1
|
Elhussein A, Baymuradov U, Elhadad N, Natarajan K, Gürsoy G. A framework for sharing of clinical and genetic data for precision medicine applications. Nat Med 2024; 30:3578-3589. [PMID: 39227443 PMCID: PMC11645287 DOI: 10.1038/s41591-024-03239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
Precision medicine has the potential to provide more accurate diagnosis, appropriate treatment and timely prevention strategies by considering patients' biological makeup. However, this cannot be realized without integrating clinical and omics data in a data-sharing framework that achieves large sample sizes. Systems that integrate clinical and genetic data from multiple sources are scarce due to their distinct data types, interoperability, security and data ownership issues. Here we present a secure framework that allows immutable storage, querying and analysis of clinical and genetic data using blockchain technology. Our platform allows clinical and genetic data to be harmonized by combining them under a unified framework. It supports combined genotype-phenotype queries and analysis, gives institutions control of their data and provides immutable user access logs, improving transparency into how and when health information is used. We demonstrate the value of our framework for precision medicine by creating genotype-phenotype cohorts and examining relationships within them. We show that combining data across institutions using our secure platform increases statistical power for rare disease analysis. By offering an integrated, secure and decentralized framework, we aim to enhance reproducibility and encourage broader participation from communities and patients in data sharing.
Collapse
Affiliation(s)
- Ahmed Elhussein
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | | | - Noémie Elhadad
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
- Department of Computer Science, Columbia University, New York, NY, USA
| | - Karthik Natarajan
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Gamze Gürsoy
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.
- New York Genome Center, New York, NY, USA.
- Department of Computer Science, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Filomena E, Picardi E, Tullo A, Pesole G, D’Erchia AM. Identification of deregulated lncRNAs in Alzheimer's disease: an integrated gene co-expression network analysis of hippocampus and fusiform gyrus RNA-seq datasets. Front Aging Neurosci 2024; 16:1437278. [PMID: 39086756 PMCID: PMC11288953 DOI: 10.3389/fnagi.2024.1437278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction The deregulation of lncRNAs expression has been associated with neuronal damage in Alzheimer's disease (AD), but how or whether they can influence its onset is still unknown. We investigated 2 RNA-seq datasets consisting, respectively, of the hippocampal and fusiform gyrus transcriptomic profile of AD patients, matched with non-demented controls. Methods We performed a differential expression analysis, a gene correlation network analysis (WGCNA) and a pathway enrichment analysis of two RNA-seq datasets. Results We found deregulated lncRNAs in common between hippocampus and fusiform gyrus and deregulated gene groups associated to functional pathways related to neurotransmission and memory consolidation. lncRNAs, co-expressed with known AD-related coding genes, were identified from the prioritized modules of both brain regions. Discussion We found common deregulated lncRNAs in the AD hippocampus and fusiform gyrus, that could be considered common signatures of AD pathogenesis, providing an important source of information for understanding the molecular changes of AD.
Collapse
Affiliation(s)
- Ermes Filomena
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Anna Maria D’Erchia
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| |
Collapse
|
3
|
Al-kuraishy HM, Jabir MS, Sulaiman GM, Mohammed HA, Al-Gareeb AI, Albuhadily AK, Jawad SF, Swelum AA, Abomughaid MM. The role of statins in amyotrophic lateral sclerosis: protective or not? Front Neurosci 2024; 18:1422912. [PMID: 38903602 PMCID: PMC11188367 DOI: 10.3389/fnins.2024.1422912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of motor neurons characterized by muscle weakness, muscle twitching, and muscle wasting. ALS is regarded as the third-most frequent neurodegenerative disease, subsequent to Alzheimer's disease (AD) and Parkinson's disease (PD). The World Health Organization (WHO) in 2007 declared that prolonged use of statins may induce development of ALS-like syndrome and may increase ALS risk. Subsequently, different studies have implicated statins in the pathogenesis of ALS. In contrast, results from preclinical and clinical studies highlighted the protective role of statins against ALS neuropathology. Recently, meta-analyses and systematic reviews illustrated no association between long-term use of statins and ALS risk. These findings highlighted controversial points regarding the effects of statins on ALS pathogenesis and risk. The neuroprotective effects of statins against the development and progression of ALS may be mediated by regulating dyslipidemia and inflammatory changes. However, the mechanism for induction of ALS neuropathology by statins may be related to the dysregulation of liver X receptor signaling (LXR) signaling in the motor neurons and reduction of cholesterol, which has a neuroprotective effect against ALS neuropathology. Nevertheless, the exact role of statins on the pathogenesis of ALS was not fully elucidated. Therefore, this narrative review aims to discuss the role of statins in ALS neuropathology.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S. Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | | | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Jabir Ibn Hayyan Medical University, Kufa, Iraq
| | - Ali K. Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Sabrean F. Jawad
- Department of Pharmacy, Al-Mustaqbal University College, Hillah, Iraq
| | - Ayman A. Swelum
- Department of Animal Production, King Saud University, Riyadh, Saudi Arabia
| | - Mosleh M. Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
4
|
Teixeira LCR, Mamede I, Luizon MR, Gomes KB. Role of long non-coding RNAs in the pathophysiology of Alzheimer's disease and other dementias. Mol Biol Rep 2024; 51:270. [PMID: 38302810 DOI: 10.1007/s11033-023-09178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
Dementia is the term used to describe a group of cognitive disorders characterized by a decline in memory, thinking, and reasoning abilities that interfere with daily life activities. Examples of dementia include Alzheimer's Disease (AD), Frontotemporal dementia (FTD), Amyotrophic lateral sclerosis (ALS), Vascular dementia (VaD) and Progressive supranuclear palsy (PSP). AD is the most common form of dementia. The hallmark pathology of AD includes formation of β-amyloid (Aβ) oligomers and tau hyperphosphorylation in the brain, which induces neuroinflammation, oxidative stress, synaptic dysfunction, and neuronal apoptosis. Emerging studies have associated long non-coding RNAs (lncRNAs) with the pathogenesis and progression of the neurodegenerative diseases. LncRNAs are defined as RNAs longer than 200 nucleotides that lack the ability to encode functional proteins. LncRNAs play crucial roles in numerous biological functions for their ability to interact with different molecules, such as proteins and microRNAs, and subsequently regulate the expression of their target genes at transcriptional and post-transcriptional levels. In this narrative review, we report the function and mechanisms of action of lncRNAs found to be deregulated in different types of dementia, with the focus on AD. Finally, we discuss the emerging role of lncRNAs as biomarkers of dementias.
