1
|
Peng J, Zou WW, Wang XL, Zhang ZG, Huo R, Yang L. Viral-mediated gene therapy in pediatric neurological disorders. World J Pediatr 2024; 20:533-555. [PMID: 36607547 DOI: 10.1007/s12519-022-00669-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Due to the broad application of next-generation sequencing, the molecular diagnosis of genetic disorders in pediatric neurology is no longer an unachievable goal. However, treatments for neurological genetic disorders in children remain primarily symptomatic. On the other hand, with the continuous evolution of therapeutic viral vectors, gene therapy is becoming a clinical reality. From this perspective, we wrote this review to illustrate the current state regarding viral-mediated gene therapy in childhood neurological disorders. DATA SOURCES We searched databases, including PubMed and Google Scholar, using the keywords "adenovirus vector," "lentivirus vector," and "AAV" for gene therapy, and "immunoreaction induced by gene therapy vectors," "administration routes of gene therapy vectors," and "gene therapy" with "NCL," "SMA," "DMD," "congenital myopathy," "MPS" "leukodystrophy," or "pediatric metabolic disorders". We also screened the database of ClinicalTrials.gov using the keywords "gene therapy for children" and then filtered the results with the ones aimed at neurological disorders. The time range of the search procedure was from the inception of the databases to the present. RESULTS We presented the characteristics of commonly used viral vectors for gene therapy for pediatric neurological disorders and summarized their merits and drawbacks, the administration routes of each vector, the research progress, and the clinical application status of viral-mediated gene therapy on pediatric neurological disorders. CONCLUSIONS Viral-mediated gene therapy is on the brink of broad clinical application. Viral-mediated gene therapy will dramatically change the treatment pattern of childhood neurological disorders, and many children with incurable diseases will meet the dawn of a cure. Nevertheless, the vectors must be optimized for better safety and efficacy.
Collapse
Affiliation(s)
- Jing Peng
- Department of Pediatrics, Clinical Research Center for Chidren Neurodevelopmental disablities of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wei-Wei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Lei Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhi-Guo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Li Yang
- Department of Pediatrics, Clinical Research Center for Chidren Neurodevelopmental disablities of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
2
|
Hauschild LA, Seixas Maia da Silva T, Winckler PB, Moreira Cardoso-Júnior L, Saute JAM, Donis KC. Co-Occurrence of Myotonic Dystrophy Type 1 and Limb-Girdle Muscular Dystrophy Type 2B: A Case Report. Mol Syndromol 2024; 15:58-62. [PMID: 38357254 PMCID: PMC10862322 DOI: 10.1159/000533219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 02/16/2024] Open
Abstract
Introduction Myotonic dystrophy type 1 (DM1) is an autosomal dominant neuromuscular disease whose pattern of weakness is predominantly distal. Limb-girdle muscular dystrophy type 2B/R2-dysferlin-related (LGMD2B/R2) is another neuromuscular disease, which presents an autosomal recessive inheritance and is marked by proximal muscle weakness. Even if uncommon, comorbid inherited pathologies must be considered in cases of atypical presentations, especially in those with family history of consanguinity. Case Presentation Herein, we report the unique case of a patient diagnosed with both DM1 and LGMD2B/R2: a 38-year-old woman in follow-up of DM1 in a neuromuscular disease service presenting prominent proximal weakness. The patient's parents were consanguineous, and creatine kinase levels were elevated. A multi-gene panel test was performed and revealed the diagnosis of LGMD2B/R2. Conclusion Genetic diseases with atypical presentations should raise the possibility of a second disorder, prompting an appropriate investigation. Overlooking a second diagnosis can implicate in not offering adequate genetic counseling, support, or specific treatment.
