1
|
Doña I, Jurado-Escobar R, Pérez-Sánchez N, Laguna JJ, Bartra J, Testera-Montes A, de Santa María RS, Torres MJ, Cornejo-García JA. Genetic Variants Associated With Drug-Induced Hypersensitivity Reactions: towards Precision Medicine? CURRENT TREATMENT OPTIONS IN ALLERGY 2021. [DOI: 10.1007/s40521-020-00278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Hendrickson OD, Taranova NA, Zherdev AV, Dzantiev BB, Eremin SA. Fluorescence Polarization-Based Bioassays: New Horizons. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7132. [PMID: 33322750 PMCID: PMC7764623 DOI: 10.3390/s20247132] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
Fluorescence polarization holds considerable promise for bioanalytical systems because it allows the detection of selective interactions in real time and a choice of fluorophores, the detection of which the biosample matrix does not influence; thus, their choice simplifies and accelerates the preparation of samples. For decades, these possibilities were successfully applied in fluorescence polarization immunoassays based on differences in the polarization of fluorophore emissions excited by plane-polarized light, whether in a free state or as part of an immune complex. However, the results of recent studies demonstrate the efficacy of fluorescence polarization as a detected signal in many bioanalytical methods. This review summarizes and comparatively characterizes these developments. It considers the integration of fluorescence polarization with the use of alternative receptor molecules and various fluorophores; different schemes for the formation of detectable complexes and the amplification of the signals generated by them. New techniques for the detection of metal ions, nucleic acids, and enzymatic reactions based on fluorescence polarization are also considered.
Collapse
Affiliation(s)
- Olga D. Hendrickson
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Nadezhda A. Taranova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Sergei A. Eremin
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
- Department of Chemical Enzymology, Chemical Faculty, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
3
|
Klotoe BJ, Molina-Moya B, Gomes HM, Gomgnimbou MK, Oliveira Suzarte L, Féres Saad MH, Ali S, Dominguez J, Pimkina E, Zholdybayeva E, Sola C, Refrégier G. TB-EFI, a novel 18-Plex microbead-based method for prediction of second-line drugs and ethambutol resistance in Mycobacterium tuberculosis complex. J Microbiol Methods 2018; 152:10-17. [PMID: 29913189 DOI: 10.1016/j.mimet.2018.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
Abstract
Several diagnostic tests are being developed to detect drug resistance in tuberculosis. In line with previous developments detecting rifampicin and isoniazid resistance using microbead-based systems (spoligoriftyping and TB-SPRINT), we present here an assay called TB-EFI detecting mutations involved in resistance to ethambutol, fluoroquinolones and the three classical injectable drugs (kanamycin, amikacin and capreomycin) in Mycobacterium tuberculosis. The proposed test includes both wild-type and mutant probes for each targeted locus. Basic analysis can be performed manually. An upgraded interpretation is made available in Excel 2016®. Using a reference set of 61 DNA extracts, we show that TB-EFI provides perfect concordance with pyrosequencing. Concordance between genotypic resistance and phenotypic DST was relatively good (72 to 98% concordance), with lower efficiency for fluoroquinolones and ethambutol due to some untargeted mutations. When compared to phenotypical resistance, performances were similar to those obtained with Hain MTBDRsl assay, possibly thanks to the use of automatized processing of data although some mutations involved in fluoroquinolone resistance could not be included. When applied on three uncharacterized sets, phenotype could be predicted for 51% to 98% depending on the setting and the drug investigated, detecting one extensively drug-resistant isolate in each of a Pakistan and a Brazilian set of 91 samples, and 9 XDR among 43 multi-resistant Kazakhstan samples. By allowing high-throughput detection of second-line drugs resistance and of resistance to ethambutol that is often combined to second-line treatments, TB-EFI is a cost-effective assay for large-scale worldwide surveillance of resistant tuberculosis and XDR-TB control.
