1
|
Cvečko M, Mastihuba V, Mastihubová M. An Exploratory Study of the Enzymatic Hydroxycinnamoylation of Sucrose and Its Derivatives. Molecules 2024; 29:4067. [PMID: 39274915 PMCID: PMC11397724 DOI: 10.3390/molecules29174067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Phenylpropanoid sucrose esters are a large and important group of natural substances with significant therapeutic potential. This work describes a pilot study of the enzymatic hydroxycinnamoylation of sucrose and its derivatives which was carried out with the aim of obtaining precursors of natural phenylpropanoid sucrose esters, e.g., vanicoside B. In addition to sucrose, some chemically prepared sucrose acetonides and substituted 3'-O-cinnamates were subjected to enzymatic transesterification with vinyl esters of coumaric, ferulic and 3,4,5-trimethoxycinnamic acid. Commercial enzyme preparations of Lipozyme TL IM lipase and Pentopan 500 BG exhibiting feruloyl esterase activity were tested as biocatalysts in these reactions. The substrate specificity of the used biocatalysts for the donor and acceptor as well as the regioselectivity of the reactions were evaluated and discussed. Surprisingly, Lipozyme TL IM catalyzed the cinnamoylation of sucrose derivatives more to the 1'-OH and 4'-OH positions than to the 6'-OH when the 3'-OH was free and the 6-OH was blocked by isopropylidene. In this case, Pentopan reacted comparably to 1'-OH and 6'-OH positions. If sucrose 3'-O-coumarate was used as an acceptor, in the case of feruloylation with Lipozyme in CH3CN, 6-O-ferulate was the main product (63%). Pentopan feruloylated sucrose 3'-O-coumarate comparably well at the 6-OH and 6'-OH positions (77%). When a proton-donor solvent was used, migration of the 3'-O-cinnamoyl group from fructose to the 2-OH position of glucose was observed. The enzyme hydroxycinnamoylations studied can shorten the targeted syntheses of various phenylpropanoid sucrose esters.
Collapse
Affiliation(s)
- Matej Cvečko
- Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovakia
| | - Vladimír Mastihuba
- Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovakia
| | - Mária Mastihubová
- Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovakia
| |
Collapse
|
2
|
Silva F, Veiga F, Paulo Jorge Rodrigues S, Cardoso C, Cláudia Paiva-Santos A. COSMO Models for the Pharmaceutical Development of Parenteral Drug Formulations. Eur J Pharm Biopharm 2023; 187:156-165. [PMID: 37120066 DOI: 10.1016/j.ejpb.2023.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/31/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
The aqueous solubility of active pharmaceutical ingredients is one of the most important features to be considered during the development of parenteral formulations in the pharmaceutical industry. Computational modelling has become in the last years an integral part of pharmaceutical development. In this context, ab initio computational models, such as COnductor-like Screening MOdel (COSMO), have been proposed as promising tools for the prediction of results without the effective use of resources. Nevertheless, despite the clear evaluation of computational resources, some authors had not achieved satisfying results and new calculations and algorithms have been proposed over the years to improve the outcomes. In the development and production of aqueous parenteral formulations, the solubility of Active Pharmaceutical Ingredients (APIs) in an aqueous and biocompatible vehicle is a decisive step. This work aims to study the hypothesis that COSMO models could be useful in the development of new parenteral formulations, mainly aqueous ones.
