascular, The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, 050011, Hebei, China
| | - Song Zhang
- Department of Cardiovascular, The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, 050011, Hebei, China
| |
Collapse
|
13
|
Čivrný J, Tomáš D, Černá M. MRI of cerebral oedema in ischaemic stroke and its current use in routine clinical practice. Neuroradiology 2024; 66:305-315. [PMID: 38102491 PMCID: PMC10859334 DOI: 10.1007/s00234-023-03262-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Currently, with the knowledge of the role of collateral circulation in the development of cerebral ischaemia, traditional therapeutic windows are being prolonged, with time not being the only criterion. Instead, a more personalised approach is applied to select additional patients who might benefit from active treatment. This review briefly describes the current knowledge of the pathophysiology of the development of early ischaemic changes, the capabilities of MRI to depict such changes, and the basics of the routinely used imaging techniques broadly available for the assessment of individual phases of cerebral ischaemia, and summarises the possible clinical use of routine MR imaging, including patient selection for active treatment and assessment of the outcome on the basis of imaging.
Collapse
Affiliation(s)
- Jakub Čivrný
- Department of Radiology, Palacky University and University Hospital, Olomouc, Czech Republic.
- Fakultní nemocnice Olomouc, Radiologická klinika, Zdravotníků 248/7, 779 00, Olomouc, Czech Republic.
| | - Dorňák Tomáš
- Fakultní nemocnice Olomouc, Radiologická klinika, Zdravotníků 248/7, 779 00, Olomouc, Czech Republic
- Department of Neurology, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Marie Černá
- Department of Radiology, Palacky University and University Hospital, Olomouc, Czech Republic
- Fakultní nemocnice Olomouc, Radiologická klinika, Zdravotníků 248/7, 779 00, Olomouc, Czech Republic
| |
Collapse
|
14
|
Pham J, Ng FC. Novel advanced imaging techniques for cerebral oedema. Front Neurol 2024; 15:1321424. [PMID: 38356883 PMCID: PMC10865379 DOI: 10.3389/fneur.2024.1321424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Cerebral oedema following acute ischemic infarction has been correlated with poor functional outcomes and is the driving mechanism of malignant infarction. Measurements of midline shift and qualitative assessment for herniation are currently the main CT indicators for cerebral oedema but have limited sensitivity for small cortical infarcts and are typically a delayed sign. In contrast, diffusion-weighted (DWI) or T2-weighted magnetic resonance imaging (MRI) are highly sensitive but are significantly less accessible. Due to the need for early quantification of cerebral oedema, several novel imaging biomarkers have been proposed. Based on neuroanatomical shift secondary to space-occupying oedema, measures such as relative hemispheric volume and cerebrospinal fluid displacement are correlated with poor outcomes. In contrast, other imaging biometrics, such as net water uptake, T2 relaxometry and blood brain barrier permeability, reflect intrinsic tissue changes from the influx of fluid into the ischemic region. This review aims to discuss quantification of cerebral oedema using current and developing advanced imaging techniques, and their role in predicting clinical outcomes.
Collapse
Affiliation(s)
- Jenny Pham
- Department of Radiology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Felix C. Ng
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
- Department of Medicine at Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
15
|
Hawash AMA, Zaytoun TM, Helmy TA, El Reweny EM, Abdel Galeel AMA, Taleb RSZ. S100B and brain ultrasound: Novel predictors for functional outcome in acute ischemic stroke patients. Clin Neurol Neurosurg 2023; 233:107907. [PMID: 37541157 DOI: 10.1016/j.clineuro.2023.107907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/06/2023]
Abstract
OBJECTIVE Stroke is a leading cause of mortality and disability worldwide. This study aimed to assess the prognostic value of serum S100B protein, transcranial color-coded duplex sonography (TCCD), and optic nerve sheath diameter (ONSD) in predicting functional outcomes in critically ill patients with acute ischemic stroke (AIS). METHODS In this prospective observational study, 80 adult AIS patients were evaluated. Serum S100B protein levels, ONSD, and middle cerebral artery pulsatility index (MCA PI) were measured on days 1 and 3. Functional outcomes at 90 days were assessed using the modified Rankin Scale (mRS) and categorized into favourable (mRS 0-2) or unfavourable (mRS 3-6) groups. The association of demographic, clinical, laboratory, and imaging parameters with mRS outcomes was analyzed. RESULTS Poor mRS outcomes occurred in 82.5 % of patients. Factors significantly associated with poor outcomes were female sex, higher National Institutes of Health Stroke Scale (NIHSS) scores on days 1, 3, and 7, and larger stroke size. Receiver Operating Characteristic (ROC) curve analysis revealed that ONSD at days 1 and 3, serum S100B levels at day 1, and right MCA PI at day 1 had significant predictive value for poor mRS outcome. Multivariate analysis identified female sex, S100B on day 1, and NIHSS on days 1, 3, and 7 as independent predictors of poor mRS outcomes. CONCLUSIONS The combination of S100B, ONSD, and MCA PI improved the prediction of functional outcomes in critically ill AIS patients. Early S100B measurement and brain ultrasound evaluation may serve as valuable prognostic tools for guiding therapeutic decision-making. This study provides novel insights into the role of S100B and brain ultrasound in stroke outcome prediction, particularly in critically ill AIS patients.
