1
|
Tang Y, Chen J, Xiao Z, Liu Z, Xu L, Qin Q, Wang Y, Xu Y. Humin and biochar accelerated microbial reductive dechlorination of 2,4,6-trichlorophenol under weak electrical stimulation. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129671. [PMID: 36104900 DOI: 10.1016/j.jhazmat.2022.129671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The extracellular electron transfer (EET) is regarded as one of the crucial factors that limit the application of the bioelectrochemical system (BES). In this study, two different solid-phase redox mediators (RMs), biochar (1.2 g/L, T-B) and humin (1.2 g/L, T-H) were used for boosting the microorganisms accessing the electrons required for 2,4,6-TCP dechlorination under weak electrical stimulation (-0.278 V vs. Standard hydrogen electrode). BES with dissolved RM anthraquinone-2,6-disulfonate (AQDS 0.5 mmol/L, T-A) was used as a comparison. The results showed that dechlorination of 2,4,6-TCP could be greatly accelerated by biochar (1.78 d-1) and humin (1.50 d-1) than AQDS (0.24 d-1) and no RM control (T-M, 0.27 d-1). Moreover, phenol became the predominant dechlorination product in T-H (78.5 %) and T-B (63.0 %) instead of 4-CP in T-M (67.1 %) and T-A (89.8 %). Pseudomonas, Sulfurospirillum, Desulfuromonas, Dehalobacter, Anaeromyxobacter, and Dechloromonas belonging to Proteobacteria or Firmicutes rather than Chloroflexi might be responsible for the dechlorination activity. Notably, different RMs tended to stimulate distinct electroactive bacteria. Pseudomonas was the most abundant microorganism in T-M (41.92 %) and T-A (17.24 %), while Rhodobacter was most prevalent in T-H (20.04 %) and Azonexus was predominant in T-B (48.48 %). This study is essential in advancing the understanding of EET in BES for microbial degradation of organohalide contaminants under weak electrical stimulation.
Collapse
Affiliation(s)
- Yanqiang Tang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Jiafeng Chen
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Yancheng City Planning and Research Information Center, Yancheng, Jiangsu 224000, China
| | - Zhixing Xiao
- College of Urban Construction, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Zheming Liu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Lei Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Qingdong Qin
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yuqiao Wang
- Ctr Photoelectrochem & Devices, School of Chemistry and Chemistry Engineering, Southeast University, Nanjing, Jiangsu 211189, China
| | - Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
2
|
Baquero ES, Rodríguez DC, Peñuela GA. Individual and synergic effect of carbamazepine and diclofenac in the removal of organic matter from an expanded granular bed anaerobic reactor. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:1620-1635. [PMID: 35290235 DOI: 10.2166/wst.2022.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Due to the negative effects caused to the natural environment by the presence of pharmaceutical-type traces and other pollutants in wastewater, it is necessary to develop and optimize efficient treatment systems. This study evaluated the effect of carbamazepine (CBZ) and diclofenac (DCF) on the behavior of seven EGSB (expanded granular sludge bed) anaerobic reactors at laboratory scale, using chromatographic and physicochemical analyses of the influent, effluent, and the biomass contained in the reactors. The results showed that CBZ had a greater effect on the removal and behavior of microorganisms than DCF, with average efficiencies of 34.04 ± 18.58%, 20.76 ± 8.51% and 16.29 ± 11.08% during stage II, III and IV, respectively, for CBZ, and 92.37 ± 12.74%, 26.77 ± 5.90% and 22.28 ± 9.60% during stage II, III and IV, respectively, for DCF. Additionally, it was found that the interaction of the co-substrate used (sodium acetate) in conjunction with the pharmaceutical compounds decreased the efficiency of the system in terms of the removal of analytes.