Collapse
Affiliation(s)
- Lívia Cristina Ribeiro Teixeira
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Izabela Mamede
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo Rizzatti Luizon
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina Braga Gomes
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
5
|
Recent insights into the roles of circular RNAs in human brain development and neurologic diseases. Int J Biol Macromol 2023; 225:1038-1048. [PMID: 36410538 DOI: 10.1016/j.ijbiomac.2022.11.166] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022]
Abstract
Circular RNAs (circRNAs) are a novel class of non-coding RNAs. They are single-stranded RNA transcripts characterized with a closed loop structure making them resistant to degrading enzymes. Recently, circRNAs have been suggested with regulatory roles in gene expression involved in controlling various biological processes. Notably, they have demonstrated abundance, dynamic expression, back-splicing events, and spatiotemporally regulation in the human brain. Accordingly, they are expected to be involved in brain functions and related diseases. Studies in animals and human brain have revealed differential expression of circRNAs in brain compartments. Interestingly, contributing roles of circRNAs in the regulation of central nervous system (CNS) development have been demonstrated in a number of studies. It has been proposed that circRNAs play role in substantial neurological functions like neurotransmitter-associated tasks, neural cells maturation, and functions of synapses. Furthermore, 3 main pathways have been identified in association with circRNAs's host genes including axon guidance, Wnt signaling, and transforming growth factor beta (TGF-β) signaling pathways, which are known to be involved in substantial functions like migration and differentiation of neurons and specification of axons, and thus play role in brain development. In this review, we have an overview to the biogenesis, biological functions of circRNAs, and particularly their roles in human brain development and the pathogenesis of neurodegenerative diseases including Alzheimer's diseases, multiple sclerosis, Parkinson's disease and brain tumors.
Collapse
|
6
|
Navigating the Multiverse of Antisense RNAs: The Transcription- and RNA-Dependent Dimension. Noncoding RNA 2022; 8:ncrna8060074. [PMID: 36412909 PMCID: PMC9680235 DOI: 10.3390/ncrna8060074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 12/14/2022] Open
Abstract
Evidence accumulated over the past decades shows that the number of identified antisense transcripts is continuously increasing, promoting them from transcriptional noise to real genes with specific functions. Indeed, recent studies have begun to unravel the complexity of the antisense RNA (asRNA) world, starting from the multidimensional mechanisms that they can exert in physiological and pathological conditions. In this review, we discuss the multiverse of the molecular functions of asRNAs, describing their action through transcription-dependent and RNA-dependent mechanisms. Then, we report the workflow and methodologies to study and functionally characterize single asRNA candidates.
Collapse
|
7
|
Ruffo P, De Amicis F, Giardina E, Conforti FL. Long-noncoding RNAs as epigenetic regulators in neurodegenerative diseases. Neural Regen Res 2022; 18:1243-1248. [PMID: 36453400 PMCID: PMC9838156 DOI: 10.4103/1673-5374.358615] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The growing and rapid development of high-throughput sequencing technologies have allowed a greater understanding of the mechanisms underlying gene expression regulation. Editing the epigenome and epitranscriptome directs the fate of the transcript influencing the functional outcome of each mRNA. In this context, non-coding RNAs play a decisive role in addressing the expression regulation at the gene and chromosomal levels. Long-noncoding RNAs, consisting of more than 200 nucleotides, have been shown to act as epigenetic regulators in several key molecular processes involving neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. Long-noncoding RNAs are abundantly expressed in the central nervous system, suggesting that their deregulation could trigger neuronal degeneration through RNA modifications. The evaluation of their diagnostic significance and therapeutic potential could lead to new treatments for these diseases for which there is no cure.
Collapse
Affiliation(s)
- Paola Ruffo
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, Rome, Italy,Department of Biomedicine & Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Francesca Luisa Conforti
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy,Correspondence to: Francesca Luisa Conforti, .
| |
Collapse
|
8
|
Glavač D, Mladinić M, Ban J, Mazzone GL, Sámano C, Tomljanović I, Jezernik G, Ravnik-Glavač M. The Potential Connection between Molecular Changes and Biomarkers Related to ALS and the Development and Regeneration of CNS. Int J Mol Sci 2022; 23:ijms231911360. [PMID: 36232667 PMCID: PMC9570269 DOI: 10.3390/ijms231911360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/10/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative diseases are one of the greatest medical burdens of the modern age, being mostly incurable and with limited prognostic and diagnostic tools. Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease characterized by the loss of motoneurons, with a complex etiology, combining genetic, epigenetic, and environmental causes. The neuroprotective therapeutic approaches are very limited, while the diagnostics rely on clinical examination and the exclusion of other diseases. The recent advancement in the discovery of molecular pathways and gene mutations involved in ALS has deepened the understanding of the disease pathology and opened the possibility for new treatments and diagnostic procedures. Recently, 15 risk loci with distinct genetic architectures and neuron-specific biology were identified as linked to ALS through common and rare variant association analyses. Interestingly, the quantity of related proteins to these genes has been found to change during early postnatal development in mammalian spinal cord tissue (opossum Monodelphis domestica) at the particular time when neuroregeneration stops being possible. Here, we discuss the possibility that the ALS-related genes/proteins could be connected to neuroregeneration and development. Moreover, since the regulation of gene expression in developmental checkpoints is frequently regulated by non-coding RNAs, we propose that studying the changes in the composition and quantity of non-coding RNA molecules, both in ALS patients and in the developing central nervous (CNS) system of the opossum at the time when neuroregeneration ceases, could reveal potential biomarkers useful in ALS prognosis and diagnosis.
