1
|
Gu X, Fan Z, Wang Y, He J, Zheng C, Ma H. Metabolome and Transcriptome Joint Analysis Reveals That Different Sucrose Levels Regulate the Production of Flavonoids and Stilbenes in Grape Callus Culture. Int J Mol Sci 2024; 25:10398. [PMID: 39408726 PMCID: PMC11476901 DOI: 10.3390/ijms251910398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
To reveal the effect of sucrose concentration on the production of secondary metabolites, a metabolome and transcriptome joint analysis was carried out using callus induced from grape variety Mio Red cambial meristematic cells. We identified 559 metabolites-mainly flavonoids, phenolic acids, and stilbenoids-as differential content metabolites (fold change ≥2 or ≤0.5) in at least one pairwise comparison of treatments with 7.5, 15, or 30 g/L sucrose in the growing media for 15 or 30 days (d). Resveratrol, viniferin, and amurensin contents were highest at 15 d of subculture; piceid, ampelopsin, and pterostilbene had higher contents at 30 d. A transcriptome analysis identified 1310 and 498 (at 15 d) and 1696 and 2211 (at 30 d) differentially expressed genes (DEGs; log2(fold change) ≥ 1, p < 0.05) in 7.5 vs. 15 g/L and 15 vs. 30 g/L sucrose treatments, respectively. In phenylpropane and isoflavone pathways, DEGs encoding cinnamic acid 4-hydroxylase, chalcone synthase, chalcone isomerase, and flavanone 3-hydroxylase were more highly expressed at 15 d than at 30 d, while other DEGs showed different regulation patterns corresponding to sucrose concentrations and cultivation times. For all three sucrose concentrations, the stilbene synthase (STS) gene exhibited significantly higher expression at 15 vs. 30 d, while two resveratrol O-methyltransferase (ROMT) genes related to pterostilbene synthesis showed significantly higher expression at 30 vs. 15 d. In addition, a total of 481 DEGs were annotated as transcription factors in pairwise comparisons; an integrative analysis suggested MYB59, WRKY20, and MADS8 as potential regulators responding to sucrose levels in flavonoid and stilbene biosynthesis in grape callus. Our results provide valuable information for high-efficiency production of flavonoids and stilbenes using grape callus.
Collapse
Affiliation(s)
| | | | | | | | - Chuanlin Zheng
- College of Horticulture, China Agricultural University, Beijing 100083, China; (X.G.); (Z.F.); (Y.W.); (J.H.)
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing 100083, China; (X.G.); (Z.F.); (Y.W.); (J.H.)
| |
Collapse
|
2
|
Chaudhary P, Sharma S, Sharma V. Exploring Plant Tissue Culture in Ocimum basilicum L. IN VITRO PROPAGATION AND SECONDARY METABOLITE PRODUCTION FROM MEDICINAL PLANTS: CURRENT TRENDS (PART 2) 2024:180-195. [DOI: 10.2174/9789815196351124010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Ocimum basilicum is a well-known, economically important therapeutic
plant that belongs to the family Lamiaceae. Basil is marvelous in the environment as
the complete plant has been used as a conventional remedy for domestic therapy
against numerous illnesses since ancient times. O. basilicum exhibited interesting
biological effects due to the presence of several bioactives such as eugenol, methyl
eugenol, cineone and anthocyanins. O. basilicum possesses antimicrobial, antiinflammatory, hepatoprotective, hypoglycemic, immunomodulator, antiulcerogenic,
antioxidant, chemomodulatory and larvicidal activities. The oil of this plant has been
found to be valuable for the cure of wasp stings, snakebites, mental fatigue, and cold.
The demand of this multipurpose medicinal plant is growing day by day due to its
economic importance, pharmacological properties and its numerous uses in cooking
and folk medicine. Thus seeing the exciting biological activities of O. basilicum,
micropropagation could be a fascinating substitute for the production of this medicinal
plant because numerous plantlets can be achieved in fewer times with the assurance of
genetic stability. An overview of the current study showed the use of the plant tissue
culture technique for micropropagation, which is very beneficial for duplicating and
moderating the species, which are problematic to regenerate by conventional methods
and save them from extinction.
Collapse
Affiliation(s)
| | | | - Vikas Sharma
- Biochemical Conversion Unit, SSSNIBE, Kapurthala, India
| |
Collapse
|
3
|
Kaňuková Š, Lenkavská K, Gubišová M, Kraic J. Suspension culture of stem cells established of Calendula officinalis L. Sci Rep 2024; 14:441. [PMID: 38172230 PMCID: PMC10764935 DOI: 10.1038/s41598-023-50945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Plant stem cell cultures have so far been established in only a few plant species using cambial meristematic cells. The presence of stem cells or stem cell-like cells in other organs and tissues of the plant body, as well as the possibility of de novo generation of meristematic cells from differentiated cells, allow to consider the establishment of stem cell cultures in a broader range of species. This study aimed to establish a stem cell culture of the medicinal plant Calendula officinalis L. Callus tissues were induced from leaf and root explants, and already at this stage, stem and dedifferentiated cells could be identified. The cell suspension cultures established both from the root- and leaf-derived calli contained a high proportion of stem cells (92-93% and 72-73%, respectively). The most effective combination of growth regulators for the development of stem cells in calli as well as cell cultures was 1.0 mg/L 2,4-D and 0.5 mg/L BAP. The highest amount of stem cells (5.60-5.72 × 105) was in cell suspension derived from the roots. An effective protocol for the establishment of marigold stem cell suspension culture was developed. The ratio of root-derived stem cells against dedifferentiated cells exceeded 90%.
Collapse
Affiliation(s)
- Šarlota Kaňuková
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 917 01, Trnava, Slovakia
- Research Institute of Plant Production, National Agricultural and Food Center, Bratislavská cesta 122, 921 68, Piešťany, Slovakia
| | - Klaudia Lenkavská
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 917 01, Trnava, Slovakia
| | - Marcela Gubišová
- Research Institute of Plant Production, National Agricultural and Food Center, Bratislavská cesta 122, 921 68, Piešťany, Slovakia
| | - Ján Kraic
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 917 01, Trnava, Slovakia.