Collapse
Affiliation(s)
- Fernando Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Sérgio Paulo Jorge Rodrigues
- Coimbra Chemistry Centre, Chemistry Department, Faculty of Sciences and Technology of the University of Coimbra of the University of Coimbra, Coimbra, Portugal
| | - Catarina Cardoso
- Laboratórios Basi, Parque Industrial Manuel Lourenço Ferreira, lote 15, 3450-232 Mortágua, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
3
|
Mastihubová M, Mastihuba V. From Hamamelitannin Synthesis to the Study of Enzymatic Acylations of D-Hamamelose. Biomolecules 2023; 13:biom13030519. [PMID: 36979454 PMCID: PMC10046410 DOI: 10.3390/biom13030519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
The bioactive natural substance, hamamelitannin, was effectively synthesized in two ways. The chemical acylation of 2,3-O-isopropylidene-α,β-D-hamamelofuranose promoted by Bu2SnO using 3,4,5-tri-O-acetylgalloyl chloride, followed by the deprotection provided hamamelitannin in 79%. Pilot enzymatic benzoylation of D-hamamelose using vinyl benzoate (4 equiv.) and Lipozyme TL IM as a biocatalyst in t-butyl methyl ether (t-BuMeO) gave mainly benzoylated furanoses (89%), of which tribenzoates reached (52%). Enzymatic galloylation of 2,3-O-isopropylidene-α,β-D-hamamelofuranose with vinyl gallate under the catalysis of Lipozyme TL IM in t-butyl alcohol (t-BuOH) or t-BuMeO provided only the 5-O-galloylated product. The reaction in t-BuMeO proceeded in a shorter reaction time (61 h) and higher yield (82%). The more hydrophobic vinyl 3,4,5-tri-O-acetylgallate in the same reactions gave large amounts of acetylated products. Vinyl gallate and triacetylgallate in the enzymatic acylation of D-hamamelose with Lipozyme TL IM in t-BuMeO yielded 2′,5-diacylated hamamelofuranoses in a yield below 20%. The use of other vinyl gallates hydrophobized by methylation or benzylation provided 2′,5-diacylated hamamelofuranoses in good yields (65–84%). The reaction with silylated vinyl gallate did not proceed. The best results were obtained with vinyl 2,3,5-tri-O-benzyl gallate, and the only product, 2′,5-diacylated hamamelofuranoside precipitated from the reaction mixture (84% in 96 h). After debenzylation, hamamelitannin was obtained an 82% yield from hamamelose in two steps. This synthesis is preparatively undemanding and opens the way to multigram preparations of bioactive hamamelitannin and its analogues.
Collapse
|
4
|
Improved synthesis of the antifungal isobutyl o-coumarate catalyzed by the Aspergillus terreus type B feruloyl esterase. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
5
|
Gherbovet O, Ferreira F, Clément A, Ragon M, Durand J, Bozonnet S, O'Donohue MJ, Fauré R. Regioselective chemoenzymatic syntheses of ferulate conjugates as chromogenic substrates for feruloyl esterases. Beilstein J Org Chem 2021; 17:325-333. [PMID: 33828614 PMCID: PMC7871029 DOI: 10.3762/bjoc.17.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/15/2021] [Indexed: 11/30/2022] Open
Abstract
Generally, carbohydrate-active enzymes are studied using chromogenic substrates that provide quick and easy color-based detection of enzyme-mediated hydrolysis. For feruloyl esterases, commercially available chromogenic ferulate derivatives are both costly and limited in terms of their experimental application. In this study, we describe solutions for these two issues, using a chemoenzymatic approach to synthesize different ferulate compounds. The overall synthetic routes towards commercially available 5-bromo-4-chloro-3-indolyl and 4-nitrophenyl 5-O-feruloyl-α-ʟ-arabinofuranosides were significantly shortened (from 7 or 8 to 4–6 steps), and the transesterification yields were enhanced (from 46 to 73% and from 47 to 86%, respectively). This was achieved using enzymatic (immobilized Lipozyme® TL IM from Thermomyces lanuginosus) transesterification of unprotected vinyl ferulate to the primary hydroxy group of α‐ʟ‐arabinofuranosides. Moreover, a novel feruloylated 4-nitrocatechol-1-yl-substituted butanetriol analog, containing a cleavable hydroxylated linker, was also synthesized in 32% overall yield in 3 steps (convergent synthesis). The latter route combined the regioselective functionalization of 4-nitrocatechol and enzymatic transferuloylation. The use of this strategy to characterize type A feruloyl esterase from Aspergillus niger reveals the advantages of this substrate for the characterizations of feruloyl esterases.