Collapse
Affiliation(s)
- Lucas Augusto Hauschild
- Faculty of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Pablo Brea Winckler
- Neurology Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | | | - Jonas Alex Morales Saute
- Faculty of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Neurology Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Internal Medicine Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Karina Carvalho Donis
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| |
Collapse
|
3
|
Vrist LTH, Knudsen LF, Handberg C. 'It becomes the new everyday life' - experiences of chronic pain in everyday life of people with limb-girdle muscular dystrophy. Disabil Rehabil 2023; 45:3875-3882. [PMID: 36343207 DOI: 10.1080/09638288.2022.2142679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/03/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To investigate experiences and reflections on challenges in everyday life of people living with limb-girdle muscular dystrophy (LGMD) and chronic pain in order to improve rehabilitation services. MATERIALS AND METHODS The design for this study was qualitative using the Interpretive Description methodology and the salutogenic theory of Sense of Coherence as the theoretical framework. Four semi-structured focus group interviews were conducted with 19 adults with LGMD from April to May 2021. The interviews were conducted online due to COVID-19. RESULTS Living with chronic pain and LGMD affected everyday life in terms of the participants' overall Sense of Coherence. Beneficial or unfavorable coping strategies were identified within four interrelated categorical themes: pain management, normality comprehension, affected emotional sentiment and altered identity. CONCLUSION Healthcare professionals should acknowledge possible chronic pain secondary to LGMD. Chronic pain appears to be a prevalent problem in people with LGMD with negative impact on everyday life, yet patients with LGMD did not receive sufficient information and necessary tools from health professionals to cope with chronic pain. Thus, adequate pain management appeared to be a difficult and self-taught process. Educating health professionals on how to support patients with LGMD and chronic pain is needed.IMPLICATIONS FOR REHABILITATIONHealth professionals should acknowledge and address the possibility of chronic pain secondary to limb-girdle muscular dystrophy (LGMD) and educate patients in pain management.Physiotherapy, energy management and engagement in meaningful activities may help patients gain some control of pain and limit the consequences of pain on everyday life.Supporting patients to accept pain and to shift focus towards their current capabilities may potentially improve pain management.Educating health professionals on how to support patients with LGMD and chronic pain is needed.
Collapse
Affiliation(s)
- Louise T H Vrist
- Department of Public Health, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Lone F Knudsen
- National Rehabilitation Center for Neuromuscular Diseases, Aarhus, Denmark
| | - Charlotte Handberg
- Department of Public Health, Faculty of Health, Aarhus University, Aarhus, Denmark
- National Rehabilitation Center for Neuromuscular Diseases, Aarhus, Denmark
| |
Collapse
|
4
|
Alawneh I, Stosic A, Gonorazky H. Muscle MRI patterns for limb girdle muscle dystrophies: systematic review. J Neurol 2023:10.1007/s00415-023-11722-1. [PMID: 37129643 DOI: 10.1007/s00415-023-11722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Limb girdle muscle dystrophies (LGMDs) are a group of inherited neuromuscular disorders comprising more than 20 genes. There have been increasing efforts to characterize this group with Muscle MRI. However, due to the complexity and similarities, the interpretation of the MRI patterns is usually done by experts in the field. Here, we proposed a step-by-step image interpretation of Muscle MRI in LGDM by evaluating the variability of muscle pattern involvement reported in the literature. A systematic review with an open start date to November 2022 was conducted to describe all LGMDs' muscle MRI patterns. Eighty-eight studies were included in the final review. Data were found to describe muscle MRI patterns for 15 out of 17 LGMDs types. Although the diagnosis of LGMDs is challenging despite the advanced genetic testing and other diagnostic modalities, muscle MRI is shown to help in the diagnosis of LGMDs. To further increase the yield for muscle MRI in the neuromuscular field, larger cohorts of patients need to be conducted.
