1
|
Khoruddin NA, Noorizhab MN, Teh LK, Mohd Yusof FZ, Salleh MZ. Pathogenic nsSNPs that increase the risks of cancers among the Orang Asli and Malays. Sci Rep 2021; 11:16158. [PMID: 34373545 PMCID: PMC8352870 DOI: 10.1038/s41598-021-95618-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Single-nucleotide polymorphisms (SNPs) are the most common genetic variations for various complex human diseases, including cancers. Genome-wide association studies (GWAS) have identified numerous SNPs that increase cancer risks, such as breast cancer, colorectal cancer, and leukemia. These SNPs were cataloged for scientific use. However, GWAS are often conducted on certain populations in which the Orang Asli and Malays were not included. Therefore, we have developed a bioinformatic pipeline to mine the whole-genome sequence databases of the Orang Asli and Malays to determine the presence of pathogenic SNPs that might increase the risks of cancers among them. Five different in silico tools, SIFT, PROVEAN, Poly-Phen-2, Condel, and PANTHER, were used to predict and assess the functional impacts of the SNPs. Out of the 80 cancer-related nsSNPs from the GWAS dataset, 52 nsSNPs were found among the Orang Asli and Malays. They were further analyzed using the bioinformatic pipeline to identify the pathogenic variants. Three nsSNPs; rs1126809 (TYR), rs10936600 (LRRC34), and rs757978 (FARP2), were found as the most damaging cancer pathogenic variants. These mutations alter the protein interface and change the allosteric sites of the respective proteins. As TYR, LRRC34, and FARP2 genes play important roles in numerous cellular processes such as cell proliferation, differentiation, growth, and cell survival; therefore, any impairment on the protein function could be involved in the development of cancer. rs1126809, rs10936600, and rs757978 are the important pathogenic variants that increase the risks of cancers among the Orang Asli and Malays. The roles and impacts of these variants in cancers will require further investigations using in vitro cancer models.
Collapse
Affiliation(s)
- Nurul Ain Khoruddin
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam Campus, Selangor, Malaysia
| | - Mohd NurFakhruzzaman Noorizhab
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia
| | - Farida Zuraina Mohd Yusof
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam Campus, Selangor, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia.
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia.
| |
Collapse
|
2
|
Kaur R, Nikkel DJ, Wetmore SD. Computational studies of DNA repair: Insights into the function of monofunctional DNA glycosylases in the base excision repair pathway. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rajwinder Kaur
- Department of Chemistry and Biochemistry University of Lethbridge Lethbridge Alberta Canada
| | - Dylan J. Nikkel
- Department of Chemistry and Biochemistry University of Lethbridge Lethbridge Alberta Canada
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry University of Lethbridge Lethbridge Alberta Canada
| |
Collapse
|