1
|
Everaert C, Verwilt J, Verniers K, Vandamme N, Marcos Rubio A, Vandesompele J, Mestdagh P. Blocking Abundant RNA Transcripts by High-Affinity Oligonucleotides during Transcriptome Library Preparation. Biol Proced Online 2023; 25:7. [PMID: 36890441 PMCID: PMC9996952 DOI: 10.1186/s12575-023-00193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/14/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND RNA sequencing has become the gold standard for transcriptome analysis but has an inherent limitation of challenging quantification of low-abundant transcripts. In contrast to microarray technology, RNA sequencing reads are proportionally divided in function of transcript abundance. Therefore, low-abundant RNAs compete against highly abundant - and sometimes non-informative - RNA species. RESULTS We developed an easy-to-use strategy based on high-affinity RNA-binding oligonucleotides to block reverse transcription and PCR amplification of specific RNA transcripts, thereby substantially reducing their abundance in the final sequencing library. To demonstrate the broad application potential of our method, we applied it to different transcripts and library preparation strategies, including YRNAs in small RNA sequencing of human blood plasma, mitochondrial rRNAs in both 3' end sequencing and long-read sequencing, and MALAT1 in single-cell 3' end sequencing. We demonstrate that the blocking strategy is highly efficient, reproducible, specific, and generally results in better transcriptome coverage and complexity. CONCLUSION Our method does not require modifications of the library preparation procedure apart from simply adding blocking oligonucleotides to the RT reaction and can thus be easily integrated into virtually any RNA sequencing library preparation protocol.
Collapse
Affiliation(s)
- Celine Everaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Jasper Verwilt
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Kimberly Verniers
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Niels Vandamme
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
- VIB Single Cell Core, Vlaams Instituut voor Biotechnologie, Ghent-Leuven, Belgium
| | - Alvaro Marcos Rubio
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Jo Vandesompele
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
Nashimoto M. TRUE Gene Silencing. Int J Mol Sci 2022; 23:5387. [PMID: 35628198 PMCID: PMC9141469 DOI: 10.3390/ijms23105387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
TRUE gene silencing is an RNA-mediated gene expression control technology and is termed after tRNase ZL-utilizing efficacious gene silencing. In this review, I overview the potentiality of small guide RNA (sgRNA) for TRUE gene silencing as novel therapeutics. First, I describe the physiology of tRNase ZL and cellular small RNA, and then sgRNA and TRUE gene silencing. An endoribonuclease, tRNase ZL, which can efficiently remove a 3' trailer from pre-tRNA, is thought to play the role in tRNA maturation in the nucleus and mitochondria. There exist various small RNAs including miRNA and fragments from tRNA and rRNA, which can function as sgRNA, in living cells, and human cells appear to be harnessing cytosolic tRNase ZL for gene regulation together with these small RNAs. By utilizing the property of tRNase ZL to recognize and cleave micro-pre-tRNA, a pre-tRNA-like or micro-pre-tRNA-like complex, as well as pre-tRNA, tRNase ZL can be made to cleave any target RNA at any desired site under the direction of an artificial sgRNA that binds a target RNA and forms the pre-tRNA-like or micro-pre-tRNA-like complex. This general RNA cleavage method underlies TRUE gene silencing. Various examples of the application of TRUE gene silencing are reviewed including the application to several human cancer cells in order to induce apoptosis. Lastly, I discuss the potentiality of sgRNA as novel therapeutics for multiple myeloma.
Collapse
Affiliation(s)
- Masayuki Nashimoto
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| |
Collapse
|
3
|
Wu S, Li X, Wang G. tRNA-like structures and their functions. FEBS J 2021; 289:5089-5099. [PMID: 34117728 DOI: 10.1111/febs.16070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 06/10/2021] [Indexed: 11/27/2022]
Abstract
tRNA-like structures (TLSs) were first identified in the RNA genomes of turnip yellow mosaic virus. Since then, TLSs have been found in many other species including mammals, and the RNAs harboring these structures range from viral genomic RNAs to mRNAs and noncoding RNAs. Some progress has also been made on understanding their functions that include regulation of RNA replication, translation enhancement, RNA-protein interaction, and more. In this review, we summarize the current knowledge about the regulations and functions of these TLSs. Possible future directions of the field are also briefly discussed.
