1
|
Blastocyst Formation Rate and Transgene Expression are Associated with Gene Insertion into Safe and Non-Safe Harbors in the Cattle Genome. Sci Rep 2017; 7:15432. [PMID: 29133827 PMCID: PMC5684190 DOI: 10.1038/s41598-017-15648-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/23/2017] [Indexed: 12/02/2022] Open
Abstract
Integration target site is the most important factor in successful production of transgenic animals. However, stable expression of transgene without disturbing the function of the host genome depends on promoter methylation, transgene copy number and transcriptional activity in integration regions. Recently, new genome-editing tools have made much progress, however little attention has been paid to the identification of genomic safe harbors. The aim of the present study was to evaluate the effect of insertion site, promoter and copy number of transgene on the production of embryos from cattle fibroblast cells following somatic cell nuclear transfer (SCNT). So, three donor vectors were constructed with EGFP gene under control of different promoters. Each vector was integrated into safe and non-safe harbors in the genome using phiC31 integrase. Transgenic clones with a single copy of each vector were isolated. Each clone was analyzed to find site and frequency of integration, expression level and promoter methylation before SCNT, as well as transgene expression level and blastocyst formation rate after SCNT. The data obtained demonstrated that BF5, as a safe harbor, not only showed a stable expression, but also the rate of in vitro-produced embryos from BF5-clones are similar to that of non-transfected cells.
Collapse
|
2
|
Murakami T, Saitoh I, Sato M, Inada E, Soda M, Oda M, Domon H, Iwase Y, Sawami T, Matsueda K, Terao Y, Ohshima H, Noguchi H, Hayasaki H. Isolation and characterization of lymphoid enhancer factor-1-positive deciduous dental pulp stem-like cells after transfection with a piggyBac vector containing LEF1 promoter-driven selection markers. Arch Oral Biol 2017; 81:110-120. [PMID: 28500952 DOI: 10.1016/j.archoralbio.2017.04.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 03/28/2017] [Accepted: 04/30/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Lymphoid enhancer-binding factor-1 (LEF1) is a 48-kD nuclear protein that is expressed in pre-B and T cells. LEF1 is also an important member of the Wnt/β-catenin signaling pathway that plays important roles in the self-renewal and differentiation of embryonic stem cells. We speculated that LEF1 might function in the stem cells from human exfoliated deciduous teeth (SHED). In this study, we attempted to isolate such LEF1-positive cells from human deciduous dental pulp cells (HDDPCs) by genetic engineering technology, using the human LEF1 promoter. DESIGN A piggyBac transposon plasmid (pTA-LEN) was introduced into HDDPCs, using the Neon® transfection system. After G418 selection, the emerging colonies were assessed for EGFP-derived fluorescence by fluorescence microscopy. Reverse transcription polymerase chain reaction (RT-PCR) analysis was performed using RNA isolated from these colonies to examine stem cell-specific transcript expression. Osteoblastic or neuronal differentiation was induced by cultivating the LEF1-positive cells with differentiation-inducing medium. RESULTS RT-PCR analysis confirmed the expression of several stem cell markers, including OCT3/4, SOX2, REX1, and NANOG, in LEF1-positive HDDPCs, which could be differentiated into osteoblasts and neuronal cells. CONCLUSIONS The isolated LEF1-positive HDDPCs exhibited the properties of stem cells, suggesting that LEF1 might serve as a marker for SHED.
Collapse
Affiliation(s)
- Tomoya Murakami
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan.
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Miki Soda
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Masataka Oda
- Department of Microbiology and Infection Control Science Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yoko Iwase
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Tadashi Sawami
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Kazunari Matsueda
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hayato Ohshima
- Division of Anatomy and Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Graduate University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Haruaki Hayasaki
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| |
Collapse
|
3
|
Sakurai T, Shindo T, Sato M. Noninheritable Maternal Factors Useful for Genetic Manipulation in Mammals. Results Probl Cell Differ 2017; 63:495-510. [PMID: 28779331 DOI: 10.1007/978-3-319-60855-6_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian early embryogenesis is supported by maternal factors, such as messenger RNA (mRNA) and proteins, produced and accumulated during oogenesis at least up to the stage when zygotic activation commences. These maternal factors are involved in biologically important events such as epigenetic activation, reprogramming, and mitochondrial growth. Most of these maternal mRNAs are degraded by the 2-cell to 4 ~ 8-cell stages. Maternal proteins, which are produced during oogenesis or by the maternal mRNAs, are degraded by the 4 ~ 8-cell stage. In other words, the maternal factors exist during specific stages of early embryogenesis. In this chapter, we will briefly summarize the property of these maternal factors and mention possible applications of these factors for developing new reproduction engineering-related technologies and producing genetically modified animals. More specifically, we will show the usefulness of maternally accumulated Cas9 protein as a promising tool for CRISPR-/Cas9-based simultaneous genetic modification of multiple loci in mammals.