Collapse
Affiliation(s)
- Eva Sandrith Baquero
- Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia E-mail:
| | - Diana C Rodríguez
- Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia E-mail:
| | - Gustavo A Peñuela
- Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia E-mail:
| |
Collapse
|
3
|
Song J, Zhao Q, Guo J, Yan N, Chen H, Sheng F, Lin Y, An D. The microbial community responsible for dechlorination and benzene ring opening during anaerobic degradation of 2,4,6‑trichlorophenol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1368-1376. [PMID: 30360268 DOI: 10.1016/j.scitotenv.2018.09.300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/22/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
This study describes the dechlorination ability of acclimated biomass, the high-throughput sequencing of the 16S ribosomal RNA (rRNA) gene of such microorganisms, and the analysis of their community structure in relation to special functions. Two types of acclimated biomass (AB-1 and AB-2) were obtained via different acclimated treatment processes and were used to degrade 2,4,6‑trichlorophenol. The degradation pathway and characteristics of trichlorophenol degradation were different between the two groups. AB-1 degraded trichlorophenol only to 4-chlorophenol. AB-2 completely dechlorinated trichlorophenol and opened the benzene ring. The 16S rRNA high-throughput sequencing method was employed to examine the microbial diversity. It was found that the microbial richness and diversity of AB-1 were higher than those of AB-2. Firmicutes and Bacteroidetes were 2.7-fold and 4.3-fold more abundant, respectively, in AB-1 than in AB-2. Dechlorination bacteria in AB-1 mainly included Desulfobulbus, Desulfovibrio, Dechloromonas, and Geobacter. The above-mentioned bacteria were less abundant in AB-2, but the abundance of Desulfomicrobium was twofold higher in AB-2 than in AB-1. The two types of acclimated biomass contained different hydrogen (H2)-producing bacteria. AB-2 showed higher abundance and diversity of hydrogen-producing bacteria. There was no Ignavibacteriae in AB-1, whereas its abundance in AB-2 was 8.4%. In this biomass, Ignavibacteriae was responsible for opening of the benzene ring. This study indicates that the abundance and diversity of microorganisms are not necessarily beneficial to the formation of a functional dechlorinating community. The H2-producing bacteria (which showed greater abundance and diversity) and Ignavibacterium were assumed to be core functional populations that gave AB-2 stronger dechlorination and phenol-degradation abilities. Control of lower oxidation reduction potential (Eh) and higher temperatures by means of fresh aerobic activated sludge as the starting microbial group, caused rapid complete dechlorination of 2,4,6‑trichlorophenol and benzene ring opening.
Collapse
Affiliation(s)
- Jiaxiu Song
- College of Life and Environmental Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, PR China
| | - Qi Zhao
- College of Life and Environmental Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, PR China
| | - Jun Guo
- College of Life and Environmental Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, PR China
| | - Ning Yan
- College of Life and Environmental Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, PR China
| | - Huidong Chen
- College of Life and Environmental Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, PR China
| | - Fanfan Sheng
- School of Marxism, Tongji University, 1239 Siping road, Shanghai 200092, PR China
| | - Yujin Lin
- Department of Environmental Science & Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, PR China
| | - Dong An
- Department of Environmental Science & Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
4
|
Surkatti R, Al-Zuhair S. Microalgae cultivation for phenolic compounds removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33936-33956. [PMID: 30353440 DOI: 10.1007/s11356-018-3450-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
Microalgae are promising sustainable and renewable sources of oils that can be used for biodiesel production. In addition, they contain important compounds, such as proteins and pigments, which have large applications in the food and pharmaceutical industries. Combining the production of these valuable products with wastewater treatment renders the cultivation of microalgae very attractive and economically feasible. This review paper presents and discusses the current applications of microalgae cultivation for wastewater treatment, particularly for the removal of phenolic compounds. The effects of cultivation conditions on the rate of contaminants removal and biomass productivity, as well as the chemical composition of microalgae cells are also discussed.