Collapse
Affiliation(s)
- Damjan Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljublana, Slovenia
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Miranda Mladinić
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Jelena Ban
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Graciela L. Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Buenos Aires B1629AHJ, Argentina
| | - Cynthia Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Unidad Cuajimalpa, Mexico City 05348, Mexico
| | - Ivana Tomljanović
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Gregor Jezernik
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Metka Ravnik-Glavač
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
9
|
Coppedè F, Cereda C, Lintas C, Stoccoro A. Editorial: Epigenetics of Neurodevelopmental, Neuromuscular and Neurodegenerative Disorders. Front Mol Neurosci 2022; 15:948827. [PMID: 35754706 PMCID: PMC9231183 DOI: 10.3389/fnmol.2022.948827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Cristina Cereda
- Department of Women, Mothers and Neonatal Care, Children's Hospital V. Buzzi, Milan, Italy
| | - Carla Lintas
- Laboratory of Medical Genetics, University Campus Bio-Medico of Rome, Rome, Italy
| | - Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Biomarkers in Human Peripheral Blood Mononuclear Cells: The State of the Art in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms23052580. [PMID: 35269723 PMCID: PMC8910056 DOI: 10.3390/ijms23052580] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, characterized by the progressive loss of lower motor neurons, weakness and muscle atrophy. ALS lacks an effective cure and diagnosis is often made by exclusion. Thus, it is imperative to search for biomarkers. Biomarkers can help in understanding ALS pathomechanisms, identification of targets for treatment and development of effective therapies. Peripheral blood mononuclear cells (PBMCs) represent a valid source for biomarkers compared to cerebrospinal fluid, as they are simple to collect, and to plasma, because of the possibility of detecting lower expressed proteins. They are a reliable model for patients’ stratification. This review provides an overview on PBMCs as a potential source of biomarkers in ALS. We focused on altered RNA metabolism (coding/non-coding RNA), including RNA processing, mRNA stabilization, transport and translation regulation. We addressed protein abnormalities (aggregation, misfolding and modifications); specifically, we highlighted that SOD1 appears to be the most characterizing protein in ALS. Finally, we emphasized the correlation between biological parameters and disease phenotypes, as regards prognosis, severity and clinical features. In conclusion, even though further studies are needed to standardize the use of PBMCs as a tool for biomarker investigation, they represent a promising approach in ALS research.
Collapse
|
11
|
Tai Y, Chen J, Tao Z, Ren J. Non-coding RNAs: New players in mitophagy and neurodegeneration. Neurochem Int 2021; 152:105253. [PMID: 34864089 DOI: 10.1016/j.neuint.2021.105253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/14/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
Mitophagy controls mitochondrial quality to maintain cellular homeostasis, while aberrations in this process are responsible for neurodegenerative diseases. Mitophagy is initiated through the recruitment of autophagosomes in a ubiquitin-dependent or ubiquitin-independent manner under different stress conditions. Although the detailed molecular mechanisms of how mitophagy processes influence neurodegeneration remain largely uncharacterized, there is mounting evidence indicating that non-coding RNAs (ncRNAs), a variety of endogenous regulators, including microRNAs and long non-coding RNAs, extensively participate in mitophagy processes and play pivotal roles in the aging process and neurodegenerative diseases. Here, we reviewed the major mitophagy pathways modulated by some classical and newly found ncRNAs and summarized the diverse mechanisms in a regulatory network. We also discussed the generalizability of ncRNAs in the development of common neurodegenerative diseases related to proteotoxicity and the importance of mitophagy in the pathogenesis of these diseases. In summary, we propose that ncRNAs act as linkers between mitophagy and neurodegeneration, showing the potential therapeutic application of mitophagy regulation mediated by ncRNAs in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yusi Tai
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing Chen
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhouteng Tao
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Gareev I, Gileva Y, Dzidzaria A, Beylerli O, Pavlov V, Agaverdiev M, Mazorov B, Biganyakov I, Vardikyan A, Jin M, Ahmad A. Long non-coding RNAs in oncourology. Noncoding RNA Res 2021; 6:139-145. [PMID: 34504983 PMCID: PMC8405895 DOI: 10.1016/j.ncrna.2021.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
For several decades, research in tumor biology has focused on the involvement of genes encoding a protein. Only recently has it been discovered that a whole class of molecules called non-coding RNAs (ncRNAs) play a key regulatory role in health and disease. Long noncoding RNAs (lncRNAs) are a group of noncoding RNAs longer than 200 nucleotides. It has been found that lncRNAs play a fundamental role in the biology of many types of tumors, including tumors of the genitourinary system. As a result, hundreds of clinical trials dedicated to oncourology have begun, using lncRNA as new biomarkers or treatments. Identifying new specific biomarkers, in the form of lncRNAs, will increase the ability to differentiate the tumor and other processes, determine the localization and extent of the tumor, and the ability to predict the course of the disease, and plan treatment. Therapy of tumors, especially malignant ones, is also a difficult task. When surgery and chemotherapy fail, radiation therapy becomes the treatment choice. Therefore, the possibility that lncRNAs could represent innovative therapeutic agents or targets is an exciting idea. However, the possibility of their use in modern clinical practice is limited, and this is associated with several problems at the pre-, analytical and post-analytical stages. Another problem in the study of lncRNAs is the large number and variety of their functions in tumors. Therefore, solving technological problems in lncRNAs study in oncourology may open up new possibilities for lncRNAs use in modern clinical practice.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Yulia Gileva
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Aleksandr Dzidzaria