Collapse
Affiliation(s)
| | - Tayseer Mohamed Zaytoun
- Critical Care Medicine Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Tamer AbdAllah Helmy
- Critical Care Medicine Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ehab Mahmoud El Reweny
- Critical Care Medicine Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Raghda Saad Zaghloul Taleb
- Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
16
|
Han W, Pu H, Li S, Liu Y, Zhao Y, Xu M, Chen C, Wu Y, Yang T, Ye Q, Wang H, Stetler RA, Chen J, Shi Y. Targeted ablation of signal transducer and activator of transduction 1 alleviates inflammation by microglia/macrophages and promotes long-term recovery after ischemic stroke. J Neuroinflammation 2023; 20:178. [PMID: 37516843 PMCID: PMC10385956 DOI: 10.1186/s12974-023-02860-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Brain microglia and macrophages (Mi/MΦ) can shift to a harmful or advantageous phenotype following an ischemic stroke. Identification of key molecules that regulate the transformation of resting Mi/MΦ could aid in the development of innovative therapies for ischemic stroke. The transcription factor signal transducer and activator of transduction 1 (STAT1) has been found to contribute to acute neuronal death (in the first 24 h) following ischemic stroke, but its effects on Mi/MΦ and influence on long-term stroke outcomes have yet to be determined. METHODS We generated mice with tamoxifen-induced, Mi/MΦ-specific knockout (mKO) of STAT1 driven by Cx3cr1CreER. Expression of STAT1 was examined in the brain by flow cytometry and RNA sequencing after ischemic stroke induced by transient middle cerebral artery occlusion (MCAO). The impact of STAT1 mKO on neuronal cell death, Mi/MΦ phenotype, and brain inflammation profiles were examined 3-5 days after MCAO. Neurological deficits and the integrity of gray and white matter were assessed for 5 weeks after MCAO by various neurobehavioral tests and immunohistochemistry. RESULTS STAT1 was activated in Mi/MΦ at the subacute stage (3 days) after MCAO. Selective deletion of STAT1 in Mi/MΦ did not alter neuronal cell death or infarct size at 24 h after MCAO, but attenuated Mi/MΦ release of high mobility group box 1 and increased arginase 1-producing Mi/MΦ 3d after MCAO, suggesting boosted inflammation-resolving responses of Mi/MΦ. As a result, STAT1 mKO mice had mitigated brain inflammation at the subacute stage after MCAO and less white matter injury in the long term. Importantly, STAT1 mKO was sufficient to improve functional recovery for at least 5 weeks after MCAO in both male and female mice. CONCLUSIONS Mi/MΦ-targeted STAT1 KO does not provide immediate neuroprotection but augments inflammation-resolving actions of Mi/MΦ, thereby facilitating long-term functional recovery after stroke. STAT1 is, therefore, a promising therapeutic target to harness beneficial Mi/MΦ responses and improve long-term outcomes after ischemic stroke.
Collapse
Affiliation(s)
- Wenxuan Han
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Hongjian Pu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Sicheng Li
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Yaan Liu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Yongfang Zhao
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Mingyue Xu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Caixia Chen
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Yun Wu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Qing Ye
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - R Anne Stetler
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA.