Collapse
Affiliation(s)
- Riham Surkatti
- Chemical Engineering Department, United Arab Emirates University, 15551, Al-Ain, United Arab Emirates
| | - Sulaiman Al-Zuhair
- Chemical Engineering Department, United Arab Emirates University, 15551, Al-Ain, United Arab Emirates.
| |
Collapse
|
5
|
Effect of o-chlorophenol concentration on biomass during sulfate-reduction dechlorination in two different systems. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Sharma P, Melkania U. Effect of phenolic compounds on hydrogen production from municipal solid waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 78:115-123. [PMID: 32559894 DOI: 10.1016/j.wasman.2018.05.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 06/11/2023]
Abstract
The present study evaluates the effect of phenolic inhibitors viz. m-cresol, pentachlorophenol, bisphenol-A, and catechol on hydrogen production from anaerobic digestion of organic fraction of the municipal solid waste. Various concentration range of phenolic compounds (0.5, 2.5, 5.0, 10 and 25 mg/L) was applied. The results revealed that the inhibition coefficient of pentachlorophenol was highest among all the inhibitors resulting in lowest hydrogen production and yield. In control, the cumulative hydrogen production was 227.9 ± 10.5 mL which declined to a minimum of 93.4 ± 10.1 mL, 36.4 ± 10.1 mL, 58.9 ± 10.4 mL and 85.8 ± 10.3 mL for experimental batches supplemented with m-cresol, pentachlorophenol, bisphenol-A and catechol respectively. The corresponding decline in the hydrogen yield was 28.0%, 43.8%, 37.1% and 31.8% respectively. Further analysis revealed that inhibitors were completely removed up to a concentration not exceeding 0.25 mg/L. However, at higher concentrations, inhibitors removal efficiency was declined. COD removal efficiency was also negatively affected by inhibitors.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Environmental Science, GB Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India.
| | - Uma Melkania
- Department of Environmental Science, GB Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India
| |
Collapse
|
7
|
García-Mancha N, Monsalvo VM, Puyol D, Rodriguez JJ, Mohedano AF. Enhanced anaerobic degradability of highly polluted pesticides-bearing wastewater under thermophilic conditions. JOURNAL OF HAZARDOUS MATERIALS 2017; 339:320-329. [PMID: 28658641 DOI: 10.1016/j.jhazmat.2017.06.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 06/07/2023]
Abstract
This work presents a sustainable and cost-competitive solution for hardly biodegradable pesticides-bearing wastewater treatment in an anaerobic expanded granular sludge bed (EGSB) reactor at mesophilic (35°C) and thermophilic (55°C). The reactor was operated in continuous mode during 160days, achieving an average COD removal of 33 and 44% under mesophilic and thermophilic conditions, respectively. The increase of temperature improved the biomass activity and the production of methane by 35%. Around 96% of pesticides identified in raw wastewater were not detected in both mesophilic and thermophilic effluents. A dramatic selection of the microbial population in anaerobic granules was caused by the presence of pesticides, which also changed significantly when the temperature was increased. Pesticides caused a significant inhibition on methanogenesis, especially over acetoclastic methanogens. Aerobic biodegradability tests of the resulting anaerobic effluents revealed that aerobic post-treatment is also a feasible and effective option, yielding more than 60% COD reduction.
Collapse
Affiliation(s)
- N García-Mancha
- Chemical Engineering Section, University Autonoma de Madrid, Francisco Tomas y Valiente 7, 28049 Madrid, Spain.
| | - V M Monsalvo
- Innovation and Technology Department, FCC Aqualia, Av. del Camino de Santiago, 40, 28050 Madrid, Spain.
| | - D Puyol
- Department of Chemical and Energy Tech., Chemical and Environmental Tech., Mechanical Tech. and Analytical Chemistry ESCET, Rey Juan Carlos University, 28933 Madrid, Spain.
| | - J J Rodriguez
- Chemical Engineering Section, University Autonoma de Madrid, Francisco Tomas y Valiente 7, 28049 Madrid, Spain.
| | - A F Mohedano
- Chemical Engineering Section, University Autonoma de Madrid, Francisco Tomas y Valiente 7, 28049 Madrid, Spain.