- Urology Department, Russian Scientific Center of Radiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Valentin Pavlov
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Murad Agaverdiev
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Bakhodur Mazorov
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Ilfat Biganyakov
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Andranik Vardikyan
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Mei Jin
- The First Affiliated Hospital of Harbin Medical University, 23 Youzheng St, Harbin, 150001, Heilongjiang Province, China
| | - Aamir Ahmad
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
13
|
Oliveira D, Morales-Vicente DA, Amaral MS, Luz L, Sertié AL, Leite FS, Navarro C, Kaid C, Esposito J, Goulart E, Caires L, Alves LM, Melo US, Figueiredo T, Mitne-Neto M, Okamoto OK, Verjovski-Almeida S, Zatz M. Different gene expression profiles in iPSC-derived motor neurons from ALS8 patients with variable clinical courses suggest mitigating pathways for neurodegeneration. Hum Mol Genet 2021; 29:1465-1475. [PMID: 32280986 DOI: 10.1093/hmg/ddaa069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis type 8 (ALS8) is an autosomal dominant form of ALS, which is caused by pathogenic variants in the VAPB gene. Here we investigated five ALS8 patients, classified as 'severe' and 'mild' from a gigantic Brazilian kindred, carrying the same VAPB mutation but displaying different clinical courses. Copy number variation and whole exome sequencing analyses in such individuals ruled out previously described genetic modifiers of pathogenicity. After deriving induced pluripotent stem cells (iPSCs) for each patient (N = 5) and controls (N = 3), motor neurons were differentiated, and high-throughput RNA-Seq gene expression measurements were performed. Functional cell death and oxidative metabolism assays were also carried out in patients' iPSC-derived motor neurons. The degree of cell death and mitochondrial oxidative metabolism were similar in iPSC-derived motor neurons from mild patients and controls and were distinct from those of severe patients. Similar findings were obtained when RNA-Seq from such cells was performed. Overall, 43 genes were upregulated and 66 downregulated in the two mild ALS8 patients when compared with severe ALS8 individuals and controls. Interestingly, significantly enriched pathways found among differentially expressed genes, such as protein translation and protein targeting to the endoplasmic reticulum (ER), are known to be associated with neurodegenerative processes. Taken together, the mitigating mechanisms here presented appear to maintain motor neuron survival by keeping translational activity and protein targeting to the ER in such cells. As ALS8 physiopathology has been associated with proteostasis mechanisms in ER-mitochondria contact sites, such differentially expressed genes appear to relate to the bypass of VAPB deficiency.
Collapse
Affiliation(s)
- Danyllo Oliveira
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - David A Morales-Vicente
- Laboratory of Gene Expression in Eukaryotes, Instituto Butantan, São Paulo 05503-900, Brazil.,Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Murilo S Amaral
- Laboratory of Gene Expression in Eukaryotes, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Livia Luz
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | | | - Felipe S Leite
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - Claudia Navarro
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Campinas 13083-887, Brazil
| | - Carolini Kaid
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - Joyce Esposito
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - Ernesto Goulart
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - Luiz Caires
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - Luciana M Alves
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - Uirá S Melo
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - Thalita Figueiredo
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil.,Faculty of Medicine, Federal University of Alagoas, Maceió 57972-900, Brazil
| | - Miguel Mitne-Neto
- Fleury Group, Research and Development. São Paulo, São Paulo 04344-070, Brazil
| | - Oswaldo K Okamoto
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - Sergio Verjovski-Almeida
- Laboratory of Gene Expression in Eukaryotes, Instituto Butantan, São Paulo 05503-900, Brazil.,Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Mayana Zatz
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| |
Collapse
|
14
|
García-Fonseca Á, Martin-Jimenez C, Barreto GE, Pachón AFA, González J. The Emerging Role of Long Non-Coding RNAs and MicroRNAs in Neurodegenerative Diseases: A Perspective of Machine Learning. Biomolecules 2021; 11:1132. [PMID: 34439798 PMCID: PMC8391852 DOI: 10.3390/biom11081132] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by progressive neuronal dysfunction and death of brain cells population. As the early manifestations of NDs are similar, their symptoms are difficult to distinguish, making the timely detection and discrimination of each neurodegenerative disorder a priority. Several investigations have revealed the importance of microRNAs and long non-coding RNAs in neurodevelopment, brain function, maturation, and neuronal activity, as well as its dysregulation involved in many types of neurological diseases. Therefore, the expression pattern of these molecules in the different NDs have gained significant attention to improve the diagnostic and treatment at earlier stages. In this sense, we gather the different microRNAs and long non-coding RNAs that have been reported as dysregulated in each disorder. Since there are a vast number of non-coding RNAs altered in NDs, some sort of synthesis, filtering and organization method should be applied to extract the most relevant information. Hence, machine learning is considered as an important tool for this purpose since it can classify expression profiles of non-coding RNAs between healthy and sick people. Therefore, we deepen in this branch of computer science, its different methods, and its meaningful application in the diagnosis of NDs from the dysregulated non-coding RNAs. In addition, we demonstrate the relevance of machine learning in NDs from the description of different investigations that showed an accuracy between 85% to 95% in the detection of the disease with this tool. All of these denote that artificial intelligence could be an excellent alternative to help the clinical diagnosis and facilitate the identification diseases in early stages based on non-coding RNAs.