Collapse
Affiliation(s)
- Bernice J Klotoe
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Barbara Molina-Moya
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Harrison Magdinier Gomes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France; Laboratório de Biologia Molecular Aplicada à Micobactérias, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Michel K Gomgnimbou
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France; Centre Muraz, Bobo-Dioulasso, Burkina Faso; Univ. Polytech, Bobo-Dioulasso, Burkina Faso
| | - Lorenna Oliveira Suzarte
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Maria H Féres Saad
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Av. Brasil, 4365 - 20245, Rio de Janeiro, Brazil
| | - Sajid Ali
- Microbiology Department, Quaid-i-Azam University, Islamabad, Pakistan
| | - José Dominguez
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Edita Pimkina
- Infectious Diseases and Tuberculosis Hospital, Affiliate of Vilnius University Hospital Santariskiu klinikos, Vilnius, Lithuania
| | - Elena Zholdybayeva
- National Center for Biotechnology, Astana, Kazakhstan; Universitat Autònoma de Barcelona. CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain
| | - Christophe Sola
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| | - Guislaine Refrégier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Genome sequencing is now available as a clinical diagnostic test. There is a significant knowledge and translation gap for nongenetic specialists of the processes necessary to generate and interpret clinical genome sequencing. The purpose of this review is to provide a primer on contemporary clinical genome sequencing for nongenetic specialists describing the human genome project, current techniques and applications in genome sequencing, limitations of current technology, and techniques on the horizon. RECENT FINDINGS As currently implemented, genome sequencing compares short pieces of an individual's genome with a reference sequence developed by the human genome project. Genome sequencing may be used for obtaining timely diagnostic information, cancer pharmacogenomics, or in clinical cases when previous genetic testing has not revealed a clear diagnosis. At present, the implementation of clinical genome sequencing is limited by the availability of clinicians qualified for interpretation, and current techniques in used clinical testing do not detect all types of genetic variation present in a single genome. SUMMARY Clinicians considering a genetic diagnosis have wide array of testing choices which now includes genome sequencing. Although not a comprehensive test in its current form, genome sequencing offers more information than gene-panel or exome sequencing and has the potential to replace targeted single-gene or gene-panel testing in many clinical scenarios.
Collapse
|
5
|
Kumar A, Murthy S, Kapoor A. Evolution of selective-sequencing approaches for virus discovery and virome analysis. Virus Res 2017; 239:172-179. [PMID: 28583442 PMCID: PMC5819613 DOI: 10.1016/j.virusres.2017.06.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/28/2016] [Accepted: 06/02/2017] [Indexed: 12/11/2022]
Abstract
Description of virus enrichment techniques for metagenomics based virome analysis. Usefulness of recently developed virome capture sequencing techniques. Perspective on negative and positive selection approaches for virome analysis.
Recent advances in sequencing technologies have transformed the field of virus discovery and virome analysis. Once mostly confined to the traditional Sanger sequencing based individual virus discovery, is now entirely replaced by high throughput sequencing (HTS) based virus metagenomics that can be used to characterize the nature and composition of entire viromes. To better harness the potential of HTS for the study of viromes, sample preparation methodologies use different approaches to exclude amplification of non-viral components that can overshadow low-titer viruses. These virus-sequence enrichment approaches mostly focus on the sample preparation methods, like enzymatic digestion of non-viral nucleic acids and size exclusion of non-viral constituents by column filtration, ultrafiltration or density gradient centrifugation. However, recently a new approach of virus-sequence enrichment called virome-capture sequencing, focused on the amplification or HTS library preparation stage, was developed to increase the ability of virome characterization. This new approach has the potential to further transform the field of virus discovery and virome analysis, but its technical complexity and sequence-dependence warrants further improvements. In this review we discuss the different methods, their applications and evolution, for selective sequencing based virome analysis and also propose refinements needed to harness the full potential of HTS for virome analysis.
Collapse
Affiliation(s)
- Arvind Kumar
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Satyapramod Murthy
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine and Public Health, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
6
|
Lehrach H. Omics approaches to individual variation: modeling networks and the virtual patient. DIALOGUES IN CLINICAL NEUROSCIENCE 2016. [PMID: 27757060 PMCID: PMC5067143 DOI: 10.31887/dcns.2016.18.3/hlehrach] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Every human is unique. We differ in our genomes, environment, behavior, disease history, and past and current medical treatment—a complex catalog of differences that often leads to variations in the way each of us responds to a particular therapy. We argue here that true personalization of drug therapies will rely on “virtual patient” models based on a detailed characterization of the individual patient by molecular, imaging, and sensor techniques. The models will be based, wherever possible, on the molecular mechanisms of disease processes and drug action but can also expand to hybrid models including statistics/machine learning/artificial intelligence-based elements trained on available data to address therapeutic areas or therapies for which insufficient information on mechanisms is available. Depending on the disease, its mechanisms, and the therapy, virtual patient models can be implemented at a fairly high level of abstraction, with molecular models representing cells, cell types, or organs relevant to the clinical question, interacting not only with each other but also the environment. In the future, “virtual patient/in-silico self” models may not only become a central element of our health care system, reducing otherwise unavoidable mistakes and unnecessary costs, but also act as “guardian angels” accompanying us through life to protect us against dangers and to help us to deal intelligently with our own health and wellness.
Collapse
|