1
|
Imarisio A, Yahyavi I, Gasparri C, Hassan A, Avenali M, Di Maio A, Buongarzone G, Galandra C, Picascia M, Filosa A, Monti MC, Pacchetti C, Errico F, Rondanelli M, Usiello A, Valente EM. Serum dysregulation of serine and glycine metabolism as predictive biomarker for cognitive decline in frail elderly subjects. Transl Psychiatry 2024; 14:281. [PMID: 38982054 PMCID: PMC11233661 DOI: 10.1038/s41398-024-02991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Frailty is a common age-related clinical syndrome characterized by a decline in the function of multiple organ systems, increased vulnerability to stressors, and a huge socio-economic burden. Despite recent research efforts, the physiopathological mechanisms underlying frailty remain elusive and biomarkers able to predate its occurrence in the early stages are still lacking. Beyond its physical component, cognitive decline represents a critical domain of frailty associated with higher risk of adverse health outcomes. We measured by High-Performance Liquid Chromatography (HPLC) a pool of serum amino acids including L-glutamate, L-aspartate, glycine, and D-serine, as well as their precursors L-glutamine, L-asparagine, and L-serine in a cohort of elderly subjects encompassing the entire continuum from fitness to frailty. These amino acids are known to orchestrate excitatory and inhibitory neurotransmission, and in turn, to play a key role as intermediates of energy homeostasis and in liver, kidney, muscle, and immune system metabolism. To comprehensively assess frailty, we employed both the Edmonton Frail Scale (EFS), as a practical tool to capture the multidimensionality of frailty, and the frailty phenotype, as a measure of physical function. We found that D-serine and D-/Total serine ratio were independent predictors of EFS but not of physical frailty. Furthermore, higher levels of glycine, glycine/L-serine and D-/Total serine were associated with worse cognition and depressive symptoms in the frail group. These findings suggest that changes in peripheral glycine and serine enantiomers homeostasis may represent a novel biochemical correlate of frailty.
Collapse
Affiliation(s)
- Alberto Imarisio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Isar Yahyavi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita", University of Pavia, Pavia, Italy
| | - Amber Hassan
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Micol Avenali
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Di Maio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Gabriele Buongarzone
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Caterina Galandra
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Marta Picascia
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Asia Filosa
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Maria Cristina Monti
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Claudio Pacchetti
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Francesco Errico
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
| | - Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Alessandro Usiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy.
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
2
|
Buoso C, Seifert M, Lang M, Griffith CM, Talavera Andújar B, Castelo Rueda MP, Fischer C, Doerrier C, Talasz H, Zanon A, Pramstaller PP, Schymanski EL, Pichler I, Weiss G. Dopamine‑iron homeostasis interaction rescues mitochondrial fitness in Parkinson's disease. Neurobiol Dis 2024; 196:106506. [PMID: 38648865 DOI: 10.1016/j.nbd.2024.106506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Imbalances of iron and dopamine metabolism along with mitochondrial dysfunction have been linked to the pathogenesis of Parkinson's disease (PD). We have previously suggested a direct link between iron homeostasis and dopamine metabolism, as dopamine can increase cellular uptake of iron into macrophages thereby promoting oxidative stress responses. In this study, we investigated the interplay between iron, dopamine, and mitochondrial activity in neuroblastoma SH-SY5Y cells and human induced pluripotent stem cell (hiPSC)-derived dopaminergic neurons differentiated from a healthy control and a PD patient with a mutation in the α-synuclein (SNCA) gene. In SH-SY5Y cells, dopamine treatment resulted in increased expression of the transmembrane iron transporters transferrin receptor 1 (TFR1), ferroportin (FPN), and mitoferrin2 (MFRN2) and intracellular iron accumulation, suggesting that dopamine may promote iron uptake. Furthermore, dopamine supplementation led to reduced mitochondrial fitness including decreased mitochondrial respiration, increased cytochrome c control efficiency, reduced mtDNA copy number and citrate synthase activity, increased oxidative stress and impaired aconitase activity. In dopaminergic neurons derived from a healthy control individual, dopamine showed comparable effects as observed in SH-SY5Y cells. The hiPSC-derived PD neurons harboring an endogenous SNCA mutation demonstrated altered mitochondrial iron homeostasis, reduced mitochondrial capacity along with increased oxidative stress and alterations of tricarboxylic acid cycle linked metabolic pathways compared with control neurons. Importantly, dopamine treatment of PD neurons promoted a rescue effect by increasing mitochondrial respiration, activating antioxidant stress response, and normalizing altered metabolite levels linked to mitochondrial function. These observations provide evidence that dopamine affects iron homeostasis, intracellular stress responses and mitochondrial function in healthy cells, while dopamine supplementation can restore the disturbed regulatory network in PD cells.
