1
|
Ferrer-Miralles N, Garcia-Fruitós E. Heterologous Expression of Difficult to Produce Proteins in Bacterial Systems. Int J Mol Sci 2024; 25:822. [PMID: 38255896 PMCID: PMC10815505 DOI: 10.3390/ijms25020822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Proteins play a crucial role in maintaining homeostasis, providing structure, and enabling various functions in biological systems [...].
Collapse
Affiliation(s)
- Neus Ferrer-Miralles
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain;
- Department of Genetics and Microbiology, Autonomous University of Barcelona, 08193 Bellaterra, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Elena Garcia-Fruitós
- Ruminant Production Group, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain
| |
Collapse
|
2
|
Shettar SS, Bagewadi ZK, Yaraguppi DA, Das S, Mahanta N, Singh SP, Katti A, Saikia D. Gene expression and molecular characterization of recombinant subtilisin from Bacillus subtilis with antibacterial, antioxidant and anticancer properties. Int J Biol Macromol 2023; 249:125960. [PMID: 37517759 DOI: 10.1016/j.ijbiomac.2023.125960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
This study investigated the multifunctional attributes such as, antibacterial, antioxidant and anticancer potential of recombinant subtilisin. A codon-optimized subtilisin gene was synthesized from Bacillus subtilis and was successfully transformed into E. coli DH5α cells which was further induced for high level expression in E. coli BL21 (DE3). An affinity purified ~40 kDa recombinant subtilisin was obtained that revealed to be highly alkali-thermostable based on the thermodynamic parameters. The kinetic parameters were deduced that indicated higher affinity of N-Suc-F-A-A-F-pNA substrate towards subtilisin. Recombinant subtilisin demonstrated strong antibacterial activity against several pathogens and showed minimum inhibitory concentration of 0.06 μg/mL against B. licheniformis and also revealed high stability under the influence of several biochemical factors. It also displayed antioxidant potential in a dose dependent manner and exhibited cell cytotoxicity against A549 and MCF-7 cancerous cell lines with IC50 of 5 μM and 12 μM respectively. The identity of recombinant subtilisin was established by MALDI-TOF mass spectrum depicting desired mass peaks and N-terminal sequence as MRSK by MALDI-TOF-MS. The deduced N- terminal amino acid sequence by Edman degradation revealed high sequence similarity with subtilisins from Bacillus strains. The structural and functional analysis of recombinant antibacterial subtilisin was elucidated by Raman, circular dichroism and nuclear magnetic resonance spectroscopy and thermogravimetric analysis. The results contribute to the development of highly efficient subtilisin with enhanced catalytic properties making it a promising candidate for therapeutic applications in healthcare industries.
Collapse
Affiliation(s)
- Shreya S Shettar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Zabin K Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India.
| | - Deepak A Yaraguppi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Simita Das
- Department of Chemistry, Indian Institute of Technology, Dharwad, Karnataka 580011, India
| | - Nilkamal Mahanta
- Department of Chemistry, Indian Institute of Technology, Dharwad, Karnataka 580011, India
| | - Surya P Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Karnataka 580011, India
| | - Aditi Katti
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Dimple Saikia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Karnataka 580011, India
| |
Collapse
|
3
|
Klausser R, Kopp J, Prada Brichtova E, Gisperg F, Elshazly M, Spadiut O. State-of-the-art and novel approaches to mild solubilization of inclusion bodies. Front Bioeng Biotechnol 2023; 11:1249196. [PMID: 37545893 PMCID: PMC10399460 DOI: 10.3389/fbioe.2023.1249196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
Throughout the twenty-first century, the view on inclusion bodies (IBs) has shifted from undesired by-products towards a targeted production strategy for recombinant proteins. Inclusion bodies can easily be separated from the crude extract after cell lysis and contain the product in high purity. However, additional solubilization and refolding steps are required in the processing of IBs to recover the native protein. These unit operations remain a highly empirical field of research in which processes are developed on a case-by-case basis using elaborate screening strategies. It has been shown that a reduction in denaturant concentration during protein solubilization can increase the subsequent refolding yield due to the preservation of correctly folded protein structures. Therefore, many novel solubilization techniques have been developed in the pursuit of mild solubilization conditions that avoid total protein denaturation. In this respect, ionic liquids have been investigated as promising agents, being able to solubilize amyloid-like aggregates and stabilize correctly folded protein structures at the same time. This review briefly summarizes the state-of-the-art of mild solubilization of IBs and highlights some challenges that prevent these novel techniques from being yet adopted in industry. We suggest mechanistic models based on the thermodynamics of protein unfolding with the aid of molecular dynamics simulations as a possible approach to solve these challenges in the future.