Collapse
Affiliation(s)
- Ángela García-Fonseca
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Á.G.-F.); (C.M.-J.); (A.F.A.P.)
| | - Cynthia Martin-Jimenez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Á.G.-F.); (C.M.-J.); (A.F.A.P.)
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Andres Felipe Aristizábal Pachón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Á.G.-F.); (C.M.-J.); (A.F.A.P.)
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Á.G.-F.); (C.M.-J.); (A.F.A.P.)
| |
Collapse
|
15
|
Rey F, Marcuzzo S, Bonanno S, Bordoni M, Giallongo T, Malacarne C, Cereda C, Zuccotti GV, Carelli S. LncRNAs Associated with Neuronal Development and Oncogenesis Are Deregulated in SOD1-G93A Murine Model of Amyotrophic Lateral Sclerosis. Biomedicines 2021; 9:biomedicines9070809. [PMID: 34356873 PMCID: PMC8301400 DOI: 10.3390/biomedicines9070809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease caused in 10% of cases by inherited mutations considered “familial”. An ever-increasing amount of evidence is showing a fundamental role for RNA metabolism in ALS pathogenesis, and long non-coding RNAs (lncRNAs) appear to play a role in ALS development. Here, we aim to investigate the expression of a panel of lncRNAs (linc-Enc1, linc–Brn1a, linc–Brn1b, linc-p21, Hottip, Tug1, Eldrr, and Fendrr) which could be implicated in early phases of ALS. Via Real-Time PCR, we assessed their expression in a murine familial model of ALS (SOD1-G93A mouse) in brain and spinal cord areas of SOD1-G93A mice in comparison with that of B6.SJL control mice, in asymptomatic (week 8) and late-stage disease (week 18). We highlighted a specific area and pathogenetic-stage deregulation in each lncRNA, with linc-p21 being deregulated in all analyzed tissues. Moreover, we analyzed the expression of their human homologues in SH-SY5Y-SOD1-WT and SH-SY5Y-SOD1-G93A, observing a profound alteration in their expression. Interestingly, the lncRNAs expression in our ALS models often resulted opposite to that observed for the lncRNAs in cancer. These evidences suggest that lncRNAs could be novel disease-modifying agents, biomarkers, or pathways affected by ALS neurodegeneration.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milano, Italy; (F.R.); (T.G.); (G.V.Z.)
- Paediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, 20157 Milano, Italy
| | - Stefania Marcuzzo
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (S.M.); (S.B.); (C.M.)
| | - Silvia Bonanno
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (S.M.); (S.B.); (C.M.)
| | - Matteo Bordoni
- Centro di Eccellenza Sulle Malattie Neurodegenerative, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| | - Toniella Giallongo
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milano, Italy; (F.R.); (T.G.); (G.V.Z.)
- Paediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, 20157 Milano, Italy
| | - Claudia Malacarne
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (S.M.); (S.B.); (C.M.)
- PhD Program in Neuroscience, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Cristina Cereda
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, 27100 Pavia, Italy;
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milano, Italy; (F.R.); (T.G.); (G.V.Z.)
- Paediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, 20157 Milano, Italy
- Department of Pediatrics, Children’s Hospital “V. Buzzi”, Via Lodovico Castelvetro 32, 20154 Milano, Italy
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milano, Italy; (F.R.); (T.G.); (G.V.Z.)
- Paediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, 20157 Milano, Italy
- Correspondence: ; Tel.: +39-02-50319825
| |
Collapse
|
16
|
Aliperti V, Skonieczna J, Cerase A. Long Non-Coding RNA (lncRNA) Roles in Cell Biology, Neurodevelopment and Neurological Disorders. Noncoding RNA 2021; 7:36. [PMID: 34204536 PMCID: PMC8293397 DOI: 10.3390/ncrna7020036] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023] Open
Abstract
Development is a complex process regulated both by genetic and epigenetic and environmental clues. Recently, long non-coding RNAs (lncRNAs) have emerged as key regulators of gene expression in several tissues including the brain. Altered expression of lncRNAs has been linked to several neurodegenerative, neurodevelopmental and mental disorders. The identification and characterization of lncRNAs that are deregulated or mutated in neurodevelopmental and mental health diseases are fundamental to understanding the complex transcriptional processes in brain function. Crucially, lncRNAs can be exploited as a novel target for treating neurological disorders. In our review, we first summarize the recent advances in our understanding of lncRNA functions in the context of cell biology and then discussing their association with selected neuronal development and neurological disorders.
Collapse
Affiliation(s)
- Vincenza Aliperti
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Justyna Skonieczna
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| | - Andrea Cerase
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| |
Collapse
|
17
|
Yang S, Lim KH, Kim SH, Joo JY. Molecular landscape of long noncoding RNAs in brain disorders. Mol Psychiatry 2021; 26:1060-1074. [PMID: 33173194 DOI: 10.1038/s41380-020-00947-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/28/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023]
Abstract
According to current paradigms, various risk factors, such as genetic mutations, oxidative stress, neural network dysfunction, and abnormal protein degradation, contribute to the progression of brain disorders. Through the cooperation of gene transcripts in biological processes, the study of noncoding RNAs can lead to insights into the cause and treatment of brain disorders. Recently, long noncoding RNAs (lncRNAs) which are longer than 200 nucleotides in length have been suggested as key factors in various brain disorders. Accumulating evidence suggests the potential of lncRNAs as diagnostic or prognostic biomarkers and therapeutic targets. High-throughput screening-based sequencing has been instrumental in identification of lncRNAs that demand new approaches to understanding the progression of brain disorders. In this review, we discuss the recent progress in the study of lncRNAs, and addresses the pathogenesis of brain disorders that involve lncRNAs and describes the associations of lncRNAs with neurodegenerative disorders such as Alzheimer disease (AD), Parkinson disease (PD), and neurodevelopmental disorders. We also discuss potential targets of lncRNAs and their promise as novel therapeutics and biomarkers in brain disorders.
