1
|
Baltà-Foix R, Serrano-Adrover C, López-Cano A, Gifre-Renom L, Sanchez-Chardi A, Arís A, Garcia-Fruitós E. Lactiplantibacillus plantarum: a new example of inclusion body producing bacteria. Microb Cell Fact 2023; 22:111. [PMID: 37296442 PMCID: PMC10251561 DOI: 10.1186/s12934-023-02120-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Lactic Acid Bacteria such as Lactococcus lactis, Latilactobacillus sakei (basonym: Lactobacillus sakei) and Lactiplantibacillus plantarum (basonym: Lactobacillus plantarum) have gained importance as recombinant cell factories. Although it was believed that proteins produced in these lipopolysaccharides (LPS)-free microorganisms do not aggregate, it has been shown that L. lactis produce inclusion bodies (IBs) during the recombinant production process. These protein aggregates contain biologically active protein, which is slowly released, being a biomaterial with a broad range of applications including the obtainment of soluble protein. However, the aggregation phenomenon has not been characterized so far in L. plantarum. Thus, the current study aims to determine the formation of protein aggregates in L. plantarum and evaluate their possible applications. RESULTS To evaluate the formation of IBs in L. plantarum, the catalytic domain of bovine metalloproteinase 9 (MMP-9cat) protein has been used as model protein, being a prone-to-aggregate (PTA) protein. The electron microscopy micrographs showed the presence of electron-dense structures in L. plantarum cytoplasm, which were further purified and analyzed. The ultrastructure of the isolated protein aggregates, which were smooth, round and with an average size of 250-300 nm, proved that L. plantarum also forms IBs under recombinant production processes of PTA proteins. Besides, the protein embedded in these aggregates was fully active and had the potential to be used as a source of soluble protein or as active nanoparticles. The activity determination of the soluble protein solubilized from these IBs using non-denaturing protocols proved that fully active protein could be obtained from these protein aggregates. CONCLUSIONS These results proved that L. plantarum forms aggregates under recombinant production conditions. These aggregates showed the same properties as IBs formed in other expression systems such as Escherichia coli or L. lactis. Thus, this places this LPS-free microorganism as an interesting alternative to produce proteins of interest for the biopharmaceutical industry, which are obtained from the IBs in an important number of cases.
Collapse
Affiliation(s)
- Ricardo Baltà-Foix
- Programa de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, 08140, Spain
| | - Caterina Serrano-Adrover
- Programa de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, 08140, Spain
| | - Adrià López-Cano
- Programa de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, 08140, Spain
| | - Laia Gifre-Renom
- Programa de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, 08140, Spain
| | - Alejandro Sanchez-Chardi
- Departament de Biologia Evolutiva, Facultat de Biologia, Ecologia i Ciències Ambientals, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
| | - Anna Arís
- Programa de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, 08140, Spain.
| | - Elena Garcia-Fruitós
- Programa de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, 08140, Spain.
| |
Collapse
|
2
|
Carratalá JV, Atienza-Garriga J, López-Laguna H, Vázquez E, Villaverde A, Sánchez JM, Ferrer-Miralles N. Enhanced recombinant protein capture, purity and yield from crude bacterial cell extracts by N-Lauroylsarcosine-assisted affinity chromatography. Microb Cell Fact 2023; 22:81. [PMID: 37098491 PMCID: PMC10131332 DOI: 10.1186/s12934-023-02081-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Recombinant proteins cover a wide range of biomedical, biotechnological, and industrial needs. Although there are diverse available protocols for their purification from cell extracts or from culture media, many proteins of interest such as those containing cationic domains are difficult to purify, a fact that results in low yields of the final functional product. Unfortunately, this issue prevents the further development and industrial or clinical application of these otherwise interesting products. RESULTS Aiming at improving the purification of such difficult proteins, a novel procedure has been developed based on supplementing crude cell extracts with non-denaturing concentrations of the anionic detergent N-Lauroylsarcosine. The incorporation of this simple step in the downstream pipeline results in a substantial improvement of the protein capture by affinity chromatography, an increase of protein purity and an enhancement of the overall process yield, being the detergent not detectable in the final product. CONCLUSION By taking this approach, which represents a smart repurposing of N-Lauroylsarcosine applied to protein downstream, the biological activity of the protein is not affected. Being technologically simple, the N-Lauroylsarcosine-assisted protein purification might represent a critical improvement in recombinant protein production with wide applicability, thus smothering the incorporation of promising proteins into the protein market.