Collapse
Affiliation(s)
- Robert Klausser
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Julian Kopp
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Eva Prada Brichtova
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Florian Gisperg
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Mohamed Elshazly
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Oliver Spadiut
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| |
Collapse
|
4
|
Mondol E, Donado K, Regino R, Hernandez K, Mercado D, Mercado AC, Benedetti I, Puerta L, Zakzuk J, Caraballo L. The Allergenic Activity of Blo t 2, a Blomia tropicalis IgE-Binding Molecule. Int J Mol Sci 2023; 24:ijms24065543. [PMID: 36982614 PMCID: PMC10053487 DOI: 10.3390/ijms24065543] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Only few allergens derived from house dust mite (HDM) species have been evaluated in terms of their potential to induce allergic inflammation. In this study, we aimed to evaluate different aspects of the allergenicity and allergenic activity of Blo t 2, a Blomia tropicalis allergen. Blo t 2 was produced as a recombinant protein in Escherichia coli. Its allergenic activity was tested in humans by skin prick test and basophil activation assays, and in mice, by passive cutaneous anaphylaxis and a model of allergic airway inflammation. Sensitization rate to Blo t 2 (54.3%) was similar to that found to Blo t 21 (57.2%) and higher than to Der p 2 (37.5%). Most Blo t 2-sensitized patients showed a low intensity response (99.5%). Blo t 2 elicited CD203c upregulation and allergen induced skin inflammation. Additionally, immunized animals produced anti-Blo t 2 IgE antibodies and passive transfer of their serum to non-immunized animals induced skin inflammation after allergen exposure. Immunized animals developed bronchial hyperreactivity and a strong inflammatory lung reaction (eosinophils and neutrophils). These results confirm the allergenic activity of Blo t 2 and supports its clinical relevance.
Collapse
|
5
|
Roca-Pinilla R, Lisowski L, Arís A, Garcia-Fruitós E. The future of recombinant host defense peptides. Microb Cell Fact 2022; 21:267. [PMID: 36544150 PMCID: PMC9768982 DOI: 10.1186/s12934-022-01991-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
The antimicrobial resistance crisis calls for the discovery and production of new antimicrobials. Host defense peptides (HDPs) are small proteins with potent antibacterial and immunomodulatory activities that are attractive for translational applications, with several already under clinical trials. Traditionally, antimicrobial peptides have been produced by chemical synthesis, which is expensive and requires the use of toxic reagents, hindering the large-scale development of HDPs. Alternatively, HDPs can be produced recombinantly to overcome these limitations. Their antimicrobial nature, however, can make them toxic to the hosts of recombinant production. In this review we explore the different strategies that are used to fine-tune their activities, bioengineer them, and optimize the recombinant production of HDPs in various cell factories.
Collapse
Affiliation(s)
- Ramon Roca-Pinilla
- grid.1013.30000 0004 1936 834XTranslational Vectorology Research Unit, Faculty of Medicine and Health, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145 Australia
| | - Leszek Lisowski
- grid.1013.30000 0004 1936 834XTranslational Vectorology Research Unit, Faculty of Medicine and Health, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145 Australia ,grid.415641.30000 0004 0620 0839Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Anna Arís
- grid.8581.40000 0001 1943 6646Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries IRTA, 08140 Caldes de Montbui, Spain
| | - Elena Garcia-Fruitós
- grid.8581.40000 0001 1943 6646Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries IRTA, 08140 Caldes de Montbui, Spain
| |
Collapse
|