Collapse
Affiliation(s)
- Sumin Yang
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Key-Hwan Lim
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Sung-Hyun Kim
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Jae-Yeol Joo
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.
| |
Collapse
|
18
|
LncRNA Gm14205 induces astrocytic NLRP3 inflammasome activation via inhibiting oxytocin receptor in postpartum depression. Biosci Rep 2021; 40:225881. [PMID: 32706026 PMCID: PMC7414522 DOI: 10.1042/bsr20200672] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/04/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Postpartum depression (PPD) is a kind of mental disorder characterized by persistent low emotions in puerperium. The most significant physiological change in postpartum is lactation which is regulated by oxytocin receptor (OXTR). However, whether OXTR is related to pathological process of PPD and the potential mechanism still remain unclear. In the present study, we prepared hormone-simulated pregnancy (HSP)-induced PPD mouse model and found that the protein level of OXTR in hippocampus of PPD model mice was down-regulated and Nod-like receptor protein 3 (NLRP3) inflammasome was activated. We identified five long non-coding RNAs (lncRNAs) related to PPD by transcriptome sequencing, including three up-regulated and two down-regulated. The five lncRNAs were associated with the signaling pathway of OXTR according to the bioinformatics analysis. Furthermore, we focused on one of the five lncRNAs, Gm14205, and found that it targeted OXTR which inhibited astrocytic NLRP3 inflammasome activation in hippocampal primary astrocytes. These findings illustrate that OXTR has protective effects in PPD by inhibiting NLRP3 inflammasome activation and provides a new strategy for targeting lncRNA Gm14205 in the pathogenesis of PPD.
Collapse
|
19
|
Vangoor VR, Gomes‐Duarte A, Pasterkamp RJ. Long non-coding RNAs in motor neuron development and disease. J Neurochem 2021; 156:777-801. [PMID: 32970857 PMCID: PMC8048821 DOI: 10.1111/jnc.15198] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs (lncRNAs) are RNAs that exceed 200 nucleotides in length and that are not translated into proteins. Thousands of lncRNAs have been identified with functions in processes such as transcription and translation regulation, RNA processing, and RNA and protein sponging. LncRNAs show prominent expression in the nervous system and have been implicated in neural development, function and disease. Recent work has begun to report on the expression and roles of lncRNAs in motor neurons (MNs). The cell bodies of MNs are located in cortex, brainstem or spinal cord and their axons project into the brainstem, spinal cord or towards peripheral muscles, thereby controlling important functions such as movement, breathing and swallowing. Degeneration of MNs is a pathological hallmark of diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. LncRNAs influence several aspects of MN development and disruptions in these lncRNA-mediated effects are proposed to contribute to the pathogenic mechanisms underlying MN diseases (MNDs). Accumulating evidence suggests that lncRNAs may comprise valuable therapeutic targets for different MNDs. In this review, we discuss the role of lncRNAs (including circular RNAs [circRNAs]) in the development of MNs, discuss how lncRNAs may contribute to MNDs and provide directions for future research.
Collapse
Affiliation(s)
- Vamshidhar R. Vangoor
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| | - Andreia Gomes‐Duarte
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| | - R. Jeroen Pasterkamp
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
20
|
Wang XL, Feng ST, Wang ZZ, Chen NH, Zhang Y. Role of mitophagy in mitochondrial quality control: Mechanisms and potential implications for neurodegenerative diseases. Pharmacol Res 2021; 165:105433. [PMID: 33454337 DOI: 10.1016/j.phrs.2021.105433] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/15/2020] [Accepted: 01/09/2021] [Indexed: 02/06/2023]
Abstract
Neurodegenerative diseases (e.g., Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis) commonly characterized by the gradual loss of neurons have a seriously bad impact on motor and cognitive abilities of affected humans and bring great inconvenience to their lives. Mitochondrial dysfunction has been considered the key and common factor for the pathologies of neurodegenerative diseases for that neurons are extremely energy-intensive due to their unique properties in structures and functions. Thus, mitophagy, as a central role of mitochondrial quality control and currently believed to be the most effective pathway to clear dysfunctional or unwanted mitochondria, is rather crucial in the preservation of neuronal health. In addition, mitophagy establishes an intimated link with several other pathways of mitochondrial quality control (e.g., mitochondrial biogenesis and mitochondrial dynamics), and they work together to preserve mitochondrial health. Therefore, in this review, we summarized the recent process on the mechanisms of mitophagy pathways in mammals, it's linking to mitochondrial quality control, its role in several major neurodegenerative diseases, and possible therapeutic interventions focusing on mitophagy pathways. And we expect that it can provide us with more understanding of the mitophagy pathways and more promising approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
21
|