- Research Institute of Plant Production, National Agricultural and Food Center, Bratislavská cesta 122, 921 68, Piešťany, Slovakia.
| |
Collapse
|
4
|
Zhou P, Li H, Lin Y, Zhou Y, Chen Y, Li Y, Li X, Yan H, Lin W, Xu B, Deng H, Qiu X. Omics analyses of Rehmannia glutinosa dedifferentiated and cambial meristematic cells reveal mechanisms of catalpol and indole alkaloid biosynthesis. BMC PLANT BIOLOGY 2023; 23:463. [PMID: 37794352 PMCID: PMC10552359 DOI: 10.1186/s12870-023-04478-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Rehmannia glutinosa is a rich source of terpenoids with a high medicinal reputation. The present study compared dedifferentiated cells (DDCs) and cambial meristematic cells (CMCs) cell cultures of R. glutinosa for terpenoid (catalpol) and indole alkaloid (IA) biosynthesis. In this regard, we used widely targeted metabolomics and transcriptome sequencing approaches together with the comparison of cell morphology, cell death (%), and catalpol production at different time points. RESULTS We were able to identify CMCs based on their morphology and hypersensitivity to zeocin. CMCs showed higher dry weight content and better catalpol production compared to DDCs. The metabolome analysis revealed higher concentrations of IA, terpenoids, and catalpol in CMCs compared to DDCs. The transcriptome sequencing analysis showed that a total of 27,201 genes enriched in 139 pathways were differentially expressed. The higher catalpol concentration in CMCs is related to the expression changes in genes involved in acetyl-CoA and geranyl-PP biosynthesis, which are precursors for monoterpenoid biosynthesis. Moreover, the expressions of the four primary genes involved in monoterpenoid biosynthesis (NMD, CYP76A26, UGT6, and CYP76F14), along with a squalene monooxygenase, exhibit a strong association with the distinct catalpol biosynthesis. Contrarily, expression changes in AADC, STR, and RBG genes were consistent with the IA biosynthesis. Finally, we discussed the phytohormone signaling and transcription factors in relation to observed changes in metabolome. CONCLUSIONS Overall, our study provides novel data for improving the catalpol and IA biosynthesis in R. glutinosa.
Collapse
Affiliation(s)
- Pengfei Zhou
- School of Basic Medical Science, Guangdong Medical University, Dongguan, 523808, China.
| | - Haihua Li
- School of Medicine and Health, Guangdong Innovative Technical College, Dongguan, 523946, China
| | - Yujin Lin
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yujun Zhou
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yinzi Chen
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yiheng Li
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Xuan Li
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Hui Yan
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Weiming Lin
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Beilu Xu
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Huiting Deng
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Xiaoqi Qiu
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
5
|
Yang Y, Ding L, Zhou Y, Guo Z, Yu R, Zhu J. Establishment of recombinant Catharanthus roseus stem cells stably overexpressing ORCA4 for terpenoid indole alkaloids biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:783-792. [PMID: 36848864 DOI: 10.1016/j.plaphy.2023.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Catharanthus roseus is a perennial herb of the Apocynaceae family, from which about 200 kinds of alkaloids have been characterized. Most alkaloids from C. roseus are terpenoid indole alkaloids (TIAs), such as vinblastine and vincristine, which are widely used in the clinic for their good antitumor activity. However, they were only biosynthesized in C. roseus, and their content in C. roseus is extremely low. The access to these valuable compounds is by plant extraction or chemical semisynthesis from their precursors catharanthine and vindoline. Since catharanthine and vindoline are also obtained from C. roseus, the supply of vinblastine and vincristine makes it difficult to meet market demands. Therefore, how to improve the yield of TIAs is an attractive issue. In this study, we compared the regulatory effect of two critical transcription factors, octadecanoid-derivative responsive Catharanthus AP2-domain protein 3 (ORCA3) and octadecanoid-derivative responsive Catharanthus AP2-domain protein 4 (ORCA4), on the biosynthesis of TIAs in C. roseus. The results showed that overexpressing both two transcription factors could increase the accumulation of TIAs. The effect was more significant when ORCA4 was overexpressed. To acquire C. roseus TIAs on a continuous and consistent basis, we then created and acquired C. roseus stem cells stably overexpressing ORCA4. This is the first time a recombinant C. roseus stem cell system with stable ORCA4 overexpression has been developed, which not only provides new ideas for future research in this area but also breaches new life into the industrial application of using plant cell culture to obtain natural products.
Collapse
Affiliation(s)
- Yuanjian Yang
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 510632, China
| | - Liuyu Ding
- Department of Natural Product Chemistry, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Ying Zhou
- Department of Natural Product Chemistry, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Zizheng Guo
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 510632, China
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 510632, China; Department of Natural Product Chemistry, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
6
|
Ling LJ, Wang M, Pan CQ, Tang DB, Yuan E, Zhang YY, Chen JG, Peng DY, Yin ZP. Investigating the induction of polyphenol biosynthesis in the cultured Cycolocarya paliurus cells and the stimulatory mechanism of co-induction with 5-aminolevulinic acid and salicylic acid. Front Bioeng Biotechnol 2023; 11:1150842. [PMID: 36970633 PMCID: PMC10034720 DOI: 10.3389/fbioe.2023.1150842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Plant cell culture technology is a potential way to produce polyphenols, however, this way is still trapped in the dilemma of low content and yield. Elicitation is regarded as one of the most effective ways to improve the output of the secondary metabolites, and therefore has attracted extensive attention. Methods: Five elicitors including 5-aminolevulinic acid (5-ALA), salicylic acid (SA), methyl jasmonate (MeJA), sodium nitroprusside (SNP) and Rhizopus Oryzae Elicitor (ROE) were used to improve the content and yield of polyphenols in the cultured Cyclocarya paliurus (C. paliurus) cells, and a co-induction technology of 5-ALA and SA was developed as a result. Meanwhile, the integrated analysis of transcriptome and metabolome was adopted to interpret the stimulation mechanism of co-induction with 5-ALA and SA. Results: Under the co-induction of 50 μM 5-ALA and SA, the content and yield of total polyphenols of the cultured cells reached 8.0 mg/g and 147.12 mg/L, respectively. The yields of cyanidin-3-O-galactoside, procyanidin B1 and catechin reached 28.83, 4.33 and 2.88 times that of the control group, respectively. It was found that expressions of TFs such as CpERF105, CpMYB10 and CpWRKY28 increased significantly, while CpMYB44 and CpTGA2 decreased. These great changes might further make the expression of CpF3'H (flavonoid 3'-monooxygenase), CpFLS (flavonol synthase), CpLAR (leucoanthocyanidin reductase), CpANS (anthocyanidin synthase) and Cp4CL (4-coumarate coenzyme A ligase) increase while CpANR (anthocyanidin reductase) and CpF3'5'H (flavonoid 3', 5'-hydroxylase) reduce, ultimately enhancing the polyphenols accumulation Conclusion: The co-induction of 5-ALA and SA can significantly promote polyphenol biosynthesis in the cultured C. paliurus cells by regulating the expression of key transcription factors and structural genes associated with polyphenol synthesis, and thus has a promising application.
