1
|
Ma Y, Yan J, Yang L, Yao Y, Wang L, Gao SS, Cui C. A hybrid system for the overproduction of complex ergot alkaloid chanoclavine. Front Bioeng Biotechnol 2022; 10:1095464. [PMID: 36619381 PMCID: PMC9811125 DOI: 10.3389/fbioe.2022.1095464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Synthetic biology-based methods (Sbio) and chemical synthesis (Csyn) are two independent approaches that are both widely used for synthesizing biomolecules. In the current study, two systems were combined for the overproduction of chanoclavine (CC), a structurally complex ergot alkaloid. The whole synthetic pathway for CC was split into three sections: enzymatic synthesis of 4-Br-Trp (4-Bromo-trptophan) using cell-lysate catalysis (CLC), chemical synthesis of prechanoclavine (PCC) from 4-Br-Trp, and overproduction CC from PCC using a whole-cell catalysis (WCC) platform. The final titer of the CC is over 3 g/L in this Sbio-Csyn hybrid system, the highest yield reported so far, to the best of our knowledge. The development of such a combined route could potentially avoid the limitations of both Sbio and Csyn systems and boost the overproduction of complex natural products.
Collapse
Affiliation(s)
- Yaqing Ma
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,University of Chinese Academy of Sciences, Beijing, China
| | - Juzhang Yan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Lujia Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yongpeng Yao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Luoyi Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,*Correspondence: Luoyi Wang, ; Shu-Shan Gao, ; Chengsen Cui,
| | - Shu-Shan Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Technology Innovation Center of Synthetic Biology, Tianjin, China,*Correspondence: Luoyi Wang, ; Shu-Shan Gao, ; Chengsen Cui,
| | - Chengsen Cui
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Technology Innovation Center of Synthetic Biology, Tianjin, China,*Correspondence: Luoyi Wang, ; Shu-Shan Gao, ; Chengsen Cui,
| |
Collapse
|
2
|
Chambers SA, DeSousa JM, Huseman ED, Townsend SD. The DARK Side of Total Synthesis: Strategies and Tactics in Psychoactive Drug Production. ACS Chem Neurosci 2018; 9:2307-2330. [PMID: 29342356 PMCID: PMC6205722 DOI: 10.1021/acschemneuro.7b00528] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Humankind has used and abused psychoactive drugs for millennia. Formally, a psychoactive drug is any agent that alters cognition and mood. The term "psychotropic drug" is neutral and describes the entire class of substrates, licit and illicit, of interest to governmental drug policy. While these drugs are prescribed for issues ranging from pain management to anxiety, they are also used recreationally. In fact, the current opioid epidemic is the deadliest drug crisis in American history. While the topic is highly politicized with racial, gender, and socioeconomic elements, there is no denying the toll drug mis- and overuse is taking on this country. Overdose, fueled by opioids, is the leading cause of death for Americans under 50 years of age, killing ca. 64,000 people in 2016. From a chemistry standpoint, the question is in what ways, if any, did organic chemists contribute to this problem? In this targeted review, we provide brief historical accounts of the main classes of psychoactive drugs and discuss several foundational total syntheses that ultimately provide the groundwork for producing these molecules in academic, industrial, and clandestine settings.
Collapse
Affiliation(s)
- Schuyler A. Chambers
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Jenna M. DeSousa
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Eric D. Huseman
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Steven D. Townsend
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, Tennessee 37235, United States
- Institute of Chemical Biology, Vanderbilt University, 896 Preston Research Building, Nashville, Tennessee 37232, United States
| |
Collapse
|
3
|
Dopstadt J, Vens-Cappell S, Neubauer L, Tudzynski P, Cramer B, Dreisewerd K, Humpf HU. Localization of ergot alkaloids in sclerotia of Claviceps purpurea by matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Bioanal Chem 2016; 409:1221-1230. [DOI: 10.1007/s00216-016-0047-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/04/2016] [Accepted: 10/21/2016] [Indexed: 12/11/2022]
|