Buratti E. Trends in Understanding the Pathological Roles of TDP-43 and FUS Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:243-267. [PMID: 33433879 DOI: 10.1007/978-3-030-51140-1_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Following the discovery of TDP-43 and FUS involvement in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD), the major challenge in the field has been to understand their physiological functions, both in normal and disease conditions. The hope is that this knowledge will improve our understanding of disease and lead to the development of effective therapeutic options. Initially, the focus has been directed at characterizing the role of these proteins in the control of RNA metabolism, because the main function of TDP-43 and FUS is to bind coding and noncoding RNAs to regulate their life cycle within cells. As a result, we now have an in-depth picture of the alterations that occur in RNA metabolism following their aggregation in various ALS/FTLD models and, to a somewhat lesser extent, in patients' brains. In parallel, progress has been made with regard to understanding how aggregation of these proteins occurs in neurons, how it can spread in different brain regions, and how these changes affect various metabolic cellular pathways to result in neuronal death. The aim of this chapter will be to provide a general overview of the trending topics in TDP-43 and FUS investigations and to highlight what might represent the most promising avenues of research in the years to come.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
22
|
Competing Endogenous RNA Networks as Biomarkers in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21249582. [PMID: 33339180 PMCID: PMC7765627 DOI: 10.3390/ijms21249582] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022] Open
Abstract
Protein aggregation is classically considered the main cause of neuronal death in neurodegenerative diseases (NDDs). However, increasing evidence suggests that alteration of RNA metabolism is a key factor in the etiopathogenesis of these complex disorders. Non-coding RNAs are the major contributor to the human transcriptome and are particularly abundant in the central nervous system, where they have been proposed to be involved in the onset and development of NDDs. Interestingly, some ncRNAs (such as lncRNAs, circRNAs and pseudogenes) share a common functionality in their ability to regulate gene expression by modulating miRNAs in a phenomenon known as the competing endogenous RNA mechanism. Moreover, ncRNAs are found in body fluids where their presence and concentration could serve as potential non-invasive biomarkers of NDDs. In this review, we summarize the ceRNA networks described in Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and spinocerebellar ataxia type 7, and discuss their potential as biomarkers of these NDDs. Although numerous studies have been carried out, further research is needed to validate these complex interactions between RNAs and the alterations in RNA editing that could provide specific ceRNET profiles for neurodegenerative disorders, paving the way to a better understanding of these diseases.
Collapse
|
23
|
Braems E, Swinnen B, Van Den Bosch L. C9orf72 loss-of-function: a trivial, stand-alone or additive mechanism in C9 ALS/FTD? Acta Neuropathol 2020; 140:625-643. [PMID: 32876811 PMCID: PMC7547039 DOI: 10.1007/s00401-020-02214-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
A repeat expansion in C9orf72 is responsible for the characteristic neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in a still unresolved manner. Proposed mechanisms involve gain-of-functions, comprising RNA and protein toxicity, and loss-of-function of the C9orf72 gene. Their exact contribution is still inconclusive and reports regarding loss-of-function are rather inconsistent. Here, we review the function of the C9orf72 protein and its relevance in disease. We explore the potential link between reduced C9orf72 levels and disease phenotypes in postmortem, in vitro, and in vivo models. Moreover, the significance of loss-of-function in other non-coding repeat expansion diseases is used to clarify its contribution in C9orf72 ALS/FTD. In conclusion, with evidence pointing to a multiple-hit model, loss-of-function on itself seems to be insufficient to cause neurodegeneration in C9orf72 ALS/FTD.
Collapse
Affiliation(s)
- Elke Braems
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium
- Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N4, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Bart Swinnen
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium
- Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N4, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium.
- Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N4, Herestraat 49, PB 602, 3000, Leuven, Belgium.
| |
Collapse
|
24
|
Nakamura R, Misawa K, Tohnai G, Nakatochi M, Furuhashi S, Atsuta N, Hayashi N, Yokoi D, Watanabe H, Watanabe H, Katsuno M, Izumi Y, Kanai K, Hattori N, Morita M, Taniguchi A, Kano O, Oda M, Shibuya K, Kuwabara S, Suzuki N, Aoki M, Ohta Y, Yamashita T, Abe K, Hashimoto R, Aiba I, Okamoto K, Mizoguchi K, Hasegawa K, Okada Y, Ishihara T, Onodera O, Nakashima K, Kaji R, Kamatani Y, Ikegawa S, Momozawa Y, Kubo M, Ishida N, Minegishi N, Nagasaki M, Sobue G. A multi-ethnic meta-analysis identifies novel genes, including ACSL5, associated with amyotrophic lateral sclerosis. Commun Biol 2020; 3:526. [PMID: 32968195 PMCID: PMC7511394 DOI: 10.1038/s42003-020-01251-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating progressive motor neuron disease that affects people of all ethnicities. Approximately 90% of ALS cases are sporadic and thought to have multifactorial pathogenesis. To understand the genetics of sporadic ALS, we conducted a genome-wide association study using 1,173 sporadic ALS cases and 8,925 controls in a Japanese population. A combined meta-analysis of our Japanese cohort with individuals of European ancestry revealed a significant association at the ACSL5 locus (top SNP p = 2.97 × 10−8). We validated the association with ACSL5 in a replication study with a Chinese population and an independent Japanese population (1941 ALS cases, 3821 controls; top SNP p = 1.82 × 10−4). In the combined meta-analysis, the intronic ACSL5 SNP rs3736947 showed the strongest association (p = 7.81 × 10−11). Using a gene-based analysis of the full multi-ethnic dataset, we uncovered additional genes significantly associated with ALS: ERGIC1, RAPGEF5, FNBP1, and ATXN3. These results advance our understanding of the genetic basis of sporadic ALS. Gen Sobue, Masao Nagasaki and colleagues report a genome-wide association study for amyotrophic lateral sclerosis (ALS) in a large, multi-ethnic cohort comprising Japanese, Chinese, and European ancestry populations. They find a significant association to variants within the ACSL5 gene and identify novel associations with 4 additional genes using a gene-based approach.