Collapse
Affiliation(s)
- Takayuki Sakurai
- Department of Cardiovascular Research, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan. .,Basic Research Division for Next-Generation Disease Models and Fundamental Technology, Research Center for Next Generation Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| | - Takayuki Shindo
- Department of Cardiovascular Research, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.,Basic Research Division for Next-Generation Disease Models and Fundamental Technology, Research Center for Next Generation Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| |
Collapse
|
4
|
Long-term and efficient expression of human β-globin gene in a hematopoietic cell line using a new site-specific integrating non-viral system. Gene Ther 2015; 22:663-74. [DOI: 10.1038/gt.2015.30] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 03/07/2015] [Accepted: 03/16/2015] [Indexed: 11/08/2022]
|
5
|
Nakanishi H, Higuchi Y, Yamashita F, Hashida M. Targeted gene integration using the combination of a sequence-specific DNA-binding protein and phiC31 integrase. J Biotechnol 2014; 186:139-47. [PMID: 25038544 DOI: 10.1016/j.jbiotec.2014.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/06/2014] [Accepted: 07/09/2014] [Indexed: 01/04/2023]
Abstract
PhiC31 integrase-based vectors can integrate therapeutic genes selectively into attP or pseudo-attP sites in genomes, but considerable numbers of pseudo-attP sites in human genomes exist inside endogenous gene-coding regions. To avoid endogenous gene disruptions, we aimed to enhance the integration site-specificity of the phiC31 integrase-based vector using a sequence-specific DNA-binding protein containing Gal4 and LexA DNA-binding motifs. The dual DNA-binding protein was designed to tether the UAS-containing donor vector to the target sequence, the LexA operator, and restrict integration to sites close to the LexA operator. To analyze the site-specificity in chromosomal integration, a human cell line having LexA operators on the genome was established, and the cell line was transfected with donor vectors expressing the DNA-binding protein and the phiC31 integrase expression vector (helper vector). Quantitative PCR indicated that integration around the LexA operator was 26-fold higher with the UAS-containing donor vector than with the control. Sequence analysis confirmed that the integration occurred around the LexA operator. The dual DNA-binding protein-based targeted integration strategy developed herein would allow safer and more reliable genetic manipulations for various applications, including gene and cell therapies.
Collapse
Affiliation(s)
- Hideyuki Nakanishi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Japan Society for the Promotion of Science (JSPS), Sumitomo-Ichibancho FS Bldg., 8 Ichibancho, Chiyoda-ku, Tokyo 102-8472, Japan
| | - Yuriko Higuchi
- Institute for Innovative NanoBio Drug Discovery and Development, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; PRESTO, Japan Science and Technology Agency (JST), Kawaguchi Center Building 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, 69 Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
6
|
Improved site-specific recombinase-based method to produce selectable marker- and vector-backbone-free transgenic cells. Sci Rep 2014; 4:4240. [PMID: 24577484 PMCID: PMC3937794 DOI: 10.1038/srep04240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/06/2014] [Indexed: 12/30/2022] Open
Abstract
PhiC31 integrase-mediated gene delivery has been extensively used in gene therapy and animal transgenesis. However, random integration events are observed in phiC31-mediated integration in different types of mammalian cells; as a result, the efficiencies of pseudo attP site integration and evaluation of site-specific integration are compromised. To improve this system, we used an attB-TK fusion gene as a negative selection marker, thereby eliminating random integration during phiC31-mediated transfection. We also excised the selection system and plasmid bacterial backbone by using two other site-specific recombinases, Cre and Dre. Thus, we generated clean transgenic bovine fetal fibroblast cells free of selectable marker and plasmid bacterial backbone. These clean cells were used as donor nuclei for somatic cell nuclear transfer (SCNT), indicating a similar developmental competence of SCNT embryos to that of non-transgenic cells. Therefore, the present gene delivery system facilitated the development of gene therapy and agricultural biotechnology.