Collapse
Affiliation(s)
- Li-Juan Ling
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Meng Wang
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Chuan-Qing Pan
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Dao-Bang Tang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - En Yuan
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yuan-Yuan Zhang
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Ji-Guang Chen
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Da-Yong Peng
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Da-Yong Peng, ; Zhong-Ping Yin,
| | - Zhong-Ping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Da-Yong Peng, ; Zhong-Ping Yin,
| |
Collapse
|
7
|
Jasminum sambac Cell Extract as Antioxidant Booster against Skin Aging. Antioxidants (Basel) 2022; 11:antiox11122409. [PMID: 36552617 PMCID: PMC9774971 DOI: 10.3390/antiox11122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress plays a major role in the skin aging process through the reactive oxygen species production and advanced glycation end products (AGEs) formation. Antioxidant ingredients are therefore needed in the skin care market and the use of molecules coming from plant cell cultures provide a unique opportunity. In this paper, the features of an hydroethanolic extract obtained by Jasminum sambac cells (JasHEx) were explored. The antioxidant and anti-AGE properties were investigated by a multidisciplinary approach combining mass spectrometric and bio-informatic in vitro and ex vivo experiments. JasHEx contains phenolic acid derivatives, lignans and triterpenes and it was found to reduce cytosolic reactive oxygen species production in keratinocytes exposed to exogenous stress. It also showed the ability to reduce AGE formation and to increase the collagen type I production in extracellular matrix. Data demonstrated that JasHEx antioxidant properties were related to its free radical scavenging and metal chelating activities and to the activation of the Nrf2/ARE pathway. This can well explain JasHEx anti-inflammatory activity related to the decrease in NO levels in LPS-stimulated macrophages. Thus, JasHEx can be considered a powerful antioxidant booster against oxidative stress-induced skin aging.
Collapse
|
8
|
An Overview on Taxol Production Technology and Its Applications as Anticancer Agent. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0063-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Kaňuková Š, Gubišová M, Klčová L, Mihálik D, Kraic J. Establishment of Stem Cell-like Cells of Sida hermaphrodita (L.) Rusby from Explants Containing Cambial Meristems. Int J Mol Sci 2022; 23:ijms23147644. [PMID: 35886991 PMCID: PMC9320681 DOI: 10.3390/ijms23147644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 12/10/2022] Open
Abstract
The in vitro cultures of plant stem cells and stem cell-like cells can be established from tissues containing meristematic cells. Chemical compounds—as well as their production potential—is among the emerging topics of plant biotechnology. We induced the callus cell biomass growth and characterized the parameters indicating the presence of stem cells or stem cell-like cells. Four types of explants (stem, petiole, leaf, root) from Sida hermaphrodita (L.) Rusby and various combinations of auxins and cytokinins were tested for initiation of callus, growth of sub-cultivated callus biomass, and establishment of stem cells or stem cell-like cells. Induction of callus and its growth parameters were significantly affected both by the explant type and the combination of used plant growth hormones and regulators. The responsibility for callus initiation and growth was the highest in stem-derived explants containing cambial meristematic cells. Growth parameters of callus biomass and specific characteristics of vacuoles confirmed the presence of stem cells or stem cell-like cells in sub-cultivated callus cell biomass. Establishment of in vitro stem cell or stem cell-like cell cultures in S. hermaphrodita can lead to the development of various applications of in vitro cultivation systems as well as alternative applications of this crop.
Collapse
Affiliation(s)
- Šarlota Kaňuková
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 91701 Trnava, Slovakia; (Š.K.); (D.M.)
| | - Marcela Gubišová
- Research Institute of Plant Production, National Agricultural and Food Centre, Bratislavská cesta 122, 92168 Piešťany, Slovakia; (M.G.); (L.K.)
| | - Lenka Klčová
- Research Institute of Plant Production, National Agricultural and Food Centre, Bratislavská cesta 122, 92168 Piešťany, Slovakia; (M.G.); (L.K.)
| | - Daniel Mihálik
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 91701 Trnava, Slovakia; (Š.K.); (D.M.)
- Research Institute of Plant Production, National Agricultural and Food Centre, Bratislavská cesta 122, 92168 Piešťany, Slovakia; (M.G.); (L.K.)
| | - Ján Kraic
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 91701 Trnava, Slovakia; (Š.K.); (D.M.)
- Research Institute of Plant Production, National Agricultural and Food Centre, Bratislavská cesta 122, 92168 Piešťany, Slovakia; (M.G.); (L.K.)