Collapse
Affiliation(s)
- Ryoichi Nakamura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazuharu Misawa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan.,Department of Molecular Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Genki Tohnai
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masahiro Nakatochi
- Division of Data Science, Department of Nursing, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Sho Furuhashi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Naoki Atsuta
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Naoki Hayashi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Daichi Yokoi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Department of Neurology, Kakeyu-Misayama Rehabilitation Center Kakeyu Hospital, Ueda, Nagano, Japan
| | - Hazuki Watanabe
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Department of Neurology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Aichi, Japan
| | - Hirohisa Watanabe
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan.,Department of Neurology, Fujita Health University, Toyoake, Aichi, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuishin Izumi
- Department of Neurology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuaki Kanai
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Neurology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mitsuya Morita
- Division of Neurology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Akira Taniguchi
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Osamu Kano
- Division of Neurology, Department of Internal Medicine, Toho University Faculty of Medicine, Tokyo, Japan
| | - Masaya Oda
- Department of Neurology, Vihara Hananosato Hospital, Miyoshi, Hiroshima, Japan
| | - Kazumoto Shibuya
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Toru Yamashita
- Department of Neurology, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Rina Hashimoto
- Department of Neurology, National Hospital Organization Higashinagoya National Hospital, Nagoya, Aichi, Japan
| | - Ikuko Aiba
- Department of Neurology, National Hospital Organization Higashinagoya National Hospital, Nagoya, Aichi, Japan
| | - Koichi Okamoto
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Gunma, Japan
| | - Kouichi Mizoguchi
- Department of Neurology, National Hospital Organization Shizuoka Medical Center, Shizuoka, Japan
| | - Kazuko Hasegawa
- Division of Neurology, National Hospital Organization, Sagamihara National Hospital, Sagamihara, Kanagawa, Japan
| | - Yohei Okada
- Department of Neurology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Tomohiko Ishihara
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Nakashima
- Department of Neurology, National Hospital Organization, Matsue Medical Center, Matsue, Shimane, Japan
| | - Ryuji Kaji
- Department of Neurology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Noriko Ishida
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Naoko Minegishi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Masao Nagasaki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan. .,Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Sakyo-ku, Kyoto, Japan. .,Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan.
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan. .,Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan. .,Aichi Medical University, Nagakute, Aichi, Japan.
| |
Collapse
|
25
|
Briata P, Gherzi R. Long Non-Coding RNA-Ribonucleoprotein Networks in the Post-Transcriptional Control of Gene Expression. Noncoding RNA 2020; 6:ncrna6030040. [PMID: 32957640 PMCID: PMC7549350 DOI: 10.3390/ncrna6030040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022] Open
Abstract
Although mammals possess roughly the same number of protein-coding genes as worms, it is evident that the non-coding transcriptome content has become far broader and more sophisticated during evolution. Indeed, the vital regulatory importance of both short and long non-coding RNAs (lncRNAs) has been demonstrated during the last two decades. RNA binding proteins (RBPs) represent approximately 7.5% of all proteins and regulate the fate and function of a huge number of transcripts thus contributing to ensure cellular homeostasis. Transcriptomic and proteomic studies revealed that RBP-based complexes often include lncRNAs. This review will describe examples of how lncRNA-RBP networks can virtually control all the post-transcriptional events in the cell.
Collapse
|
26
|
Dong X, Xu X, Guan Y. LncRNA LINC00899 promotes progression of acute myeloid leukaemia by modulating miR-744-3p/YY1 signalling. Cell Biochem Funct 2020; 38:955-964. [PMID: 32157707 DOI: 10.1002/cbf.3521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/19/2022]
Abstract
Long non-coding RNA (lncRNA) LINC00899 is one kind cytoplasmic lncRNA, however, there is rarely little information about its function in physiological process. Here, we demonstrated that lncRNA LINC00899 was upregulated in acute myeloid leukaemia (AML) cells and was quite correlated with poor prognosis of AML patients. High expression of LINC00899 in AML cells could promote cell proliferation and inhibit cell apoptosis, and facilitate the progression of AML consequently both in vitro and in vivo. Besides, LINC00899 acted as a molecular sponge of miR-744-3p. Furthermore, we characterized YY1 as the direct target of miR-744-3p, and LINC00899/miR-744-3p interaction modulated YY1 expression in AML cells. Finally, we verified LINC00899 modulated AML cell proliferation and apoptosis via regulating YY1. Our study revealed novel mechanism about how did lncRNA LINC00899 execute function in AML and thus provided potential therapeutic interventions for AML. SIGNIFICANCE OF THE STUDY: LncRNA LINC00899 is upregulated in AML cells and is correlated with poor prognosis of AML patients. LncRNA LINC00899 mediates cell proliferation and apoptosis of acute myeloid leukaemia cells. Knockdown of LINC00899 inhibited the growth of xenograft glioma tumour in vivo. LINC00899 acts as a molecular sponge of miR-744-3p. YY1 is the downstream target of LINC00899/miR-744-3p signalling.
Collapse
Affiliation(s)
- XueMei Dong
- Clinical Laboratory Center, Gansu Provincial Maternity and Child care Hospital, Lanzhou, Gansu Province, China
| | - Xin Xu
- Department of Rehabilitation Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - YanPing Guan
- Department of Pediatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Rajgor D, Buratti E. Neurodegeneration: The emerging non-coding connections. Noncoding RNA Res 2019; 4:79. [PMID: 31891015 PMCID: PMC6926175 DOI: 10.1016/j.ncrna.2019.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 11/16/2022] Open
Affiliation(s)
- Dipen Rajgor
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA.,Molecular Pathology, International Institute for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Emanuele Buratti
- Molecular Pathology, International Institute for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|