Collapse
Affiliation(s)
- Olga Gherbovet
- Toulouse Biotechnology Institute, Bio & Chemical Engineering (TBI), Université de Toulouse, CNRS 5504, INRAE 792, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Fernando Ferreira
- Toulouse Biotechnology Institute, Bio & Chemical Engineering (TBI), Université de Toulouse, CNRS 5504, INRAE 792, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Apolline Clément
- Toulouse Biotechnology Institute, Bio & Chemical Engineering (TBI), Université de Toulouse, CNRS 5504, INRAE 792, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Mélanie Ragon
- Toulouse Biotechnology Institute, Bio & Chemical Engineering (TBI), Université de Toulouse, CNRS 5504, INRAE 792, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Julien Durand
- Toulouse Biotechnology Institute, Bio & Chemical Engineering (TBI), Université de Toulouse, CNRS 5504, INRAE 792, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Sophie Bozonnet
- Toulouse Biotechnology Institute, Bio & Chemical Engineering (TBI), Université de Toulouse, CNRS 5504, INRAE 792, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Michael J O'Donohue
- Toulouse Biotechnology Institute, Bio & Chemical Engineering (TBI), Université de Toulouse, CNRS 5504, INRAE 792, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Régis Fauré
- Toulouse Biotechnology Institute, Bio & Chemical Engineering (TBI), Université de Toulouse, CNRS 5504, INRAE 792, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| |
Collapse
|
6
|
Tsichla A, Severins C, Gottfried M, Marquardt W. An Experimental Assessment of Model-Based Solvent Selection for Enhancing Reaction Kinetics. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Angeliki Tsichla
- Aachener Verfahrenstechnik−Process Systems Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
- Bayer Technology Services GmbH, 51368 Leverkusen, Germany
| | | | | | - Wolfgang Marquardt
- Aachener Verfahrenstechnik−Process Systems Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| |
Collapse
|
7
|
Antonopoulou I, Papadopoulou A, Iancu L, Cerullo G, Ralli M, Jütten P, Piechot A, Faraco V, Kletsas D, Rova U, Christakopoulos P. Optimization of enzymatic synthesis of l-arabinose ferulate catalyzed by feruloyl esterases from Myceliophthora thermophila in detergentless microemulsions and assessment of its antioxidant and cytotoxicity activities. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Abstract
Thermodynamic principles have been applied to enzyme-catalyzed reactions since the beginning of the 1930s in an attempt to understand metabolic pathways. Currently, thermodynamics is also applied to the design and analysis of biotechnological processes. The key thermodynamic quantity is the Gibbs energy of reaction, which must be negative for a reaction to occur spontaneously. However, the application of thermodynamic feasibility studies sometimes yields positive Gibbs energies of reaction even for reactions that are known to occur spontaneously, such as glycolysis. This article reviews the application of thermodynamics in enzyme-catalyzed reactions. It summarizes the basic thermodynamic relationships used for describing the Gibbs energy of reaction and also refers to the nonuniform application of these relationships in the literature. The review summarizes state-of-the-art approaches that describe the influence of temperature, pH, electrolytes, solvents, and concentrations of reacting agents on the Gibbs energy of reaction and, therefore, on the feasibility and yield of biological reactions.
Collapse
Affiliation(s)
- Christoph Held
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, Technische Universität Dortmund, 44227 Dortmund, Germany;
| | - Gabriele Sadowski
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, Technische Universität Dortmund, 44227 Dortmund, Germany;
| |
Collapse
|
9
|
Schär A, Sprecher I, Topakas E, Faulds CB, Nyström L. Hydrolysis of Nonpolar n-Alkyl Ferulates by Feruloyl Esterases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8549-8554. [PMID: 27600375 DOI: 10.1021/acs.jafc.6b02694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ferulic acid is one of the major phenolic acids in plants and can be found esterified to plant cell wall components, but also as long-chain n-alkyl and steryl esters. Microbial feruloyl esterases may play a role in the bioavailability of phenolic acids during human and animal digestion. It is therefore of interest if feruloyl esterases are capable of hydrolyzing nonpolar ferulic acid esters. A series of n-alkyl ferulates with increasing lipophilicity were enzymatically synthesized, and the kinetic constants of their hydrolysis by four feruloyl esterases and a lipase as control were determined. A decrease in Km and kcat could be observed with decreased substrate polarity for all of the feruloyl esterases. Only one feruloyl esterase and the control lipase showed hydrolytic activity toward octadecyl ferulate. These results led to the conclusion that lipophilic ferulates are poor substrates for known feruloyl esterases and more specific esterases/lipases need to be identified.