- Correspondence: or ; Tel.: +421-337-947-168
| |
Collapse
|
10
|
Abdulhafiz F. Plant Cell Culture Technologies: A promising alternatives to Produce High-Value Secondary Metabolites. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
11
|
Song Y, Zhou J, Zhang Y, Zhao Y, Wang X, Hu T, Tong Y, Huang L, Gao W. Overexpression of TwSQS, TwSE, and TwOSC Regulates Celastrol Accumulation in Cambial Meristematic Cells and Dedifferentiated Cells. FRONTIERS IN PLANT SCIENCE 2022; 13:926715. [PMID: 35845629 PMCID: PMC9284119 DOI: 10.3389/fpls.2022.926715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Squalene synthase (SQS), squalene epoxidase (SE), and oxidosqualene cyclase (OSC) are encoding enzymes in downstream biosynthetic pathway of triterpenoid in plants, but the relationship between three genes and celastrol accumulation in Tripterygium wilfordii still remains unknown. Gene transformation system in plant can be used for studying gene function rapidly. However, there is no report on the application of cambial meristematic cells (CMCs) and dedifferentiated cells (DDCs) in genetic transformation systems. Our aim was to study the effects of individual overexpression of TwSQS, TwSE, and TwOSC on terpenoid accumulation and biosynthetic pathway related gene expression through CMCs and DDCs systems. Overexpression vectors of TwSQS, TwSE, and TwOSC were constructed by Gateway technology and transferred into CMCs and DDCs by gene gun. After overexpression, the content of celastrol was significantly increased in CMCs compared with the control group. However, there was no significant increment of celastrol in DDCs. Meanwhile, the relative expression levels of TwSQS, TwSE, TwOSC, and terpenoid biosynthetic pathway related genes were detected. The relative expression levels of TwSQS, TwSE, and TwOSC were increased compared with the control group in both CMCs and DDCs, while the pathway-related genes displayed different expression trends. Therefore, it was verified in T. wilfordii CMCs that overexpression of TwSQS, TwSE, and TwOSC increased celastrol accumulation and had different effects on the expression of related genes in terpenoid biosynthetic pathway, laying a foundation for further elucidating the downstream biosynthetic pathway of celastrol through T. wilfordii CMCs system.
Collapse
Affiliation(s)
- Yadi Song
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jiawei Zhou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yifeng Zhang
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yujun Zhao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiujuan Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Tianyuan Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yuru Tong
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Gao
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Partap M, Warghat AR, Kumar S. Cambial meristematic cell culture: a sustainable technology toward in vitro specialized metabolites production. Crit Rev Biotechnol 2022:1-19. [PMID: 35658789 DOI: 10.1080/07388551.2022.2055995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cambial meristematic cells (CMCs) culture has received a fair share of scientific and industrial attention among the trending topics of plant cell culture, especially their potential toward secondary metabolites production. However, the conventional plant cell culture is often not commercially feasible because of difficulties associated with culture dedifferentiated cells. Several reports have been published to culture CMCs and bypass the dedifferentiation process in plant cell culture. Numerous mitochondria, multiple vacuoles, genetic stability, self-renewal, higher biomass, and stable metabolites accumulation are the characteristics features of CMCs compared with dedifferentiated cells (DDCs) culture. The CMCs culture has a broader application to produce large-scale natural compounds for: pharmaceuticals, food, and cosmetic industries. Cutting-edge progress in plant cellular and molecular biology has allowed unprecedented insights into cambial stem cell culture and its fundamental processes. Therefore, regarding sustainability and natural compound production, cambial cell culture ranks among the most vital biotechnological interventions for industrial and economic perspectives. This review highlights the recent advances in plant stem cell culture and understands the cambial cells induction and culture mechanisms that affect the growth and natural compounds production.
Collapse
Affiliation(s)
- Mahinder Partap
- Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashish R Warghat
- Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
13
|
Kobayashi Y, Kärkkäinen E, Häkkinen ST, Nohynek L, Ritala A, Rischer H, Tuomisto HL. Life cycle assessment of plant cell cultures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151990. [PMID: 34843779 DOI: 10.1016/j.scitotenv.2021.151990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
A novel food such as plant cell culture (PCC) is an important complementary asset for traditional agriculture to tackle global food insecurity. To evaluate environmental impacts of PCC, a life cycle assessment was applied to tobacco bright yellow-2 and cloudberry PCCs. Global warming potential (GWP), freshwater eutrophication potential (FEUP), marine eutrophication potential, terrestrial acidification potential (TAP), stratospheric ozone depletion, water consumption and land use were assessed. The results showed particularly high contributions (82-93%) of electricity consumption to GWP, FEUP and TAP. Sensitivity analysis indicated that using wind energy instead of the average Finnish electricity mix reduced the environmental impacts by 34-81%. Enhancement in the energy efficiency of bioreactor mixing processes and reduction in cultivation time also effectively improved the environmental performance (4-47% reduction of impacts). In comparison with other novel foods, the environmental impacts of the PCC products studied were mostly comparable to those of microalgae products but higher than those of microbial protein products produced by autotrophic hydrogen-oxidizing bacteria. Assayed fresh PCC products were similar or close to GWP of conventionally grown food products and, with technological advancements, can be highly competitive.
Collapse
Affiliation(s)
- Yumi Kobayashi
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, 00014 University of Helsinki, Finland; Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 4, 00014 University of Helsinki, Finland
| | - Elviira Kärkkäinen
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, P.O. Box 1000, 02044 VTT, Espoo, Finland
| | - Suvi T Häkkinen
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, P.O. Box 1000, 02044 VTT, Espoo, Finland
| | - Liisa Nohynek
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, P.O. Box 1000, 02044 VTT, Espoo, Finland
| | - Anneli Ritala
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, P.O. Box 1000, 02044 VTT, Espoo, Finland
| | - Heiko Rischer
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, P.O. Box 1000, 02044 VTT, Espoo, Finland.
| | - Hanna L Tuomisto
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, 00014 University of Helsinki, Finland; Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 4, 00014 University of Helsinki, Finland; Natural Resources Institute Finland, P.O. Box 2, 00790 Helsinki, Finland
| |
Collapse
|
14
|
Eibl R, Senn Y, Gubser G, Jossen V, van den Bos C, Eibl D. Cellular Agriculture: Opportunities and Challenges. Annu Rev Food Sci Technol 2021; 12:51-73. [PMID: 33770467 DOI: 10.1146/annurev-food-063020-123940] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellular agriculture is the controlled and sustainable manufacture of agricultural products with cells and tissues without plant or animal involvement. Today, microorganisms cultivated in bioreactors already produce egg and milk proteins, sweeteners, and flavors for human nutrition as well as leather and fibers for shoes, bags, and textiles. Furthermore, plant cell and tissue cultures provide ingredients that stimulate the immune system and improve skin texture, with another precommercial cellular agriculture product, in vitro meat, currently receiving a great deal of attention. All these approaches could assist traditional agriculture in continuing to provide for the dietary requirements of a growing world population while freeing up important resources such as arable land. Despite early successes, challenges remain and are discussed in this review, with a focus on production processes involving plant and animal cell and tissue cultures.