Collapse
Affiliation(s)
- Chiara Buoso
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy; Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus Seifert
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Martin Lang
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy
| | - Corey M Griffith
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Begoña Talavera Andújar
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | | | - Christine Fischer
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Heribert Talasz
- Institute of Medical Biochemistry, Protein Core Facility, Biocenter Innsbruck, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | | | - Emma L Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy.
| | - Guenter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
3
|
Imarisio A, Yahyavi I, Avenali M, Di Maio A, Buongarzone G, Galandra C, Picascia M, Filosa A, Gasparri C, Monti MC, Rondanelli M, Pacchetti C, Errico F, Valente EM, Usiello A. Blood D-serine levels correlate with aging and dopaminergic treatment in Parkinson's disease. Neurobiol Dis 2024; 192:106413. [PMID: 38253208 DOI: 10.1016/j.nbd.2024.106413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024] Open
Abstract
We recently described increased D- and L-serine concentrations in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys, the post-mortem caudate-putamen of human Parkinson's disease (PD) brains and the cerebrospinal fluid (CSF) of de novo living PD patients. However, data regarding blood D- and L-serine levels in PD are scarce. Here, we investigated whether the serum profile of D- and L-serine, as well as the other glutamate N-methyl-D-aspartate ionotropic receptor (NMDAR)-related amino acids, (i) differs between PD patients and healthy controls (HC) and (ii) correlates with clinical-demographic features and levodopa equivalent daily dose (LEDD) in PD. Eighty-three consecutive PD patients and forty-one HC were enrolled. PD cohort underwent an extensive clinical characterization. Serum levels of D- and L-serine, L-glutamate, L-glutamine, L-aspartate, L-asparagine and glycine were determined using High Performance Liquid Chromatography. In age- and sex-adjusted analyses, no differences emerged in the serum levels of D-serine, L-serine and other NMDAR-related amino acids between PD and HC. However, we found that D-serine and D-/Total serine ratio positively correlated with age in PD but not in HC, and also with PD age at onset. Moreover, we found that higher LEDD correlated with lower levels of D-serine and the other excitatory amino acids. Following these results, the addition of LEDD as covariate in the analyses disclosed a selective significant increase of D-serine in PD compared to HC (Δ ≈ 38%). Overall, these findings suggest that serum D-serine and D-/Total serine may represent a valuable biochemical signature of PD.
Collapse
Affiliation(s)
- Alberto Imarisio
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; Neurogenetics Research Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Isar Yahyavi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy; CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Micol Avenali
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Anna Di Maio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy; CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Gabriele Buongarzone
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Caterina Galandra
- Neurogenetics Research Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Marta Picascia
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Asia Filosa
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita", University of Pavia, 27100 Pavia, Italy
| | - Maria Cristina Monti
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudio Pacchetti
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesco Errico
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Department of Agricultural Sciences, University of Naples "Federico II", 80055 Portici, Italy
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; Neurogenetics Research Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy.