Collapse
Affiliation(s)
- Jose Vicente Carratalá
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Jan Atienza-Garriga
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| | - Julieta M Sánchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) (CONICET-Universidad Nacional de Córdoba), ICTA, FCEFyN, UNC., Av. Velez Sarsfield 1611, X 5016GCA, Córdoba, Argentina.
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
3
|
Barguilla I, Unzueta U, Carratalá JV, Cano-Garrido O, Villaverde A, Hernández A, Ferrer-Miralles N. Toxicity Profiling of Bacterial Inclusion Bodies in Human Caco-2 Cells. Front Bioeng Biotechnol 2022; 10:842256. [PMID: 35573225 PMCID: PMC9099286 DOI: 10.3389/fbioe.2022.842256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Bacterial inclusion bodies (IBs) are discrete macromolecular complexes that appear in recombinant prokaryotic cells under stress conditions. These structures are often discarded for biotechnological uses given the difficulty in recovering proteins of interest from them in a soluble form. However, recent approaches have revealed the potential of these protein clusters as biomaterials to promote cell growth and as protein depots for the release of recombinant proteins for biotechnological and biomedical applications. Although these kinds of natural supramolecular complexes have attracted great interest, no comprehensive study of their toxicity in cell cultures has been carried out. In this study, caco-2 cells were exposed to natural IBs, soluble protein-only nanoparticles (NPs), and non-assembled versions of the same protein for comparative purposes. Cytotoxicity, oxidative stress, and genotoxicity were analyzed for all these protein formats. Natural IBs and soluble protein formats demonstrated their safety in eukaryotic cells. No cytotoxicity, genotoxicity, or oxidative stress was detected in caco-2 cells exposed to the protein samples in any of the experimental conditions evaluated, which covered protein concentrations used in previous biological activity assays. These conditions evaluated the activity of protein samples obtained from three prokaryotic hosts [Escherichia coli and the endotoxin-free expression systems Lactococcus lactis and ClearColi® BL21 (DE3)]. Our results demonstrate that natural IBs and soluble protein nanoparticles are non-toxic materials for eukaryotic cells and that this may represent an interesting alternative to the classical unassembled format of recombinant proteins for certain applications in biotechnology and biomedicine.
Collapse
Affiliation(s)
- Irene Barguilla
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Networking Center for Biomedical Research in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Carlos III Institute of Health, Madrid, Spain
| | - Jose Vicente Carratalá
- Networking Center for Biomedical Research in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Carlos III Institute of Health, Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Olivia Cano-Garrido
- Networking Center for Biomedical Research in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Carlos III Institute of Health, Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Antonio Villaverde
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Networking Center for Biomedical Research in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Carlos III Institute of Health, Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alba Hernández
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | - Neus Ferrer-Miralles
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Networking Center for Biomedical Research in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Carlos III Institute of Health, Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
4
|
Sánchez JM, Carratalá JV, Serna N, Unzueta U, Nolan V, Sánchez-Chardi A, Voltà-Durán E, López-Laguna H, Ferrer-Miralles N, Villaverde A, Vazquez E. The Poly-Histidine Tag H6 Mediates Structural and Functional Properties of Disintegrating, Protein-Releasing Inclusion Bodies. Pharmaceutics 2022; 14:pharmaceutics14030602. [PMID: 35335976 PMCID: PMC8955739 DOI: 10.3390/pharmaceutics14030602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
The coordination between histidine-rich peptides and divalent cations supports the formation of nano- and micro-scale protein biomaterials, including toxic and non-toxic functional amyloids, which can be adapted as drug delivery systems. Among them, inclusion bodies (IBs) formed in recombinant bacteria have shown promise as protein depots for time-sustained protein release. We have demonstrated here that the hexahistidine (H6) tag, fused to recombinant proteins, impacts both on the formation of bacterial IBs and on the conformation of the IB-forming protein, which shows a higher content of cross-beta intermolecular interactions in H6-tagged versions. Additionally, the addition of EDTA during the spontaneous disintegration of isolated IBs largely affects the protein leakage rate, again protein release being stimulated in His-tagged materials. This event depends on the number of His residues but irrespective of the location of the tag in the protein, as it occurs in either C-tagged or N-tagged proteins. The architectonic role of H6 in the formation of bacterial IBs, probably through coordination with divalent cations, offers an easy approach to manipulate protein leakage and to tailor the applicability of this material as a secretory amyloidal depot in different biomedical interfaces. In addition, the findings also offer a model to finely investigate, in a simple set-up, the mechanics of protein release from functional secretory amyloids.