| |
Collapse
|
8
|
Segura Y, Puyol D, Ballesteros L, Martínez F, Melero JA. Wastewater sludges pretreated by different oxidation systems at mild conditions to promote the biogas formation in anaerobic processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:24393-24401. [PMID: 27655621 DOI: 10.1007/s11356-016-7535-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/26/2016] [Indexed: 06/06/2023]
Abstract
The effect of different oxidation processes at mild conditions including the coupled-Fenton (sono-Fenton, photo-Fenton, and sono-photo-Fenton) and their blank systems (ultrasound, ultraviolet, zero valent iron, and Fenton) on anaerobic digestion of the sludge for biogas production was investigated. Ultrasounds led to the highest organic matter solubilization (3.8 up to 5.2 g chemical oxygen demand (COD)/L, for the raw and treated sludge, respectively), while for the rest, organic matter transformation was observed resulting in an almost soluble COD net balance. Results indicated that for the most oxidative processes, the released organic matter was probably mineralized by the hydroxyl radicals produced during the treatments. It is interesting to remark that even if the biochemical methane potential was barely enhanced by the different methods applied, all the methods demonstrated to enhance the overall kinetics of the biomethanation processes, increasing the rapidly biodegradable fraction of the sludge.
Collapse
Affiliation(s)
- Y Segura
- Department of Chemical and Energy Tech., Chemical and Environmental Tech., Mechanical Tech. and Analytical Chemistry ESCET, Rey Juan Carlos University, 28933, Madrid, Spain.
| | - D Puyol
- Department of Chemical and Energy Tech., Chemical and Environmental Tech., Mechanical Tech. and Analytical Chemistry ESCET, Rey Juan Carlos University, 28933, Madrid, Spain
| | - L Ballesteros
- Department of Chemical and Energy Tech., Chemical and Environmental Tech., Mechanical Tech. and Analytical Chemistry ESCET, Rey Juan Carlos University, 28933, Madrid, Spain
| | - F Martínez
- Department of Chemical and Energy Tech., Chemical and Environmental Tech., Mechanical Tech. and Analytical Chemistry ESCET, Rey Juan Carlos University, 28933, Madrid, Spain
| | - J A Melero
- Department of Chemical and Energy Tech., Chemical and Environmental Tech., Mechanical Tech. and Analytical Chemistry ESCET, Rey Juan Carlos University, 28933, Madrid, Spain
| |
Collapse
|
9
|
|
10
|
Anaerobic/aerobic conditions and biostimulation for enhanced chlorophenols degradation in biocathode microbial fuel cells. Biodegradation 2014; 25:615-32. [DOI: 10.1007/s10532-014-9686-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
|
11
|
Lopez J, Monsalvo VM, Puyol D, Mohedano AF, Rodriguez JJ. Low-temperature anaerobic treatment of low-strength pentachlorophenol-bearing wastewater. BIORESOURCE TECHNOLOGY 2013; 140:349-356. [PMID: 23708850 DOI: 10.1016/j.biortech.2013.04.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 06/02/2023]
Abstract
The anaerobic treatment of low-strength wastewater bearing pentachlorophenol (PCP) at psychro-mesophilic temperatures has been investigated in an expanded granular sludge bed reactor. Using an upward flow rate of 4 m h(-1), a complete removal of PCP, as well as COD removal and methanization efficiencies higher than 75% and 50%, respectively, were achieved. Methanogenesis and COD consumption were slightly affected by changes in loading rate, temperature (17-28°C) and inlet concentrations of urea and oils. Pentachlorophenol caused an irreversible inhibitory effect over both acetoclastic and hydrogenotrophic methanogens, being the later more resistant to the toxic effect of pentachlorophenol. An auto-inhibition phenomenon was observed at PCP concentrations higher than 10 mg L(-1), which was accurately predicted by a Haldane-like model. The inhibitory effect of PCP over the COD consumption and methane production was modelled by modified pseudo-Monod and Roediger models, respectively.
Collapse
Affiliation(s)
- J Lopez
- Sección Departamental de Ingeniería Química, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
12
|
Semrany S, Favier L, Djelal H, Taha S, Amrane A. Bioaugmentation: Possible solution in the treatment of Bio-Refractory Organic Compounds (Bio-ROCs). Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.08.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Puyol D, Sanz J, Rodriguez J, Mohedano A. Inhibition of methanogenesis by chlorophenols: a kinetic approach. N Biotechnol 2012; 30:51-61. [DOI: 10.1016/j.nbt.2012.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 10/28/2022]
|