Collapse
Affiliation(s)
- Sipeng Wu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Xiang Li
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Geng Wang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| |
Collapse
|
4
|
Nozaki T, Takahashi M, Ishikawa T, Haino A, Seki M, Kikuchi H, Yuan B, Nashimoto M. The heptamer sgRNA targeting the human OCT4 mRNA can upregulate the OCT4 expression. Biochem Biophys Rep 2021; 26:100918. [PMID: 33553691 PMCID: PMC7859166 DOI: 10.1016/j.bbrep.2021.100918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/24/2020] [Accepted: 01/07/2021] [Indexed: 11/17/2022] Open
Abstract
TRUE gene silencing is one of the gene suppression technologies. This technology exploits the enzymatic property of the tRNA 3' processing endoribonuclease tRNase ZL, which is that it can cleave a target RNA under the direction of a small guide RNA (sgRNA). We have been working on the development of therapeutic sgRNAs for hematological malignancies. In the course of an experiment to examine the ability of the heptamer-type sgRNA H15792 targeting the OCT4 mRNA to differentiate human amnion stem cells, we observed unexpectedly that the amnion cells exhibited a morphology resembling initialized cells. Here we investigated the effect of H15792 on human HL60 leukemia cells, and found that H15792 can upregulate the OCT4 expression and the expression of alkaline phosphatase in the cells.
Collapse
Affiliation(s)
- Tadasuke Nozaki
- Department of Clinical Molecular Genetics, Faculty of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi 1432-1, Hachioji, Tokyo, 192-0392, Japan
| | - Masayuki Takahashi
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Higashijima 265-1, Akihaku, Niigata, Niigata, 956-8603, Japan
| | - Tatsuya Ishikawa
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Higashijima 265-1, Akihaku, Niigata, Niigata, 956-8603, Japan
| | - Arisa Haino
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Higashijima 265-1, Akihaku, Niigata, Niigata, 956-8603, Japan
| | - Mineaki Seki
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Higashijima 265-1, Akihaku, Niigata, Niigata, 956-8603, Japan
| | - Hidetomo Kikuchi
- Department of Clinical Molecular Genetics, Faculty of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi 1432-1, Hachioji, Tokyo, 192-0392, Japan
| | - Bo Yuan
- Department of Clinical Molecular Genetics, Faculty of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi 1432-1, Hachioji, Tokyo, 192-0392, Japan
| | - Masayuki Nashimoto
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Higashijima 265-1, Akihaku, Niigata, Niigata, 956-8603, Japan
| |
Collapse
|
5
|
Ishikawa T, Haino A, Seki M, Kurihara T, Hirose T, Imai Y, Ishiguro T, Chou T, Toshima M, Terada H, Nashimoto M. The 31-nucleotide Y4-RNA fragment in plasma is a potential novel biomarker. Noncoding RNA Res 2020; 5:37-40. [PMID: 32206739 PMCID: PMC7078377 DOI: 10.1016/j.ncrna.2019.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 11/17/2022] Open
Abstract
The 31- and 32-nt 5′-fragment of Y4-RNA (Y4RNAfr) exists abundantly in human peripheral blood plasma. Although physiological roles of the plasma Y4RNAfr are not well established, its potential utility as a diagnostic/prognostic marker for acute coronary syndrome was suggested. In this paper, to establish a normal range of the Y4RNAfr level in plasma, we measured plasma Y4RNAfr levels of 40 healthy persons using the method we have developed, and compared them with other blood test data. From the obtained data, we tentatively regarded <0.1 fmol/ng as normal for the Y4RNAfr level in peripheral blood plasma. And the white blood cell count (WBC) and the C-reactive protein (CRP) level showed moderate positive correlations with the Y4RNAfr level, suggesting that Y4RNAfr could be a potential novel inflammatory marker. We also measured the Y4RNAfr level in peripheral blood plasma from four multiple myeloma patients. The plasma Y4RNAfr level was abnormal in all four myeloma patients, and the levels for two patients were far beyond the normal level. The WBC for each patient was normal and the CRP levels for two patients were normal. These observations together suggest that a high level of Y4RNAfr in peripheral blood plasma and a normal WBC could be indicative of multiple myeloma.
Collapse
Affiliation(s)
- Tatsuya Ishikawa
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Niigata, 956-8603, Japan
| | - Arisa Haino
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Niigata, 956-8603, Japan
| | - Mineaki Seki
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Niigata, 956-8603, Japan
| | - Taro Kurihara
- Department of Internal Medicine, Niigata Cancer Center Hospital, Niigata, Niigata, 951-8566, Japan
| | - Takayuki Hirose
- Department of Internal Medicine, Niigata Cancer Center Hospital, Niigata, Niigata, 951-8566, Japan
| | - Yosuke Imai
- Department of Internal Medicine, Niigata Cancer Center Hospital, Niigata, Niigata, 951-8566, