1
|
Ngawiset S, Ismail A, Murakami S, Pongsawasdi P, Rungrotmongkol T, Krusong K. Identification of crucial amino acid residues involved in large ring cyclodextrin synthesis by amylomaltase from Corynebacterium glutamicum. Comput Struct Biotechnol J 2023; 21:899-909. [PMID: 36698977 PMCID: PMC9860158 DOI: 10.1016/j.csbj.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
Amylomaltase can be used to synthesize large ring cyclodextrins (LR-CDs), applied as drug solubilizer, gene delivery vehicle and protein aggregation suppressor. This study aims to determine the functional amino acid positions of Corynebacterium glutamicum amylomaltase (CgAM) involved in LR-CD synthesis by site-directed mutagenesis approach and molecular dynamic simulation. Mutants named Δ167, Y23A, P228Y, E231Y, A413F and G417F were constructed, purified, and characterized. The truncated CgAM, Δ167 exhibited no starch transglycosylation activity, indicating that the N-terminal domain of CgAM is necessary for enzyme activity. The P228Y, A413F and G417F produced larger LR-CDs from CD36-CD40 as compared to CD29 by WT. A413F and G417F mutants produced significantly low LR-CD yield compared to the WT. The A413F mutation affected all tested enzyme activities (starch tranglycosylation, disproportionation and cyclization), while the G417F mutation hindered the cyclization activity. P228Y mutation significantly lowered the k cat of disproportionation activity, while E231Y mutant exhibited much higher k cat and K m values for starch transglycosylation, compared to that of the WT. In addition, Y23A mutation affected the kinetic parameters of starch transglycosylation and cyclization. Molecular dynamic simulation further confirmed these mutations' impacts on the CgAM and LR-CD interactions. Identified functional amino acids for LR-CD synthesis may serve as a model for future modification to improve the properties and yield of LR-CDs.
Collapse
Affiliation(s)
- Sirikul Ngawiset
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Abbas Ismail
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Shuichiro Murakami
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki-shi, Kanagawa 214–8571, Japan
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand,Program in Bioinformatics and Computational Chemistry, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kuakarun Krusong
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand,Corresponding author.
| |
Collapse
|
2
|
Research progresses on enzymatic modification of starch with 4-α-glucanotransferase. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
A 4-α-Glucanotransferase from Thermus thermophilus HB8: Secretory Expression and Characterization. Curr Microbiol 2022; 79:202. [PMID: 35604453 DOI: 10.1007/s00284-022-02856-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/27/2022] [Indexed: 11/03/2022]
Abstract
4-α-glucanotransferase (4GT, EC 2.4.1.25) catalyzes the breakdown of the α-1,4 glycosidic bonds of the starch main chain and forms new α-1,4 glycosidic bonds in the side chain, which is often used to optimize the physical and chemical properties of starch and to improve the quality of starch-based food. However, the low enzyme activity of 4GT limits its production and widespread application. Herein, the 4GT gene encoding 500 amino acids from Thermus thermophilus HB8 was cloned and expressed in Escherichia coli. The purified 4GT exhibited maximum activity at pH 7.0 and 60 °C and had a good stability at pH 6.0-8.0 and 30-60 °C. It was confirmed that 4GT possessed the catalytic function of extending the branch length of potato starch. Furthermore, the 4GT gene was successfully expressed extracellularly in Bacillus subtilis. Then, the enzyme yield of 4GT increased by 4.1 times through screening of different plasmids and hosts. Additionally, the fermentation conditions were optimized to enhance 4GT extracellular enzyme yield. Finally, a recombinant Bacillus subtilis with 299.9 U/mL enzyme yield of 4GT was obtained under the optimized fermentation process. In conclusion, this study provides a valuable reference for characterization and expression of food-grade enzymes.
Collapse
|
4
|
Krusong K, Ismail A, Wangpaiboon K, Pongsawasdi P. Production of Large-Ring Cyclodextrins by Amylomaltases. Molecules 2022; 27:molecules27041446. [PMID: 35209232 PMCID: PMC8875642 DOI: 10.3390/molecules27041446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Amylomaltase is a well-known glucan transferase that can produce large ring cyclodextrins (LR-CDs) or so-called cycloamyloses via cyclization reaction. Amylomaltases have been found in several microorganisms and their optimum temperatures are generally around 60–70 °C for thermostable amylomaltases and 30–45 °C for the enzymes from mesophilic bacteria and plants. The optimum pHs for mesophilic amylomaltases are around pH 6.0–7.0, while the thermostable amylomaltases are generally active at more acidic conditions. Size of LR-CDs depends on the source of amylomaltases and the reaction conditions including pH, temperature, incubation time, and substrate. For example, in the case of amylomaltase from Corynebacterium glutamicum, LR-CD productions at alkaline pH or at a long incubation time favored products with a low degree of polymerization. In this review, we explore the synthesis of LR-CDs by amylomaltases, structural information of amylomaltases, as well as current applications of LR-CDs and amylomaltases.
Collapse
Affiliation(s)
- Kuakarun Krusong
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand; (A.I.); (K.W.)
- Correspondence: ; Tel.: + 66-(0)2-218-5413
| | - Abbas Ismail
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand; (A.I.); (K.W.)
| | - Karan Wangpaiboon
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand; (A.I.); (K.W.)
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand;
| |
Collapse
|
5
|
Transglycosylation Properties of a Novel α-1,4-Glucanotransferase from Bacteroides thetaiotaomicron and Its Application in Developing an α-Glucosidase-Specific Inhibitor. J CHEM-NY 2018. [DOI: 10.1155/2018/2981596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, α-glucanotransferase from Bacteroides thetaiotaomicron was expressed in Escherichia coli and characterized. Conserved amino-acid sequence alignment showed that Bacteroides thetaiotaomicron α-glucanotransferase (BtαGTase) belongs to the glycoside hydrolase family 77. The enzyme exhibited optimal catalytic activity at 60°C and pH 3.0. BtαGTase catalyzed transglycosylation reactions that produced only glycosyl or maltosyl transfer products, which are preferable for the generation of transglycosylated products with high yield. The 1-deoxynojirimycin (DNJ) glycosylation product G1-DNJ was generated using BtαGTase, and the inhibitory effect of G1-DNJ was analyzed. A kinetic study of inhibition revealed that G1-DNJ inhibited α-glucosidase to a greater extent than did DNJ but did not show any inhibitory effects towards α-amylase, suggesting that G1-DNJ is a potential candidate for the prevention of diabetes.
Collapse
|
6
|
Park J, Rho SJ, Kim YR. Feasibility and characterization of the cycloamylose production from high amylose corn starch. Cereal Chem 2018. [DOI: 10.1002/cche.10102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiwoon Park
- Department of Biosystems & Biomaterials Science and Engineering; Seoul National University; Seoul Korea
| | - Shin-Joung Rho
- Center for Food and Bioconvergence; Seoul National University; Seoul Korea
| | - Yong-Ro Kim
- Department of Biosystems & Biomaterials Science and Engineering; Seoul National University; Seoul Korea
- Center for Food and Bioconvergence; Seoul National University; Seoul Korea
| |
Collapse
|
7
|
Tumhom S, Krusong K, Kidokoro SI, Katoh E, Pongsawasdi P. Significance of H461 at subsite +1 in substrate binding and transglucosylation activity of amylomaltase from Corynebacterium glutamicum. Arch Biochem Biophys 2018; 652:3-8. [PMID: 29885290 DOI: 10.1016/j.abb.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 10/14/2022]
Abstract
Amylomaltase (AM) catalyzes inter- and intra-molecular transglycosylation reactions of glucan to yield linear and cyclic oligosaccharide products. The functional roles of the conserved histidine at position 461 in the active site of AM from Corynebacterium glutamicum (CgAM) was investigated. H461 A/S/D/R/W were constructed, their catalytic properties were compared to the wild-type (WT). A significant decrease in transglucosylation activities was observed, especially in H461A mutant, while hydrolysis activity was barely affected. The transglucosylation factor of the H461A-CgAM was decreased by 8.6 folds. WT preferred maltotriose (G3) as substrate for disproportionation reaction, but all H461 mutants showed higher preference for maltose (G2). Using G3 substrate, kcat/Km values of H461 mutated CgAMs were 40-64 folds lower, while the Km values were twice higher than those of WT. All mutants could not produce large-ring cyclodextrin (LR-CD) product. The heat capacity profile indicated that WT had higher thermal stability than H461A. The X-ray structure of WT showed two H-bonds between H461 and heptasaccharide analog at subsite +1, while no such bonding was observed from the model structure of H461A. The importance of H461 on substrate binding with CgAM was evidenced. We are the first to mutate an active site histidine in AM to explore its function.
Collapse
Affiliation(s)
- Suthipapun Tumhom
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kuakarun Krusong
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Structural and Computational Biology Research Group, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Shun-Ichi Kidokoro
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Etsuko Katoh
- Structural Biology Research Unit, Advanced Analysis Center, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, 305-8617, Ibaraki, Japan
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
Whitney K, Reuhs BL, Ovando Martinez M, Simsek S. Analysis of octenylsuccinate rice and tapioca starches: Distribution of octenylsuccinic anhydride groups in starch granules. Food Chem 2016; 211:608-15. [DOI: 10.1016/j.foodchem.2016.05.096] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/20/2016] [Accepted: 05/14/2016] [Indexed: 11/29/2022]
|
9
|
Chu S, Hong JS, Rho SJ, Park J, Han SI, Kim YW, Kim YR. High-yield cycloamylose production from sweet potato starch using Pseudomonas isoamylase and Thermus aquaticus 4-α-glucanotransferase. Food Sci Biotechnol 2016; 25:1413-1419. [PMID: 30263424 DOI: 10.1007/s10068-016-0220-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 12/01/2022] Open
Abstract
An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from Pseudomonas sp.) and 4-α-glucanotransferase (from Thermus aquaticus, TAαGT). Starch was debranched by isoamylase for 8 h and subsequently reacted with TAαGT for 12 h. The yield and purity of CA products were determined using HPSEC and MALDI-TOFMS, respectively. Consequently, the maximum yield was 48.56%, exhibiting the highest CA production efficiency ever reported from starch. The CA products showed a wide range of the degree of polymerization (DP) with the minimum DP of 5. CA was also produced by simultaneous treatment of isoamylase and TAαGT. The yield was 3.31%, and the final products were contaminated by multiple branched and linear molecules. This result suggests that a former reaction condition (the sequential addition of isoamylase and TAαGT) is preferable for producing CA from sweet potato starch.
Collapse
Affiliation(s)
- Sun Chu
- 1Center for Food and Bioconvergence, Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826 Korea
| | - Jung Sun Hong
- 1Center for Food and Bioconvergence, Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826 Korea
| | - Shin-Joung Rho
- 1Center for Food and Bioconvergence, Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826 Korea
| | - Jiyoung Park
- Department of Central Area Crop Science, NICS, Suwon, Gyeonggi, 16613 Korea
| | - Sang-Ik Han
- Department of functional Crop, Functional Crop Resource Development Division, NICS, RDA, Miryang, Gyeongnam, 50424 Korea
| | - Young-Wan Kim
- 4Department of Food and Biotechnology, Korea University, Sejong, 30019 Korea
| | - Yong-Ro Kim
- 1Center for Food and Bioconvergence, Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826 Korea
| |
Collapse
|
10
|
Janeček Š, Gabriško M. Remarkable evolutionary relatedness among the enzymes and proteins from the α-amylase family. Cell Mol Life Sci 2016; 73:2707-25. [PMID: 27154042 PMCID: PMC11108405 DOI: 10.1007/s00018-016-2246-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022]
Abstract
The α-amylase is a ubiquitous starch hydrolase catalyzing the cleavage of the α-1,4-glucosidic bonds in an endo-fashion. Various α-amylases originating from different taxonomic sources may differ from each other significantly in their exact substrate preference and product profile. Moreover, it also seems to be clear that at least two different amino acid sequences utilizing two different catalytic machineries have evolved to execute the same α-amylolytic specificity. The two have been classified in the Cabohydrate-Active enZyme database, the CAZy, in the glycoside hydrolase (GH) families GH13 and GH57. While the former and the larger α-amylase family GH13 evidently forms the clan GH-H with the families GH70 and GH77, the latter and the smaller α-amylase family GH57 has only been predicted to maybe define a future clan with the family GH119. Sequences and several tens of enzyme specificities found throughout all three kingdoms in many taxa provide an interesting material for evolutionarily oriented studies that have demonstrated remarkable observations. This review emphasizes just the three of them: (1) a close relatedness between the plant and archaeal α-amylases from the family GH13; (2) a common ancestry in the family GH13 of animal heavy chains of heteromeric amino acid transporter rBAT and 4F2 with the microbial α-glucosidases; and (3) the unique sequence features in the primary structures of amylomaltases from the genus Borrelia from the family GH77. Although the three examples cannot represent an exhaustive list of exceptional topics worth to be interested in, they may demonstrate the importance these enzymes possess in the overall scientific context.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia.
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 91701, Trnava, Slovakia.
| | - Marek Gabriško
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia
| |
Collapse
|
11
|
Mehboob S, Ahmad N, Rashid N, Imanaka T, Akhtar M. Pcal_0768, a hyperactive 4-α-glucanotransferase from Pyrobacculum calidifontis. Extremophiles 2016; 20:559-66. [PMID: 27295220 DOI: 10.1007/s00792-016-0850-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/31/2016] [Indexed: 12/01/2022]
Abstract
Genome sequence of hyperthermophilic archaeon Pyrobaculum calidifontis revealed the presence of an open reading frame, Pcal_0768, corresponding to a putative 4-α-glucanotranferase belonging to glycoside hydrolases (GH) family 77. We have produced, in Escherichia coli, and purified recombinant Pcal_0768 which exhibited high disproportionation (690 U mg(-1)) activity. To the best of our knowledge, this is the highest ever reported activity for any member of family GH77. Maltooligosaccharides, when used as sole substrates, were disproportionated into linear maltooligohomologues. The analysis of the reaction end products revealed no evidence for the production of cycloamyloses. Catalytic activity of the enzyme remained unchanged in the presence or the absence of ionic and nonionic detergents. γ-cyclodextrin, an inhibitor of 4-α-glucanotransferases, did not show any inhibitory effect on Pcal_0768 activity. These properties make Pcal_0768 a potential candidate for starch processing industry.
Collapse
Affiliation(s)
- Sumaira Mehboob
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Nasir Ahmad
- Institute of Agricultural Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| | - Tadayuki Imanaka
- The Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Muhammad Akhtar
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.,School of Biological Sciences, University of Southampton, Southampton, SO16 7PX, UK
| |
Collapse
|
12
|
Antifungal activity improved by coproduction of cyclodextrins and anabaenolysins in Cyanobacteria. Proc Natl Acad Sci U S A 2015; 112:13669-74. [PMID: 26474830 DOI: 10.1073/pnas.1510432112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclodextrins are cyclic oligosaccharides widely used in the pharmaceutical industry to improve drug delivery and to increase the solubility of hydrophobic compounds. Anabaenolysins are lipopeptides produced by cyanobacteria with potent lytic activity in cholesterol-containing membranes. Here, we identified the 23- to 24-kb gene clusters responsible for the production of the lipopeptide anabaenolysin. The hybrid nonribosomal peptide synthetase and polyketide synthase biosynthetic gene cluster is encoded in the genomes of three anabaenolysin-producing strains of Anabaena. We detected previously unidentified strains producing known anabaenolysins A and B and discovered the production of new variants of anabaenolysins C and D. Bioassays demonstrated that anabaenolysins have weak antifungal activity against Candida albicans. Surprisingly, addition of the hydrophilic fraction of the whole-cell extracts increased the antifungal activity of the hydrophobic anabaenolysins. The fraction contained compounds identified by NMR as α-, β-, and γ-cyclodextrins, which undergo acetylation. Cyclodextrins have been used for decades to improve the solubility and bioavailability of many drugs including antifungal compounds. This study shows a natural example of cyclodextrins improving the solubility and efficacy of an antifungal compound in an ancient lineage of photosynthetic bacteria.
Collapse
|
13
|
Affinity purification of 4-α-glucanotransferase through formation of complex with insoluble amylose. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
14
|
In silico analysis of family GH77 with focus on amylomaltases from borreliae and disproportionating enzymes DPE2 from plants and bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1260-8. [PMID: 26006747 DOI: 10.1016/j.bbapap.2015.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/14/2015] [Accepted: 05/17/2015] [Indexed: 11/21/2022]
Abstract
The CAZy glycoside hydrolase (GH) family GH77 is a monospecific family containing 4-α-glucanotransferases that if from prokaryotes are known as amylomaltases and if from plants including algae are known as disproportionating enzymes (DPE). The family GH77 is a member of the α-amylase clan GH-H. The main difference discriminating a GH77 4-α-glucanotransferase from the main GH13 α-amylase family members is the lack of domain C succeeding the catalytic (β/α)8-barrel. Of more than 2400 GH77 members, bacterial amylomaltases clearly dominate with more than 2300 sequences; the rest being approximately equally represented by Archaea and Eucarya. The main goal of the present study was to deliver a detailed bioinformatics study of family GH77 (416 collected sequences) focused on amylomaltases from borreliae (containing unique sequence substitutions in functionally important positions) and plant DPE2 representatives (possessing an insert of ~140 residues between catalytic nucleophile and proton donor). The in silico analysis reveals that within the genus of Borrelia a gradual evolutionary transition from typical bacterial Thermus-like amylomaltases may exist to family-GH77 amylomaltase versions that currently possess progressively mutated the most important and otherwise invariantly conserved positions. With regard to plant DPE2, a large group of bacterial amylomaltases represented by the amylomaltase from Escherichia coli with a longer N-terminus was identified as a probable intermediary connection between Thermus-like and DPE2-like (existing also among bacteria) family GH77 members. The presented results concerning both groups, i.e. amylomaltases from borreliae and plant DPE2 representatives (with their bacterial counterpart), may thus indicate the direction for future experimental studies.