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
17
|
Pluta R, Miziak B, Czuczwar SJ. Apitherapy in Post-Ischemic Brain Neurodegeneration of Alzheimer's Disease Proteinopathy: Focus on Honey and Its Flavonoids and Phenolic Acids. Molecules 2023; 28:5624. [PMID: 37570596 PMCID: PMC10420307 DOI: 10.3390/molecules28155624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Neurodegeneration of the brain after ischemia is a major cause of severe, long-term disability, dementia, and mortality, which is a global problem. These phenomena are attributed to excitotoxicity, changes in the blood-brain barrier, neuroinflammation, oxidative stress, vasoconstriction, cerebral amyloid angiopathy, amyloid plaques, neurofibrillary tangles, and ultimately neuronal death. In addition, genetic factors such as post-ischemic changes in genetic programming in the expression of amyloid protein precursor, β-secretase, presenilin-1 and -2, and tau protein play an important role in the irreversible progression of post-ischemic neurodegeneration. Since current treatment is aimed at preventing symptoms such as dementia and disability, the search for causative therapy that would be helpful in preventing and treating post-ischemic neurodegeneration of Alzheimer's disease proteinopathy is ongoing. Numerous studies have shown that the high contents of flavonoids and phenolic acids in honey have antioxidant, anti-inflammatory, anti-apoptotic, anti-amyloid, anti-tau protein, anticholinesterase, serotonergic, and AMPAK activities, influencing signal transmission and neuroprotective effects. Notably, in many preclinical studies, flavonoids and phenolic acids, the main components of honey, were also effective when administered after ischemia, suggesting their possible use in promoting recovery in stroke patients. This review provides new insight into honey's potential to prevent brain ischemia as well as to ameliorate damage in advanced post-ischemic brain neurodegeneration.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (B.M.); (S.J.C.)
| | | | | |
Collapse
|
18
|
Pluta R, Miziak B, Czuczwar SJ. Post-Ischemic Permeability of the Blood-Brain Barrier to Amyloid and Platelets as a Factor in the Maturation of Alzheimer's Disease-Type Brain Neurodegeneration. Int J Mol Sci 2023; 24:10739. [PMID: 37445917 DOI: 10.3390/ijms241310739] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/13/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of this review is to present evidence of the impact of ischemic changes in the blood-brain barrier on the maturation of post-ischemic brain neurodegeneration with features of Alzheimer's disease. Understanding the processes involved in the permeability of the post-ischemic blood-brain barrier during recirculation will provide clinically relevant knowledge regarding the neuropathological changes that ultimately lead to dementia of the Alzheimer's disease type. In this review, we try to distinguish between primary and secondary neuropathological processes during and after ischemia. Therefore, we can observe two hit stages that contribute to Alzheimer's disease development. The onset of ischemic brain pathology includes primary ischemic neuronal damage and death followed by the ischemic injury of the blood-brain barrier with serum leakage of amyloid into the brain tissue, leading to increased ischemic neuronal susceptibility to amyloid neurotoxicity, culminating in the formation of amyloid plaques and ending in full-blown dementia of the Alzheimer's disease type.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
19
|
Shi Y, Keep RF. Fluid movement in the healthy and diseased brain. Neurobiol Dis 2023:106168. [PMID: 37230181 DOI: 10.1016/j.nbd.2023.106168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Affiliation(s)
- Yejie Shi
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States of America.
| |
Collapse
|
20
|
Guo W, Li N, Xu J, Ma J, Li S, Ren C, Chen J, Duan J, Ma Q, Song H, Zhao W, Ji X. Malignant Middle Cerebral Artery Infarction during Early versus Late Endovascular Treatment in Acute Ischemic Stroke. Curr Neurovasc Res 2023; 20:254-260. [PMID: 37431897 DOI: 10.2174/1567202620666230710114443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION Endovascular treatment (EVT) performed in the early time window has been shown to decrease the incidence of malignant middle cerebral artery infarction (MMI). However, the incidence of MMI in patients undergoing EVT during the late time window is unclear. This study aimed to investigate the prevalence of MMI in patients undergoing late EVT and compare it with that in patients undergoing early EVT. METHODS We retrospectively analyzed consecutive patients with anterior large vessel occlusion stroke who underwent EVT at Xuanwu Hospital between January 2013 and June 2021. Eligible patients were divided into early EVT (within 6 h) and late EVT (6-24 h) groups according to the time from their stroke onset to puncture and compared. The occurrence of MMI post-EVT was the primary outcome. RESULTS A total of 605 patients were recruited, of whom 300 (50.4%) underwent EVT within 6 h and 305 (49.6%) underwent EVT within 6-24 h. A total of 119 patients (19.7%) developed MMI. 68 patients (22.7%) in the early EVT group and 51 patients (16.7 %) in the late EVT group developed MMI (p = 0.066). After adjusting for covariate variables, late EVT was independently associated with a lower incidence of MMI (odds ratio, 0.404; 95% confidence interval, 0.242-0.675; p = 0.001). CONCLUSION MMI is not an uncommon phenomenon in the modern thrombectomy era. Compared with the early time window, patients selected by stricter radiological criteria to undergo EVT in the late time window are independently associated with a lower incidence of MMI.
Collapse
Affiliation(s)
- Wenting Guo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ning Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiali Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jin Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiangang Duan
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qingfeng Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haiqing Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|