1
|
Meng L, Zheng X, Xie K, Li Y, Liu D, Xu Y, Zhang J, Wu F, Guo G. Hyperexcitation of the glutamatergic neurons in lateral hypothalamus induced by chronic pain contributes to depression-like behavior and learning and memory impairment in male mice. Neurobiol Stress 2024; 31:100654. [PMID: 38948390 PMCID: PMC11214532 DOI: 10.1016/j.ynstr.2024.100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Chronic pain can induce mood disorders and cognitive dysfunctions, such as anxiety, depression, and learning and memory impairment in humans. However, the specific neural network involved in anxiety- and depression-like behaviors and learning and memory impairment caused by chronic pain remains poorly understood. In this study, behavioral test results showed that chronic pain induced anxiety- and depression-like behaviors, and learning and memory impairment in male mice. c-Fos immunofluorescence and fiber photometry recording showed that glutamatergic neurons in the LH of mice with chronic pain were selectively activated. Next, the glutamatergic neurons of LH in normal mice were activated using optogenetic and chemogenetic methods, which recapitulates some of the depressive-like behaviors, as well as memory impairment, but not anxiety-like behavior. Finally, inhibition of glutamatergic neurons in the LH of mice with chronic pain, effectively relieved anxiety- and depression-like behaviors and learning and memory impairment. Taken together, our findings suggest that hyperexcitation of glutamatergic neurons in the LH is involved in depression-like behavior and learning and memory impairment induced by chronic pain.
Collapse
Affiliation(s)
| | | | - Keman Xie
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Yifei Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Danlei Liu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Yuanyuan Xu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Jifeng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Fengming Wu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Guoqing Guo
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| |
Collapse
|
2
|
Wang X, Wang J, Han R, Yu C, Shen F. Neural circuit mechanisms of acupuncture effect: where are we now? Front Neurol 2024; 15:1399925. [PMID: 38938783 PMCID: PMC11208484 DOI: 10.3389/fneur.2024.1399925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Recently, there has been increasing attention on the impact of acupuncture on the dysregulated neural circuits in different disease. This has led to new understandings of how acupuncture works. This review presents a comprehensive analysis of research that have examined the impact of acupuncture on abnormal neural circuits associated with pain, anxiety, Parkinson's disease, addiction disorders, cognitive problems, and gastrointestinal disorders. These studies have shown that acupuncture's therapeutic effects are mediated by specific brain areas and neurons involved in neural circuit mechanisms, emphasising its wide-ranging influence. The positive impacts of acupuncture can be ascribed to its ability to modify the functioning of neurocircuits in various physiological conditions. Nevertheless, contemporary studies on acupuncture neural circuits frequently overlook the comprehensive circuit mechanism including the periphery, central nervous system, and target organ. Additionally, the scope of diseases studied is restricted. Future study should focus on broadening the range of diseases studied and exploring the neural circuit mechanisms of these diseases in depth in order to enhance our understanding of acupuncture's neurobiological impacts.
Collapse
Affiliation(s)
- Xuesong Wang
- College of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jia Wang
- Department of Acupuncture and Moxibustion, Wuhan Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, China
| | - Rui Han
- Department of Child Rehabilitation Medicine, Qujing Hospital of Maternity and Childcare, Qujing, China
| | - Chaochao Yu
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Department of Rehabilitation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Shen
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
3
|
Zhu TT, Wang H, Liu PM, Gu HW, Pan WT, Zhao MM, Hashimoto K, Yang JJ. Clemastine-induced enhancement of hippocampal myelination alleviates memory impairment in mice with chronic pain. Neurobiol Dis 2024; 190:106375. [PMID: 38092269 DOI: 10.1016/j.nbd.2023.106375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023] Open
Abstract
Patients with chronic pain often experience memory impairment, but the underlying mechanisms remain elusive. The myelin sheath is crucial for rapid and accurate action potential conduction, playing a pivotal role in the development of cognitive abilities in the central nervous system. The study reveals that myelin degradation occurs in the hippocampus of chronic constriction injury (CCI) mice, which display both chronic pain and memory impairment. Using fiber photometry, we observed diminished task-related neuronal activity in the hippocampus of CCI mice. Interestingly, the repeated administration with clemastine, which promotes myelination, counteracts the CCI-induced myelin loss and reduced neuronal activity. Notably, clemastine specifically ameliorates the impaired memory without affecting chronic pain in CCI mice. Overall, our findings highlight the significant role of myelin abnormalities in CCI-induced memory impairment, suggesting a potential therapeutic approach for treating memory impairments associated with neuropathic pain.
Collapse
Affiliation(s)
- Ting-Ting Zhu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - He Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Pan-Miao Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Han-Wen Gu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wei-Tong Pan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Ming-Ming Zhao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Kenji Hashimoto
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
4
|
Su N, Cai P, Dou Z, Yin X, Xu H, He J, Li Z, Li C. Brain nuclei and neural circuits in neuropathic pain and brain modulation mechanisms of acupuncture: a review on animal-based experimental research. Front Neurosci 2023; 17:1243231. [PMID: 37712096 PMCID: PMC10498311 DOI: 10.3389/fnins.2023.1243231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Neuropathic pain (NP) is known to be associated with abnormal changes in specific brain regions, but the complex neural network behind it is vast and complex and lacks a systematic summary. With the help of various animal models of NP, a literature search on NP brain regions and circuits revealed that the related brain nuclei included the periaqueductal gray (PAG), lateral habenula (LHb), medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC); the related brain circuits included the PAG-LHb and mPFC-ACC. Moreover, acupuncture and injurious information can affect different brain regions and influence brain functions via multiple aspects to play an analgesic role and improve synaptic plasticity by regulating the morphology and structure of brain synapses and the expression of synapse-related proteins; maintain the balance of excitatory and inhibitory neurons by regulating the secretion of glutamate, γ-aminobutyric acid, 5-hydroxytryptamine, and other neurotransmitters and receptors in the brain tissues; inhibit the overactivation of glial cells and reduce the release of pro-inflammatory mediators such as interleukins to reduce neuroinflammation in brain regions; maintain homeostasis of glucose metabolism and regulate the metabolic connections in the brain; and play a role in analgesia through the mediation of signaling pathways and signal transduction molecules. These factors help to deepen the understanding of NP brain circuits and the brain mechanisms of acupuncture analgesia.
Collapse
Affiliation(s)
- Na Su
- First Clinical Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pingping Cai
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital, Jinan, China
| | - Zhiqiang Dou
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoxue Yin
- Department of Science and Education, Shandong Academy of Chinese Medicine, Jinan, China
| | - Hongmin Xu
- Department of Gynecology, Laiwu Hospital of Traditional Chinese, Jinan, China
| | - Jing He
- First Clinical Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaofeng Li
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
- International Office, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Shenzhen Hospital, Peking University, Shenzhen, China
- Department of Gynecology, Shandong Provincial Hospital, Jinan, China
| |
Collapse
|