Collapse
Affiliation(s)
- Julieta María Sánchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET-Universidad Nacional de Córdoba, ICTA & Cátedra de Química Biológica, Departamento de Química, FCEFyN, UNC. Av. Velez Sarsfield 1611, Córdoba X 5016GCA, Argentina;
| | - José Vicente Carratalá
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, 08025 Barcelona, Spain
| | - Verónica Nolan
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET-Universidad Nacional de Córdoba, ICTA & Cátedra de Química Biológica, Departamento de Química, FCEFyN, UNC. Av. Velez Sarsfield 1611, Córdoba X 5016GCA, Argentina;
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
- Correspondence: (A.V.); (E.V.)
| | - Esther Vazquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
- Correspondence: (A.V.); (E.V.)
| |
Collapse
|
5
|
Sánchez JM, Carratalá JV, Gifre-Renom L, Arís A, Garcia-Fruitós E, Ferrer-Miralles N. Quality Control of Proteins Solubilized from Inclusion Bodies. Methods Mol Biol 2022; 2406:469-477. [PMID: 35089575 DOI: 10.1007/978-1-0716-1859-2_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite substantial development of production and purification protocols for heterologous recombinant proteins, some proteins are difficult to produce or, when produced, are accumulated in inclusion bodies (IBs). Nondenaturing protocols can be used to recover the entrapped protein from these protein aggregates. In this chapter, we provide a detailed procedure to analyze the physicochemical properties of one of those proteins produced in prokaryotic expression systems. Serum amyloid A3 (SAA3) was recovered from inclusion bodies (IBs) and its secondary structure associated to thermal stability and size was determined by circular dichroism (CD) and dynamic light scattering (DLS), respectively. These techniques were also applied to evaluate the SAA3 interaction with model membranes. These results show the importance of the structural analysis of proteins released from inclusion bodies under nondenaturing procedures, although similar approaches can be extended to any type of recombinant protein preparation.
Collapse
Affiliation(s)
- Julieta M Sánchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
- Facultad de Ciencias Exactas, Físicas y Naturales, ICTA and Departamento de Química, Cátedra de Química Biológica, Universidad Nacional de Córdoba, Córdoba, Argentina.
- CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), Córdoba, Argentina.
| | - Jose Vicente Carratalá
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Laia Gifre-Renom
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, Leuven, Belgium
| | - Anna Arís
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.
| |
Collapse
|
6
|
Carratalá JV, Cisneros A, Hellman E, Villaverde A, Ferrer-Miralles N. Title: insoluble proteins catch heterologous soluble proteins into inclusion bodies by intermolecular interaction of aggregating peptides. Microb Cell Fact 2021; 20:30. [PMID: 33531005 PMCID: PMC7852131 DOI: 10.1186/s12934-021-01524-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Background Protein aggregation is a biological event observed in expression systems in which the recombinant protein is produced under stressful conditions surpassing the homeostasis of the protein quality control system. In addition, protein aggregation is also related to conformational diseases in animals as transmissible prion diseases or non-transmissible neurodegenerative diseases including Alzheimer, Parkinson’s disease, amyloidosis and multiple system atrophy among others. At the molecular level, the presence of aggregation-prone domains in protein molecules act as seeding igniters to induce the accumulation of protein molecules in protease-resistant clusters by intermolecular interactions. Results
In this work we have studied the aggregating-prone performance of a small peptide (L6K2) with additional antimicrobial activity and we have elucidated the relevance of the accompanying scaffold protein to enhance the aggregating profile of the fusion protein. Furthermore, we demonstrated that the fusion of L6K2 to highly soluble recombinant proteins directs the protein to inclusion bodies (IBs) in E. coli through stereospecific interactions in the presence of an insoluble protein displaying the same aggregating-prone peptide (APP). Conclusions These data suggest that the molecular bases of protein aggregation are related to the net balance of protein aggregation potential and not only to the presence of APPs. This is then presented as a generic platform to generate hybrid protein aggregates in microbial cell factories for biopharmaceutical and biotechnological applications.
Collapse
Affiliation(s)
- Jose Vicente Carratalá
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain.,Department of Genetics and Microbiology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain.,Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), 08193, Bellaterra, Barcelona, Spain
| | - Andrés Cisneros
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain.,Department of Genetics and Microbiology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Elijah Hellman
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain.,Department of Genetics and Microbiology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Antonio Villaverde
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain.,Department of Genetics and Microbiology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain.,Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), 08193, Bellaterra, Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain. .,Department of Genetics and Microbiology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain. .,Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
7
|
Carratalá JV, Brouillette E, Serna N, Sánchez-Chardi A, Sánchez JM, Villaverde A, Arís A, Garcia-Fruitós E, Ferrer-Miralles N, Malouin F. In Vivo Bactericidal Efficacy of GWH1 Antimicrobial Peptide Displayed on Protein Nanoparticles, a Potential Alternative to Antibiotics. Pharmaceutics 2020; 12:pharmaceutics12121217. [PMID: 33348529 PMCID: PMC7766456 DOI: 10.3390/pharmaceutics12121217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Oligomerization of antimicrobial peptides into nanosized supramolecular complexes produced in biological systems (inclusion bodies and self-assembling nanoparticles) seems an appealing alternative to conventional antibiotics. In this work, the antimicrobial peptide, GWH1, was N-terminally fused to two different scaffold proteins, namely, GFP and IFN-γ for its bacterial production in the form of such recombinant protein complexes. Protein self-assembling as regular soluble protein nanoparticles was achieved in the case of GWH1-GFP, while oligomerization into bacterial inclusion bodies was reached in both constructions. Among all these types of therapeutic proteins, protein nanoparticles of GWH1-GFP showed the highest bactericidal effect in an in vitro assay against Escherichia coli, whereas non-oligomerized GWH1-GFP and GWH1-IFN-γ only displayed a moderate bactericidal activity. These results indicate that the biological activity of GWH1 is specifically enhanced in the form of regular multi-display configurations. Those in vitro observations were fully validated against a bacterial infection using a mouse mastitis model, in which the GWH1-GFP soluble nanoparticles were able to effectively reduce bacterial loads.
Collapse
Affiliation(s)
- Jose V. Carratalá
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Eric Brouillette
- Centre d’Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de Biologie, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Mastitis Network and Regroupement de Recherche Pour un Lait de Qualité Optimale (Op+Lait), Université de Montréal, 2900 Edouard Montpetit Blvd, Montréal, QC H3T 1J4, Canada
| | - Naroa Serna
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Alejandro Sánchez-Chardi
- Microscopy Service, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain;
- Departament of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain
| | - Julieta M. Sánchez
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Antonio Villaverde
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Anna Arís
- Department of Ruminant Production, Institute of Agriculture and Agrifood Research and Technology (IRTA), Caldes de Montbui, 08140 Barcelona, Spain; (A.A.); (E.G.-F.)
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institute of Agriculture and Agrifood Research and Technology (IRTA), Caldes de Montbui, 08140 Barcelona, Spain; (A.A.); (E.G.-F.)
| | - Neus Ferrer-Miralles
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Correspondence: (N.F.-M.); (F.M.)
| | - François Malouin
- Centre d’Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de Biologie, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Mastitis Network and Regroupement de Recherche Pour un Lait de Qualité Optimale (Op+Lait), Université de Montréal, 2900 Edouard Montpetit Blvd, Montréal, QC H3T 1J4, Canada
- Correspondence: (N.F.-M.); (F.M.)
| |
Collapse
|
8
|
Krachmarova E, Ivanov I, Nacheva G. Nucleic acids in inclusion bodies obtained from E. coli cells expressing human interferon-gamma. Microb Cell Fact 2020; 19:139. [PMID: 32652996 PMCID: PMC7353671 DOI: 10.1186/s12934-020-01400-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inclusion bodies (IBs) are protein aggregates in recombinant bacterial cells containing mainly the target recombinant protein. Although it has been shown that IBs contain functional proteins along with protein aggregates, their direct application as pharmaceuticals is hindered by their heterogeneity and hazardous contaminants with bacterial origin. Therefore, together with the production of soluble species, IBs remain the main source for manufacture of recombinant proteins with medical application. The quality and composition of the IBs affect the refolding yield and further purification of the recombinant protein. The knowledge whether nucleic acids are genuine components or concomitant impurities of the IBs is a prerequisite for the understanding of the IBs formation and for development of optimized protocols for recombinant protein refolding and purification. IBs isolated from Escherichia coli overexpressing human interferon-gamma (hIFNγ), a protein with therapeutic application, were used as a model. RESULTS IBs were isolated from E. coli LE392 cells transformed with a hIFNγ expressing plasmid under standard conditions and further purified by centrifugation on a sucrose cushion, followed by several steps of sonication and washings with non-denaturing concentrations of urea. The efficiency of the purification was estimated by SDS-PAGE gel electrophoresis and parallel microbiological testing for the presence of residual intact bacteria. Phenol/chloroform extraction showed that the highly purified IBs contain both DNA and RNA. The latter were studied by UV spectroscopy and agarose gel electrophoresis combined with enzymatic treatment and hybridization. DNA was observed as a diffuse fraction mainly in the range of 250 to 1000 bp. RNA isolated by TRIzol® also demonstrated a substantial molecular heterogeneity. Hybridization with 32P-labelled oligonucleotides showed that the IBs contain rRNA and are enriched of hIFNγ mRNA. CONCLUSIONS The results presented in this study indicate that the nucleic acids might be intrinsic components rather than co-precipitated impurities in the IBs. We assume that the nucleic acids are active participants in the aggregation of recombinant proteins and formation of the IBs that originate from the transcription and translation machinery of the microbial cell factory. Further studies are needed to ascertain this notion.
Collapse
Affiliation(s)
- Elena Krachmarova
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Academic Georgi Bonchev Str., Blok 21, 1113, Sofia, Bulgaria
| | - Ivan Ivanov
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Academic Georgi Bonchev Str., Blok 21, 1113, Sofia, Bulgaria
| | - Genoveva Nacheva
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Academic Georgi Bonchev Str., Blok 21, 1113, Sofia, Bulgaria.
| |
Collapse
|
9
|
Gil-Garcia M, Navarro S, Ventura S. Coiled-coil inspired functional inclusion bodies. Microb Cell Fact 2020; 19:117. [PMID: 32487230 PMCID: PMC7268670 DOI: 10.1186/s12934-020-01375-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Recombinant protein expression in bacteria often leads to the formation of intracellular insoluble protein deposits, a major bottleneck for the production of soluble and active products. However, in recent years, these bacterial protein aggregates, commonly known as inclusion bodies (IBs), have been shown to be a source of stable and active protein for biotechnological and biomedical applications. The formation of these functional IBs is usually facilitated by the fusion of aggregation-prone peptides or proteins to the protein of interest, leading to the formation of amyloid-like nanostructures, where the functional protein is embedded. RESULTS In order to offer an alternative to the classical amyloid-like IBs, here we develop functional IBs exploiting the coiled-coil fold. An in silico analysis of coiled-coil and aggregation propensities, net charge, and hydropathicity of different potential tags identified the natural homo-dimeric and anti-parallel coiled-coil ZapB bacterial protein as an optimal candidate to form assemblies in which the native state of the fused protein is preserved. The protein itself forms supramolecular fibrillar networks exhibiting only α-helix secondary structure. This non-amyloid self-assembly propensity allows generating innocuous IBs in which the recombinant protein of interest remains folded and functional, as demonstrated using two different fluorescent proteins. CONCLUSIONS Here, we present a proof of concept for the use of a natural coiled-coil domain as a versatile tool for the production of functional IBs in bacteria. This α-helix-based strategy excludes any potential toxicity drawback that might arise from the amyloid nature of β-sheet-based IBs and renders highly active and homogeneous submicrometric particles.
Collapse
Affiliation(s)
- Marcos Gil-Garcia
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|