| | - Alessandro Usiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy; CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| |
Collapse
|
4
|
Lee A, Henderson R, Aylward J, McCombe P. Gut Symptoms, Gut Dysbiosis and Gut-Derived Toxins in ALS. Int J Mol Sci 2024; 25:1871. [PMID: 38339149 PMCID: PMC10856138 DOI: 10.3390/ijms25031871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Many pathogenetic mechanisms have been proposed for amyotrophic lateral sclerosis (ALS). Recently, there have been emerging suggestions of a possible role for the gut microbiota. Gut microbiota have a range of functions and could influence ALS by several mechanisms. Here, we review the possible role of gut-derived neurotoxins/excitotoxins. We review the evidence of gut symptoms and gut dysbiosis in ALS. We then examine a possible role for gut-derived toxins by reviewing the evidence that these molecules are toxic to the central nervous system, evidence of their association with ALS, the existence of biochemical pathways by which these molecules could be produced by the gut microbiota and existence of mechanisms of transport from the gut to the blood and brain. We then present evidence that there are increased levels of these toxins in the blood of some ALS patients. We review the effects of therapies that attempt to alter the gut microbiota or ameliorate the biochemical effects of gut toxins. It is possible that gut dysbiosis contributes to elevated levels of toxins and that these could potentially contribute to ALS pathogenesis, but more work is required.
Collapse
Affiliation(s)
- Aven Lee
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (R.H.); (P.M.)
| | - Robert Henderson
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (R.H.); (P.M.)
- Department of Neurology, Royal Brisbane & Women’s Hospital, Brisbane, QLD 4029, Australia
- Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD 4066, Australia;
| | - James Aylward
- Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD 4066, Australia;
| | - Pamela McCombe
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (R.H.); (P.M.)
- Department of Neurology, Royal Brisbane & Women’s Hospital, Brisbane, QLD 4029, Australia
- Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD 4066, Australia;
| |
Collapse
|
5
|
Li H, Zeng F, Huang C, Pu Q, Thomas ER, Chen Y, Li X. The potential role of glucose metabolism, lipid metabolism, and amino acid metabolism in the treatment of Parkinson's disease. CNS Neurosci Ther 2024; 30:e14411. [PMID: 37577934 PMCID: PMC10848100 DOI: 10.1111/cns.14411] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023] Open
Abstract
PURPOSE OF REVIEW Parkinson's disease (PD) is a common neurodegenerative disease, which can cause progressive deterioration of motor function causing muscle stiffness, tremor, and bradykinesia. In this review, we hope to describe approaches that can improve the life of PD patients through modifications of energy metabolism. RECENT FINDINGS The main pathological features of PD are the progressive loss of nigrostriatal dopaminergic neurons and the production of Lewy bodies. Abnormal aggregation of α-synuclein (α-Syn) leading to the formation of Lewy bodies is closely associated with neuronal dysfunction and degeneration. The main causes of PD are said to be mitochondrial damage, oxidative stress, inflammation, and abnormal protein aggregation. Presence of abnormal energy metabolism is another cause of PD. Many studies have found significant differences between neurodegenerative diseases and metabolic decompensation, which has become a biological hallmark of neurodegenerative diseases. SUMMARY In this review, we highlight the relationship between abnormal energy metabolism (Glucose metabolism, lipid metabolism, and amino acid metabolism) and PD. Improvement of key molecules in glucose metabolism, fat metabolism, and amino acid metabolism (e.g., glucose-6-phosphate dehydrogenase, triglycerides, and levodopa) might be potentially beneficial in PD. Some of these metabolic indicators may serve well during the diagnosis of PD. In addition, modulation of these metabolic pathways may be a potential target for the treatment and prevention of PD.