Collapse
Affiliation(s)
- Regine Eibl
- Institute of Chemistry and Biotechnology, Department of Life Sciences and Facility Management, Zurich University of Applied Sciences, Wädenswil 8820, Switzerland;
| | - Yannick Senn
- Institute of Chemistry and Biotechnology, Department of Life Sciences and Facility Management, Zurich University of Applied Sciences, Wädenswil 8820, Switzerland;
| | - Géraldine Gubser
- Institute of Chemistry and Biotechnology, Department of Life Sciences and Facility Management, Zurich University of Applied Sciences, Wädenswil 8820, Switzerland;
| | - Valentin Jossen
- Institute of Chemistry and Biotechnology, Department of Life Sciences and Facility Management, Zurich University of Applied Sciences, Wädenswil 8820, Switzerland;
| | | | - Dieter Eibl
- Institute of Chemistry and Biotechnology, Department of Life Sciences and Facility Management, Zurich University of Applied Sciences, Wädenswil 8820, Switzerland;
| |
Collapse
|
15
|
Krasteva G, Georgiev V, Pavlov A. Recent applications of plant cell culture technology in cosmetics and foods. Eng Life Sci 2021; 21:68-76. [PMID: 33716606 PMCID: PMC7923559 DOI: 10.1002/elsc.202000078] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022] Open
Abstract
Plants have been used as the main source of phytochemicals with nutritional, medicinal, cultural and cosmetic applications since times immemorial. Nowadays, achieving sustainable development, global climate change, restricted access to fresh water, limited food supply and growing energy demands are among the critical global challenges faced by humanity. Plant cell culture technology has the potential to address some of these challenges by providing effective tools for sustainable supply of phyto-ingredients with reduced energy, carbon and water footprints. The main aim of this review is to discuss the recent trends in the development of plant cell culture technologies for production of plant-derived substances with application in food products and cosmetic formulations. The specific technological steps and requirements for the final products are discussed in the light of the advances in cultivation technologies used for growing differentiated and undifferentiated plant in vitro systems. Future prospects and existing challenges of the commercialization of plant cell culture-derived products have been outlined through the prism of the authors' point of view. We expect this review will encourage scientists, policymakers and business enterprises to join efforts for speeding-up the mass commercialization and popularization of plant cell culture technology as an eco-friendly alternative method for sustainable production of plant-derived additives with application in food and cosmetic products.
Collapse
Affiliation(s)
- Gergana Krasteva
- Laboratory of Cell BiosystemsThe Stephan Angeloff Institute of MicrobiologyBulgarian Academy of SciencesPlovdivBulgaria
| | - Vasil Georgiev
- Laboratory of Cell BiosystemsThe Stephan Angeloff Institute of MicrobiologyBulgarian Academy of SciencesPlovdivBulgaria
| | - Atanas Pavlov
- Laboratory of Cell BiosystemsThe Stephan Angeloff Institute of MicrobiologyBulgarian Academy of SciencesPlovdivBulgaria
- Department of Analytical Chemistry and PhysicochemistryUniversity of Food TechnologiesPlovdivBulgaria
| |
Collapse
|
16
|
He L, Zhang J, Guo D, Tian H, Cao Y, Ji X, Zhan Y. Establishment of the technology of cambial meristematic cells (CMCs) culture from shoots and high expression of FmPHV (PHAVOLUTA) functions in identification and differentiation of CMCs and promoting the shoot regeneration by hypocotyl in Fraxinus mandshurica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:352-364. [PMID: 33548802 DOI: 10.1016/j.plaphy.2021.01.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
In Fraxinus mandshurica, we successfully isolated and identified the loose, uniform and creamy-white cambial meristematic cells (CMCs) from newborn shoots, and established a culture technology for induction, proliferation and differentiation of CMCs. In this technology, higher induction rate (83.0%, 0.57-fold to the control) was obtained by an effective pretreatment after 28-day induction culture, CMCs can be better proliferation cultured than common calli and maintain same growth states after several times of cultures and 3.3% CMCs primarily realized differentiation. Gene expressions in the differentiated CMCs revealed that, low expression of FmWOX5 (regulator in establishment of competence for shoot formation, 0.09-fold to the control) and high expressions of FmWOX4 (cambium stem cell regulator, 16.7-fold to the control) and 9 key genes in shoot regeneration (2.4-fold-72.1-fold to the control) function in CMCs differentiation. In addition to the function of high expression of PHAVOLUTA (FmPHV) in CMCs differentiation (5.4-fold-157.3-fold to undifferentiated CMCs), functions of high expression of FmPHV in CMCs identification (22.4-fold to common calli) and generating more shoots (2.3-fold to the control) by significantly changing expressions of key regulators in HD-Zip Class III related shoot regeneration networks in positive transgenic plants through the hypocotyl transforming system in F. mandshurica, were further revealed. These works were of profound significance in providing the culture technology of CMCs from newborn shoots in F. mandshurica for the first time and revealing the positive functions of FmPHV in CMCs identification and differentiation in F. mandshurica and promoting the shoot regeneration by hypocotyls.