Collapse
|
7
|
|
8
|
Luo Y, Liu J, Liu Q, Zheng L, Wang Y, Su J, Hu G, Zhang Y. Chicken hypersensitive site-4 insulator increases human serum albumin expression in bovine mammary epithelial cells modified with phiC31 integrase. Biotechnol Lett 2012; 35:529-37. [PMID: 23264267 DOI: 10.1007/s10529-012-1125-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/12/2012] [Indexed: 12/15/2022]
Abstract
Achieving high expression levels of recombinant human serum albumin (HSA) for purification is a solution for the large amount of plasma-derived HSA needed in therapeutic applications. Here, we employed phiC31 integrase system and chicken hypersensitive site-4 (cHS4) insulators to construct a HSA expression vector for high-level HSA expression. The phiC31 integrase system mediated efficient transgene integration in bovine mammary epithelial cells (bMECs). A preferred pseudo attP site, which had 38 % identity with the 39 bp wild-type attP sequence, was detected in six out of 55 bMEC colonies. Addition of the cHS4 insulator to the phiC31 integrase system resulted in 8-20-fold increases of HSA expression compared with that of using integrase alone. Moreover, the reverse-oriented cHS4 insulator in the phiC31 integrase system provided the optimal level of HSA expression in bMECs.
Collapse
Affiliation(s)
- Yan Luo
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling 712100, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
RoxA is an extracellular c-type diheme cytochrome secreted by Xanthomonas sp. strain 35Y during growth on rubber. RoxA cleaves poly(cis-1,4-isoprene) to 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al (ODTD). Analysis of the RoxA structure revealed that Phe317 is located in close proximity (≈5 Å) to the N-terminal heme that presumably represents the active site. To find evidence of whether Phe317 is important for catalysis, we changed it to tyrosine, tryptophan, leucine, histidine, or alanine. All five RoxA muteins were expressed after integration of the respective gene into the chromosome of a Xanthomonas sp. ΔroxA strain. Residual clearing zone formation on opaque latex agar was found for Xanthomonas sp. strains expressing the Phe317Leu, Phe317Ala, or Phe317His variant (wild type > Leu > Ala > His). Strains in which Phe317 was changed to tyrosine or tryptophan were inactive. Phe317Ala and Phe312Leu RoxA muteins were purified, and polyisoprene cleavage activities were reduced to ≈3% and 10%, respectively. UV-visible spectroscopy of RoxA muteins confirmed that both heme groups were present in an oxidized form, but spectral responses to the addition of low-molecular-weight (inhibitory) ligand molecules such as imidazole and pyridine were different from those of wild-type RoxA. Our results show that residue 317 is involved in interaction with substrates. This is the first report on structure-function analysis of a polyisoprene-cleaving enzyme and on the identification of an amino acid that is essential for polyisoprene cleavage activity.
Collapse
|
10
|
Xie F, Ma Q, Jiang S, Ren Z, Wang J, Huang S, Zeng F, Zeng Y. Adjusting the attB site in donor plasmid improves the efficiency of ΦC31 integrase system. DNA Cell Biol 2012; 31:1335-40. [PMID: 22489575 DOI: 10.1089/dna.2011.1590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
ΦC31 integrase, a site-specific recombinase, can catalyze integration of circular DNA bearing attB site into pseudo attP sites in mammalian genomes. However, the integration efficiency mediated by integrase is relatively low. Our study centered on the investigation of the impact of the position, orientation, and number of attBs in the donor plasmid on the efficiency of ΦC31 integrase system. Donor plasmids bearing various types of attBs (including forward and reverse directions, tandem, and intersperse) and reporter enhanced green fluorescent protein (EGFP) were constructed. The plasmids plus helper plasmid encoding integrase were co-transfected into HeLa cells. After G418 selection, the resistant cell colonies were counted for calculating chromosomal integration frequency. EGFP expression was detected by fluorescence-activated cell sorter and enzyme-linked immunosorbent assay analysis. The results showed that efficiency of integration mediated by integrase accounted for 70% ± 7.1% of total integration events in the transfected HeLa cells. Compared with a forward orientation of attB in donor plasmid, a reverse direction of attB or interspersed attBs showed 1.5- or 2.8-fold increase in integration efficiency, respectively, while tandem attBs in donor plasmids caused a decreased efficiency of integration. We conclude that the adjustment of attB sites in donor plasmids may be of value for gene therapy and routine genetic engineering by using ΦC31 integrase system.
Collapse
Affiliation(s)
- Fei Xie
- Shanghai Institute of Medical Genetics, Children's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|