Collapse
Affiliation(s)
- Hangzhen Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Cancan Huang
- Department of DermatologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Qiqi Pu
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | | | - Yan Chen
- Department of DermatologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| |
Collapse
|
6
|
Meng Q, Liu Y, Yao L, Ma Z, Guo L, Hu T, Luo Y, Chen J, Dang E, Li Z. Serine deficiency exacerbates psoriatic skin inflammation by regulating S-adenosyl methionine-dependent DNA methylation and NF-κB signalling activation in keratinocytes. J Eur Acad Dermatol Venereol 2024; 38:145-156. [PMID: 37669859 DOI: 10.1111/jdv.19492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Serine metabolism is crucial for tumour oncogenesis and immune responses. S-adenosyl methionine (SAM), a methyl donor, is typically derived from serine-driven one-carbon metabolism. However, the involvement of serine metabolism in psoriatic skin inflammation remains unclear. OBJECTIVES To investigate the association between serine metabolism and psoriatic skin inflammation. METHODS Clinical samples were collected from patients with psoriasis and the expression of serine biosynthesis enzymes was evaluated. The HaCaT human keratinocyte cell line was transfected with small interfering RNA (siRNA) of key enzyme or treated with inhibitors. RNA sequencing and DNA methylation assays were performed to elucidate the mechanisms underlying serine metabolism-regulated psoriatic keratinocyte inflammation. An imiquimod (IMQ)-induced psoriasis mouse model was established to determine the effect of the SAM administration on psoriatic skin inflammation. RESULTS The expression of serine synthesis pathway enzymes, including the first rate-limiting enzyme in serine biosynthesis, phosphoglycerate dehydrogenase (PHGDH), was downregulated in the epidermal lesions of patients with psoriasis compared with that in healthy controls. Suppressing PHGDH in keratinocytes promoted the production of proinflammatory cytokines and enrichment of psoriatic-related signalling pathways, including the tumour necrosis factor-alpha (TNF-α) signalling pathway, interleukin (IL)-17 signalling pathway and NF-κB signalling pathway. In particular, PHGDH inhibition markedly promoted the secretion of IL-6 in keratinocytes with or without IL-17A, IL-22, IL-1α, oncostatin M and TNF-α (mix) stimulation. Mechanistically, PHGDH inhibition upregulated the expression of IL-6 by inhibiting SAM-dependent DNA methylation at the promoter and increasing the binding of myocyte enhancer factor 2A. Furthermore, PHGDH inhibition increased the secretion of IL-6 by increasing the activation of NF-κB via SAM inhibition. SAM treatment effectively alleviated IMQ-induced psoriasis-like skin inflammation in mice. CONCLUSIONS Our study revealed the crucial role of PHGDH in antagonising psoriatic skin inflammation and indicated that targeting serine metabolism may represent a novel therapeutic strategy for treating psoriasis.
Collapse
Affiliation(s)
- Qinqin Meng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Leiqing Yao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhimiao Ma
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lu Guo
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ting Hu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yixin Luo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhengxiao Li
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Souza INDO, Roychaudhuri R, de Belleroche J, Mothet JP. d-Amino acids: new clinical pathways for brain diseases. Trends Mol Med 2023; 29:1014-1028. [PMID: 37770379 DOI: 10.1016/j.molmed.2023.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
Free d-amino acids (d-AAs) are emerging as a novel and important class of signaling molecules in many organs, including the brain and endocrine systems. There has been considerable progress in our understanding of the fundamental roles of these atypical messengers, with increasingly recognized implications in a wide range of neuropathologies, including schizophrenia (SCZ), epilepsy, Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), substance abuse, and chronic pain, among others. Research has enabled the discovery that d-serine, d-aspartate and more recently d-cysteine are essential for the healthy development and function of the central nervous system (CNS). We discuss recent progress that has profoundly transformed our vision of numerous physiological processes but has also shown how d-AAs are now offering therapeutic promise in clinical settings for several human diseases.
Collapse
Affiliation(s)
- Isis Nem de Oliveira Souza
- Biophotonics and Synapse Physiopathology Team, Laboratoire LuMIn UMR9024 Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupelec, 91190 Gif-sur-Yvette, France; Molecular Pharmacology Laboratory, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robin Roychaudhuri
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Birth Defects, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jacqueline de Belleroche
- Neurogenetics Group, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Jean-Pierre Mothet
- Biophotonics and Synapse Physiopathology Team, Laboratoire LuMIn UMR9024 Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupelec, 91190 Gif-sur-Yvette, France.
| |
Collapse
|