Collapse
Affiliation(s)
- Liming He
- Key Laboratory of Saline-Alkaline Vegetation Ecology Restoration (SAVER), Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Department of Forest Bioengineering, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jiawei Zhang
- Department of Forest Bioengineering, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Dongwei Guo
- Department of Forest Bioengineering, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Hongmei Tian
- Forest Botanical Garden of Heilongjiang Province, Harbin, 150040, China
| | - Yang Cao
- Key Laboratory of Saline-Alkaline Vegetation Ecology Restoration (SAVER), Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Department of Forest Bioengineering, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xintong Ji
- Key Laboratory of Saline-Alkaline Vegetation Ecology Restoration (SAVER), Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Department of Forest Bioengineering, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yaguang Zhan
- Key Laboratory of Saline-Alkaline Vegetation Ecology Restoration (SAVER), Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Department of Forest Bioengineering, College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
17
|
Gubser G, Vollenweider S, Eibl D, Eibl R. Food ingredients and food made with plant cell and tissue cultures: State-of-the art and future trends. Eng Life Sci 2021; 21:87-98. [PMID: 33716608 PMCID: PMC7923591 DOI: 10.1002/elsc.202000077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 11/11/2022] Open
Abstract
Climate change and an increasing world population means traditional farming methods may not be able to meet the anticipated growth in food demands. Therefore, alternative agricultural strategies should be considered. Here, plant cell and tissue cultures (PCTCs) may present a possible solution, as they allow for controlled, closed and sustainable manufacturing of extracts which have been or are still being used as colorants or health food ingredients today. In this review we would like to highlight developments and the latest trends concerning commercial PCTC extracts and their use as food ingredients or even as food. The commercialization of PCTC-derived products, however, requires not only regulatory approval, but also outstanding product properties or/and a high product titer. If these challenges can be met, PCTCs will become increasingly important for the food sector in coming years.
Collapse
Affiliation(s)
- Geraldine Gubser
- Institute of Chemistry and BiotechnologyZurich University of Applied Sciences (ZHAW)WadenswilSwitzerland
| | | | - Dieter Eibl
- Institute of Chemistry and BiotechnologyZurich University of Applied Sciences (ZHAW)WadenswilSwitzerland
| | - Regine Eibl
- Institute of Chemistry and BiotechnologyZurich University of Applied Sciences (ZHAW)WadenswilSwitzerland
| |
Collapse
|
18
|
Marsafari M, Samizadeh H, Rabiei B, Mehrabi A, Koffas M, Xu P. Biotechnological Production of Flavonoids: An Update on Plant Metabolic Engineering, Microbial Host Selection, and Genetically Encoded Biosensors. Biotechnol J 2020; 15:e1900432. [DOI: 10.1002/biot.201900432] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/19/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Monireh Marsafari
- Department of ChemicalBiochemical, and Environmental EngineeringUniversity of Maryland Baltimore MD 21250 USA
- Department of Agronomy and Plant BiotechnologyUniversity of Guilan Rasht 44052 Iran
| | - Habibollah Samizadeh
- Department of Agronomy and Plant BiotechnologyUniversity of Guilan Rasht 44052 Iran
| | - Babak Rabiei
- Department of Agronomy and Plant BiotechnologyUniversity of Guilan Rasht 44052 Iran
| | | | - Mattheos Koffas
- Department of Chemical and Biological EngineeringRensselaer Polytechnic Institute Troy NY 12180 USA
| | - Peng Xu
- Department of ChemicalBiochemical, and Environmental EngineeringUniversity of Maryland Baltimore MD 21250 USA
| |
Collapse
|
19
|
Lautié E, Russo O, Ducrot P, Boutin JA. Unraveling Plant Natural Chemical Diversity for Drug Discovery Purposes. Front Pharmacol 2020; 11:397. [PMID: 32317969 PMCID: PMC7154113 DOI: 10.3389/fphar.2020.00397] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
The screening and testing of extracts against a variety of pharmacological targets in order to benefit from the immense natural chemical diversity is a concern in many laboratories worldwide. And several successes have been recorded in finding new actives in natural products, some of which have become new drugs or new sources of inspiration for drugs. But in view of the vast amount of research on the subject, it is surprising that not more drug candidates were found. In our view, it is fundamental to reflect upon the approaches of such drug discovery programs and the technical processes that are used, along with their inherent difficulties and biases. Based on an extensive survey of recent publications, we discuss the origin and the variety of natural chemical diversity as well as the strategies to having the potential to embrace this diversity. It seemed to us that some of the difficulties of the area could be related with the technical approaches that are used, so the present review begins with synthetizing some of the more used discovery strategies, exemplifying some key points, in order to address some of their limitations. It appears that one of the challenges of natural product-based drug discovery programs should be an easier access to renewable sources of plant-derived products. Maximizing the use of the data together with the exploration of chemical diversity while working on reasonable supply of natural product-based entities could be a way to answer this challenge. We suggested alternative ways to access and explore part of this chemical diversity with in vitro cultures. We also reinforced how important it was organizing and making available this worldwide knowledge in an "inventory" of natural products and their sources. And finally, we focused on strategies based on synthetic biology and syntheses that allow reaching industrial scale supply. Approaches based on the opportunities lying in untapped natural plant chemical diversity are also considered.
Collapse
Affiliation(s)
- Emmanuelle Lautié
- Centro de Valorização de Compostos Bioativos da Amazônia (CVACBA)-Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Olivier Russo
- Institut de Recherches Internationales SERVIER, Suresnes, France
| | - Pierre Ducrot
- Molecular Modelling Department, 'PEX Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France
| | - Jean A Boutin
- Institut de Recherches Internationales SERVIER, Suresnes, France
| |
Collapse
|
20
|
Habibi P, Daniell H, Soccol CR, Grossi‐de‐Sa MF. The potential of plant systems to break the HIV-TB link. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1868-1891. [PMID: 30908823 PMCID: PMC6737023 DOI: 10.1111/pbi.13110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/13/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Tuberculosis (TB) and human immunodeficiency virus (HIV) can place a major burden on healthcare systems and constitute the main challenges of diagnostic and therapeutic programmes. Infection with HIV is the most common cause of Mycobacterium tuberculosis (Mtb), which can accelerate the risk of latent TB reactivation by 20-fold. Similarly, TB is considered the most relevant factor predisposing individuals to HIV infection. Thus, both pathogens can augment one another in a synergetic manner, accelerating the failure of immunological functions and resulting in subsequent death in the absence of treatment. Synergistic approaches involving the treatment of HIV as a tool to combat TB and vice versa are thus required in regions with a high burden of HIV and TB infection. In this context, plant systems are considered a promising approach for combatting HIV and TB in a resource-limited setting because plant-made drugs can be produced efficiently and inexpensively in developing countries and could be shared by the available agricultural infrastructure without the expensive requirement needed for cold chain storage and transportation. Moreover, the use of natural products from medicinal plants can eliminate the concerns associated with antiretroviral therapy (ART) and anti-TB therapy (ATT), including drug interactions, drug-related toxicity and multidrug resistance. In this review, we highlight the potential of plant system as a promising approach for the production of relevant pharmaceuticals for HIV and TB treatment. However, in the cases of HIV and TB, none of the plant-made pharmaceuticals have been approved for clinical use. Limitations in reaching these goals are discussed.
