1
|
Imam B, Rahmatinia M, Shahsavani A, Khodagholi F, Hopke PK, Bazazzpour S, Hadei M, Yarahmadi M, Abdollahifar MA, Torkmahalleh MA, Kermani M, Ilkhani S, MirBehbahani SH. Autism-like symptoms by exposure to air pollution and valproic acid-induced in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59263-59286. [PMID: 35384534 DOI: 10.1007/s11356-022-19865-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Exposure to air pollution during prenatal or neonatal periods is associated with autism spectrum disorder (ASD) according to epidemiology studies. Furthermore, prenatal exposure to valproic acid (VPA) has also been found to be associated with an increased prevalence of ASD. To assess the association between simultaneous exposure to VPA and air pollutants, seven exposure groups of rats were included in current study (PM2.5 and gaseous pollutants exposed - high dose of VPA (PGE-high); PM2.5 and gaseous pollutants exposed - low dose of VPA (PGE-low); gaseous pollutants only exposed - high dose of VPA (GE-high); gaseous pollutants only exposed - low dose of VPA (GE-low); clean air exposed - high dose of VPA (CAE-high); clean air exposed - low dose of VPA (CAE-low) and clean air exposed (CAE)). The pollution-exposed rats were exposed to air pollutants from embryonic day (E0) to postnatal day 42 (PND42). In all the induced groups, decreased oxidative stress biomarkers, decreased oxytocin receptor (OXTR) levels, and increased the expression of interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor alpha (TNF-α) were found. The volumes of the cerebellum, hippocampus, striatum, and prefrontal decreased in all induced groups in comparison to CAE. Additionally, increased numerical density of glial cells and decreased of numerical density of neurons were found in all induced groups. Results show that simultaneous exposure to air pollution and VPA can cause ASD-related behavioral deficits and air pollution reinforced the mechanism of inducing ASD ̉s in VPA-induced rat model of autism.
Collapse
Affiliation(s)
- Bahran Imam
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rahmatinia
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Shahsavani
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, 13699, USA
| | - Shahriyar Bazazzpour
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Hadei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Yarahmadi
- Environmental and Occupational Health Center, Ministry of Health and Medical Education, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Amouei Torkmahalleh
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan, 010000
| | - Majid Kermani
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Ilkhani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
2
|
Deng Z, Zhou X, Lu JH, Yue Z. Autophagy deficiency in neurodevelopmental disorders. Cell Biosci 2021; 11:214. [PMID: 34920755 PMCID: PMC8684077 DOI: 10.1186/s13578-021-00726-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 12/27/2022] Open
Abstract
Autophagy is a cell self-digestion pathway through lysosome and plays a critical role in maintaining cellular homeostasis and cytoprotection. Characterization of autophagy related genes in cell and animal models reveals diverse physiological functions of autophagy in various cell types and tissues. In central nervous system, by recycling injured organelles and misfolded protein complexes or aggregates, autophagy is integrated into synaptic functions of neurons and subjected to distinct regulation in presynaptic and postsynaptic neuronal compartments. A plethora of studies have shown the neuroprotective function of autophagy in major neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS). Recent human genetic and genomic evidence has demonstrated an emerging, significant role of autophagy in human brain development and prevention of spectrum of neurodevelopmental disorders. Here we will review the evidence demonstrating the causal link of autophagy deficiency to congenital brain diseases, the mechanism whereby autophagy functions in neurodevelopment, and therapeutic potential of autophagy.
Collapse
Affiliation(s)
- Zhiqiang Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Xiaoting Zhou
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China.
| | - Zhenyu Yue
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
3
|
Singh R, Turner RC, Nguyen L, Motwani K, Swatek M, Lucke-Wold BP. Pediatric Traumatic Brain Injury and Autism: Elucidating Shared Mechanisms. Behav Neurol 2016; 2016:8781725. [PMID: 28074078 PMCID: PMC5198096 DOI: 10.1155/2016/8781725] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 11/23/2016] [Indexed: 02/08/2023] Open
Abstract
Pediatric traumatic brain injury (TBI) and autism spectrum disorder (ASD) are two serious conditions that affect youth. Recent data, both preclinical and clinical, show that pediatric TBI and ASD share not only similar symptoms but also some of the same biologic mechanisms that cause these symptoms. Prominent symptoms for both disorders include gastrointestinal problems, learning difficulties, seizures, and sensory processing disruption. In this review, we highlight some of these shared mechanisms in order to discuss potential treatment options that might be applied for each condition. We discuss potential therapeutic and pharmacologic options as well as potential novel drug targets. Furthermore, we highlight advances in understanding of brain circuitry that is being propelled by improved imaging modalities. Going forward, advanced imaging will help in diagnosis and treatment planning strategies for pediatric patients. Lessons from each field can be applied to design better and more rigorous trials that can be used to improve guidelines for pediatric patients suffering from TBI or ASD.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Ryan C. Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Linda Nguyen
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Kartik Motwani
- Department of Medical Sciences, University of Florida School of Medicine, Gainesville, FL 32611, USA
| | - Michelle Swatek
- Department of Psychology, North Carolina State University, Raleigh, NC 27695, USA
| | - Brandon P. Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW This review discusses the ways that rodent models of autism spectrum disorders (ASDs) have been used to gain critical information about convergent molecular pathways, the mechanisms underlying altered microcircuit structure and function, and as a screen for potential cutting edge-treatments for ASDs. RECENT FINDINGS There is convergent evidence that impaired developmental pruning of connections may be a common finding among several mouse models of ASDs. Recent studies have uncovered impaired autophagy by pathological mTOR activation as a potential contributor to microcircuit dysfunction and behavior. ASD-related disinhibition and exaggerated synaptic plasticity in multiple distinct circuits in cortex and reward circuits in striatum also contribute to social dysfunction and repetitive behaviors. New exciting molecular therapeutic techniques have reversed cognitive deficits in models of ASD, indicating that mouse models could be used for preclinical translational studies of new treatments. SUMMARY Rodent models of ASDs coupled to new emerging technologies for genome editing, cell-specific functional and structural imaging, and neuronal activity manipulation will yield critical insights into ASD pathogenesis and fuel the emergence of new treatments.
Collapse
|