Collapse
|
15
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
16
|
Expression and characterization of 4-α-glucanotransferase genes from Manihot esculenta Crantz and Arabidopsis thaliana and their use for the production of cycloamyloses. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Rudeekulthamrong P, Sawasdee K, Kaulpiboon J. Production of long-chain isomaltooligosaccharides from maltotriose using the thermostable amylomaltase and transglucosidase enzymes. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0777-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Altered large-ring cyclodextrin product profile due to a mutation at Tyr-172 in the amylomaltase of Corynebacterium glutamicum. Appl Environ Microbiol 2012; 78:7223-8. [PMID: 22865069 DOI: 10.1128/aem.01366-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium glutamicum amylomaltase (CgAM) catalyzes the formation of large-ring cyclodextrins (LR-CDs) with a degree of polymerization of 19 and higher. The cloned CgAM gene was ligated into the pET-17b vector and used to transform Escherichia coli BL21(DE3). Site-directed mutagenesis of Tyr-172 in CgAM to alanine (Y172A) was performed to determine its role in the control of LR-CD production. Both the recombinant wild-type (WT) and Y172A enzymes were purified to apparent homogeneity and characterized. The Y172A enzyme exhibited lower disproportionation, cyclization, and hydrolysis activities than the WT. The k(cat)/K(m) of the disproportionation reaction of the Y172A enzyme was 2.8-fold lower than that of the WT enzyme. The LR-CD product profile from enzyme catalysis depended on the incubation time and the enzyme concentration. Interestingly, the Y172A enzyme showed a product pattern different from that of the WT CgAM at a long incubation time. The principal LR-CD products of the Y172A mutated enzyme were a cycloamylose mixture with a degree of polymerization of 28 or 29 (CD28 or CD29), while the principal LR-CD product of the WT enzyme was CD25 at 0.05 U of amylomaltase. These results suggest that Tyr-172 plays an important role in determining the LR-CD product profile of this novel CgAM.
Collapse
|
19
|
Do HV, Lee EJ, Park JH, Park KH, Shim JY, Mun S, Kim YR. Structural and physicochemical properties of starch gels prepared from partially modified starches using Thermus aquaticus 4-α-glucanotransferase. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Yoo SH, Lee CS, Kim BS, Shin M. The properties and molecular structures of gusiljatbam starch compared to those of acorn and chestnut starches. STARCH-STARKE 2012. [DOI: 10.1002/star.201100104] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Kim JH, Wang R, Lee WH, Park CS, Lee S, Yoo SH. One-pot synthesis of cycloamyloses from sucrose by dual enzyme treatment: combined reaction of amylosucrase and 4-α-glucanotransferase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5044-5051. [PMID: 21434692 DOI: 10.1021/jf2002238] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Amylose-like α-(1,4)-glucan known as the most favorable substrate for the enzymatic production of cycloamyloses (CAs) using 4-α-glucanotransferase has a solubility issue, which requires an additional solubilization process. In our study, two glucosyltransferases, Synechocystis 4-α-glucanotransferase and Neisseria amylosucrase, were adopted to develop an efficient biocatalytic production process of CAs directly from sucrose. From one-pot synthesis, the maximum CA yield (9.6%, w/w) with 0.3 M sucrose was achieved with 10 units/mL of amylosucrase and 0.1 unit/mL of 4-α-glucanotransferase at 40 °C for a 3 h reaction in a simultaneous dual enzyme reaction mode. The size of linear α-(1,4)-glucan was positively related to the CA productivity by 4-α-glucanotransferase in a hyperbolic manner. Using our innovative bioprocess, there was no practical limitation on the initial sucrose concentration and no use of insoluble linear α-(1,4)-glucan substrate. Consequently, the concomitant dual enzyme reaction converted sucrose directly to CAs via in situ transient linear α-(1,4)-glucan as an soluble intermediate.
Collapse
Affiliation(s)
- Jung-Hwan Kim
- Department of Food Science and Technology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|