Collapse
Affiliation(s)
- Peyman Habibi
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Bioprocess Engineering and BiotechnologyFederal University of ParanáCuritibaPRBrazil
- Embrapa Genetic Resources and BiotechnologyBrasíliaDFBrazil
| | - Henry Daniell
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Maria Fatima Grossi‐de‐Sa
- Embrapa Genetic Resources and BiotechnologyBrasíliaDFBrazil
- Catholic University of BrasíliaBrasíliaDFBrazil
- Post Graduation Program in BiotechnologyUniversity PotiguarNatalRNBrazil
| |
Collapse
|
21
|
Nielsen E, Temporiti MEE, Cella R. Improvement of phytochemical production by plant cells and organ culture and by genetic engineering. PLANT CELL REPORTS 2019; 38:1199-1215. [PMID: 31055622 DOI: 10.1007/s00299-019-02415-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Plants display an amazing ability to synthesize a vast array of secondary metabolites that are an inexhaustible source of phytochemicals, bioactive molecules some of which impact the human health. Phytochemicals present in medicinal herbs and spices have long been used as natural remedies against illness. Plant tissue culture represents an alternative to whole plants as a source of phytochemicals. This approach spares agricultural land that can be used for producing food and other raw materials, thus favoring standardized phytochemical production regardless of climatic adversities and political events. Over the past 20 years, different strategies have been developed to increase the synthesis and the extraction of phytochemicals from tissue culture often obtaining remarkable results. Moreover, the availability of genomics and metabolomics tools, along with improved recombinant methods related to the ability to overexpress, silence or disrupt one or more genes of the pathway of interest promise to open new exciting possibilities of metabolic engineering. This review provides a general framework of the cellular and molecular tools developed so far to enhance the yield of phytochemicals. Additionally, some emerging topics such as the culture of cambial meristemoid cells, the selection of plant cell following the expression of genes encoding human target proteins, and the bioextraction of phytochemicals from plant material have been addressed. Altogether, the herein described techniques and results are expected to improve metabolic engineering tools aiming at improving the production of phytochemicals of pharmaceutical and nutraceutical interest.
Collapse
Affiliation(s)
- Erik Nielsen
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy.
| | | | - Rino Cella
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| |
Collapse
|
22
|
Progress in research on paclitaxel and tumor immunotherapy. Cell Mol Biol Lett 2019; 24:40. [PMID: 31223315 PMCID: PMC6567594 DOI: 10.1186/s11658-019-0164-y] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Paclitaxel is a well-known anticancer agent with a unique mechanism of action. It is considered to be one of the most successful natural anticancer drugs available. This study summarizes the recent advances in our understanding of the sources, the anticancer mechanism, and the biosynthetic pathway of paclitaxel. With the advancement of biotechnology, improvements in endophytic fungal strains, and the use of recombination techniques and microbial fermentation engineering, the yield of extracted paclitaxel has increased significantly. Recently, paclitaxel has been found to play a large role in tumor immunity, and it has a great potential for use in many cancer treatments.
Collapse
|
23
|
Plant stem cells: what we know and what is anticipated. Mol Biol Rep 2018; 45:2897-2905. [PMID: 30196455 DOI: 10.1007/s11033-018-4344-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023]
Abstract
Plant stem cell research is of interest due to stem cells ability of unlimited division, therapeutic potential and steady supply to provide precursor cells. Their isolation and culture provides the important source for the production of homogenous lines of active constituents that allow large-scale production of various metabolites. The process of dedifferentiation and reversal to pluripotent cells involves the various pathways genes related to the stem cells and are associated to each other for maintaining a specific niche. Domains such as niche dynamics and maintenance signaling can be used for the identification of genes for stem cell niche. Significant findings have been achieved in the past on plant stem cells however our understanding towards mechanisms underlying some specific phenomenon like dedifferentiation, regulation, niche dynamics is still in infancy. The present review is based on the past research efforts and also pave a way forward for the future anticipation in the field of development of cell cultures for the production of active metabolites on large scale and undertanding transcriptional regulation of stem cell genes involved in niche signaling.
Collapse
|
24
|
Plant cell culture technology in the cosmetics and food industries: current state and future trends. Appl Microbiol Biotechnol 2018; 102:8661-8675. [PMID: 30099571 PMCID: PMC6153648 DOI: 10.1007/s00253-018-9279-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 12/02/2022]
Abstract
The production of drugs, cosmetics, and food which are derived from plant cell and tissue cultures has a long tradition. The emerging trend of manufacturing cosmetics and food products in a natural and sustainable manner has brought a new wave in plant cell culture technology over the past 10 years. More than 50 products based on extracts from plant cell cultures have made their way into the cosmetics industry during this time, whereby the majority is produced with plant cell suspension cultures. In addition, the first plant cell culture-based food supplement ingredients, such as Echigena Plus and Teoside 10, are now produced at production scale. In this mini review, we discuss the reasons for and the characteristics as well as the challenges of plant cell culture-based productions for the cosmetics and food industries. It focuses on the current state of the art in this field. In addition, two examples of the latest developments in plant cell culture-based food production are presented, that is, superfood which boosts health and food that can be produced in the lab or at home.