Collapse
Affiliation(s)
- Issa Alawneh
- Department of Neurology, The Hospital for Sick Children, Toronto, Canada
| | - Ana Stosic
- Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Hernan Gonorazky
- Department of Neurology, The Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
5
|
Peng F, Xu H, Song Y, Xu K, Li S, Cai X, Guo Y, Gong L. Utilization of T1-Mapping for the pelvic and thigh muscles in Duchenne Muscular Dystrophy: a quantitative biomarker for disease involvement and correlation with clinical assessments. BMC Musculoskelet Disord 2022; 23:681. [PMID: 35842609 PMCID: PMC9288085 DOI: 10.1186/s12891-022-05640-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Little is known about the disease distribution and severity detected by T1-mapping in Duchenne muscular dystrophy (DMD). Furthermore, the correlation between skeletal muscle T1-values and clinical assessments is less studied. Hence, the purposes of our study are to investigate quantitative T1-mapping in detecting the degree of disease involvement by detailed analyzing the hip and thigh muscle, future exploring the predicting value of T1-mapping for the clinical status of DMD. METHODS Ninety-two DMD patients were included. Grading fat infiltration and measuring the T1-values of 19 pelvic and thigh muscles (right side) in axial T1-weighted images (T1WI) and T1-maps, respectively, the disease distribution and severity were evaluated and compared. Clinical assessments included age, height, weight, BMI, wheelchair use, timed functional tests, NorthStar ambulatory assessment (NSAA) score, serum creatine kinase (CK) level. Correlation analysis were performed between the muscle T1-value and clinical assessments. Multiple linear regression analysis was conducted for the independent association of T1-value and motor function. RESULTS The gluteus maximus had the lowest T1-value, and the gracilis had the highest T1-value. T1-value decreased as the grade of fat infiltration increased scored by T1WI (P < 0.001). The decreasing of T1-values was correlated with the increase of age, height, weight, wheelchair use, and timed functional tests (P < 0.05). T1-value correlated with NSAA (r = 0.232-0.721, P < 0.05) and CK (r = 0.208-0.491, P < 0.05) positively. T1-value of gluteus maximus, tensor fascia, vastus lateralis, vastus intermedius, vastus medialis, and adductor magnus was independently associated with the clinical motor function tests (P < 0.05). Interclass correlation coefficient (ICC) analysis and Bland-Altman plots showed excellent inter-rater reliability of T1-value region of interest (ROI) measurements. CONCLUSION T1-mapping can be used as a quantitative biomarker for disease involvement, further assessing the disease severity and predicting motor function in DMD.
Collapse
Affiliation(s)
- Fei Peng
- Department of Medical Imaging center, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi Province, China.,Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Huayan Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Yu Song
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Ke Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Shuhao Li
- Department of Medical Imaging center, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi Province, China
| | - Xiaotang Cai
- Department of Pediatrics Neurology, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China.
| | - Yingkun Guo
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China.
| | - Lianggeng Gong
- Department of Medical Imaging center, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
6
|
Perspectives on hiPSC-Derived Muscle Cells as Drug Discovery Models for Muscular Dystrophies. Int J Mol Sci 2021; 22:ijms22179630. [PMID: 34502539 PMCID: PMC8431796 DOI: 10.3390/ijms22179630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022] Open
Abstract
Muscular dystrophies are a heterogeneous group of inherited diseases characterized by the progressive degeneration and weakness of skeletal muscles, leading to disability and, often, premature death. To date, no effective therapies are available to halt or reverse the pathogenic process, and meaningful treatments are urgently needed. From this perspective, it is particularly important to establish reliable in vitro models of human muscle that allow the recapitulation of disease features as well as the screening of genetic and pharmacological therapies. We herein review and discuss advances in the development of in vitro muscle models obtained from human induced pluripotent stem cells, which appear to be capable of reproducing the lack of myofiber proteins as well as other specific pathological hallmarks, such as inflammation, fibrosis, and reduced muscle regenerative potential. In addition, these platforms have been used to assess genetic correction strategies such as gene silencing, gene transfer and genome editing with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), as well as to evaluate novel small molecules aimed at ameliorating muscle degeneration. Furthermore, we discuss the challenges related to in vitro drug testing and provide a critical view of potential therapeutic developments to foster the future clinical translation of preclinical muscular dystrophy studies.
Collapse
|