Collapse
Affiliation(s)
- Aline Schär
- Institute of Food, Nutrition and Health, ETH Zurich , Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland
| | - Isabel Sprecher
- Institute of Food, Nutrition and Health, ETH Zurich , Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland
| | - Evangelos Topakas
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens , 5 Iroon Polytechniou Str., Zografou Campus, 15700 Athens, Greece
| | - Craig B Faulds
- Aix Marseille Université , INRA BBF UMR_A 1163 Biodiversité et Biotechnologie Fongiques, 13288 Marseille cedex 02, France
- INRA BBF UMR_A1163, Polytech Marseille , 163 Avenue de Luminy, 13288 Marseille cedex 02, France
| | - Laura Nyström
- Institute of Food, Nutrition and Health, ETH Zurich , Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland
| |
Collapse
|
10
|
Chyba A, Mastihuba V, Mastihubová M. Effective enzymatic caffeoylation of natural glucopyranosides. Bioorg Med Chem Lett 2016; 26:1567-1570. [DOI: 10.1016/j.bmcl.2016.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
|
11
|
Iribarren AM, Iglesias LE. An update of biocatalytic selective acylation and deacylation of monosaccharides. RSC Adv 2016. [DOI: 10.1039/c5ra23453k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PAMs synthesis requires highly selective reactions, provided by hydrolases. This review updates research on enzymatic acylation and deacylation of monosaccharides, focusing on synthetic useful PAMs and drug-monosaccharide conjugates involving PAMs.
Collapse
Affiliation(s)
- Adolfo M. Iribarren
- Department of Science and Technology
- Universidad Nacional de Quilmes
- (1876) Bernal
- Argentina
- INGEBI (CONICET)
| | - Luis E. Iglesias
- Department of Science and Technology
- Universidad Nacional de Quilmes
- (1876) Bernal
- Argentina
| |
Collapse
|
12
|
Mai NL, Koo YM. Quantitative prediction of lipase reaction in ionic liquids by QSAR using COSMO-RS molecular descriptors. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Mastihubová M, Mastihuba V. Donor specificity and regioselectivity in Lipolase mediated acylations of methyl α-D-glucopyranoside by vinyl esters of phenolic acids and their analogues. Bioorg Med Chem Lett 2013; 23:5389-92. [PMID: 23953194 DOI: 10.1016/j.bmcl.2013.07.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 11/25/2022]
Abstract
Methyl α-D-glucopyranoside as a model acceptor was acylated by several phenolic and non-phenolic vinyl esters using immobilised Lipolase. Donor specificity and regioselectivity of reaction were investigated. Conversion and rate of acylation by structurally varied donors indicates that the synthetic reactivity of Lipolase corresponds to the hydrolytic activity of feruloyl esterase type A. Lipolase exhibited remarkable regioselectivity for primary position of methyl α-D-glucopyranoside. The acylation occurred exclusively at 6-O primary position when vinyl esters of phenolic acids (hydroxybenzoates, hydroxyphenylalkanoates and hydroxycinnamates) served as acyl donors (5-77%). In addition to the major 6-O-acyl products (52-79%), 2,6-di-O-acylated derivatives were isolated from reaction mixtures (2-13%) when non-phenolic donors were used (vinyl esters of fully methoxylated derivatives of phenolic acids, along with vinyl benzoates, cinnamates or some heterocyclic analogues).
Collapse
Affiliation(s)
- Mária Mastihubová
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | |
Collapse
|
14
|
Enzymatic synthesis of 6- and 6′-O-linoleyl-α-d-maltose: From solvent-free to binary ionic liquid reaction media. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.01.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Abildskov J, van Leeuwen M, Boeriu C, van den Broek L. Computer-aided solvent screening for biocatalysis. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2012.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|