Collapse
|
25
|
Georgiev V, Slavov A, Vasileva I, Pavlov A. Plant cell culture as emerging technology for production of active cosmetic ingredients. Eng Life Sci 2018; 18:779-798. [PMID: 32624872 DOI: 10.1002/elsc.201800066] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/20/2018] [Indexed: 12/11/2022] Open
Abstract
Plants have always been the main source for active cosmetic ingredients, having proven health beneficial effects on human, such as anti-aging, antioxidant, anti-inflammatory, UV-protective, anti-cancer, anti-wrinkle, skin soothing, whitening, moisturizing, etc. Extracts from herbal, aromatic and/or medicinal plants have been widely used as effective active ingredients in cosmeceuticals or nutricosmetics, especially in products for topical application and skin-care formulations. However, over the past decade, there has been an increasing interest to plant cell culture - derived active cosmetic ingredients. These are "new generation" of high quality natural products, produced by the modern plan biotechnology methods, which usually showed stronger activities than the plant extracts obtained by the classical methods. In this review, the advantages and the current progress in plant cell culture technology for the production of active cosmetic ingredients have been summarized, and discussed in details within a presented case study for calendula stem cell product development.
Collapse
Affiliation(s)
- Vasil Georgiev
- Laboratory of Applied Biotechnology - Plovdiv The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences Plovdiv Bulgaria.,Department of Organic Chemistry and Inorganic Chemistry University of Food Technologies Plovdiv Bulgaria
| | - Anton Slavov
- Department of Organic Chemistry and Inorganic Chemistry University of Food Technologies Plovdiv Bulgaria
| | - Ivelina Vasileva
- Department of Organic Chemistry and Inorganic Chemistry University of Food Technologies Plovdiv Bulgaria
| | - Atanas Pavlov
- Laboratory of Applied Biotechnology - Plovdiv The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences Plovdiv Bulgaria.,Department of Analytical Chemistry and Physicochemistry University of Food Technologies Plovdiv Bulgaria
| |
Collapse
|
26
|
Ochoa-Villarreal M, Howat S, Hong S, Jang MO, Jin YW, Lee EK, Loake GJ. Plant cell culture strategies for the production of natural products. BMB Rep 2017; 49:149-58. [PMID: 26698871 PMCID: PMC4915229 DOI: 10.5483/bmbrep.2016.49.3.264] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 12/26/2022] Open
Abstract
Plants have evolved a vast chemical cornucopia to support their sessile lifestyles. Man has exploited this natural resource since Neolithic times and currently plant-derived chemicals are exploited for a myriad of applications. However, plant sources of most high-value natural products (NPs) are not domesticated and therefore their production cannot be undertaken on an agricultural scale. Further, these plant species are often slow growing, their populations limiting, the concentration of the target molecule highly variable and routinely present at extremely low concentrations. Plant cell and organ culture constitutes a sustainable, controllable and environmentally friendly tool for the industrial production of plant NPs. Further, advances in cell line selection, biotransformation, product secretion, cell permeabilisation, extraction and scale-up, among others, are driving increases in plant NP yields. However, there remain significant obstacles to the commercial synthesis of high-value chemicals from these sources. The relatively recent isolation, culturing and characterisation of cambial meristematic cells (CMCs), provides an emerging platform to circumvent many of these potential difficulties. [BMB Reports 2016; 49(3): 149-158]
Collapse
Affiliation(s)
- Marisol Ochoa-Villarreal
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Susan Howat
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | | | | | | | | | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
27
|
An innovative synthesis of tertiary hydroxyl thieno[2,3-d]pyrimidinone skeleton: natural-like product from the tandem reaction of o-aminothienonitrile and carbonyl compound. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.04.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Lee SB, Cho HI, Jin YW, Lee EK, Ahn JY, Lee SM. Wild ginseng cambial meristematic cells ameliorate hepatic steatosis and mitochondrial dysfunction in high-fat diet-fed mice. J Pharm Pharmacol 2016; 68:119-27. [DOI: 10.1111/jphp.12487] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/12/2015] [Indexed: 12/23/2022]
Abstract
Abstract
Objectives
The aim of this study was to determine the protective mechanisms of wild ginseng cambial meristematic cells (CMCs) on non-alcoholic fatty liver disease in high-fat diet (HFD)-fed mice.
Methods
Male C57BL/6 mice received either normal-fat diet or HFD for 10 weeks along with wild ginseng CMCs (75, 150 and 300 mg/kg) or vehicle (0.5% carboxyl methyl cellulose) by oral administration once a day. Triglyceride and total cholesterol contents were measured in liver and serum samples. Parameters for hepatic lipid metabolism and mitochondria biogenesis were assessed.
Key findings
Treatment with wild ginseng CMCs markedly attenuated body weight, serum and hepatic lipid contents, and serum aminotransferase activity. While wild ginseng CMCs attenuated the increases in sterol regulatory element-binding transcription factor 1 (SREBP-1) and carbohydrate-responsive element-binding protein (ChREBP) expression, it enhanced the increases in carnitine palmitoyltransferase 1A (CPT1A) and peroxisome proliferator-activated receptor alpha (PPAR-α) expression. HFD decreased glutamate dehydrogenase activity and glutathione content, and increased lipid peroxidation, which were all attenuated by wild ginseng CMCs. Furthermore, wild ginseng CMCs enhanced mitochondrial biogenesis-related factors, including peroxisome proliferator-activated receptor-γ co activator 1α (PGC1α), nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM).
Conclusions
Wild ginseng CMCs protect against HFD-induced liver injury, which prevents lipid accumulation and mitochondrial oxidative stress, and enhances mitochondrial biogenesis.
Collapse
Affiliation(s)
- Sang-Bin Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hong-Ik Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Young-Woo Jin
- Plant Stem Cell Institute, Unhwa Corp., Jeonju, Republic of Korea
| | - Eun-Kyong Lee
- Plant Stem Cell Institute, Unhwa Corp., Jeonju, Republic of Korea
| | - Jeung Youb Ahn
- Plant Stem Cell Institute, Unhwa Corp., Jeonju, Republic of Korea
| | - Sun-Mee Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|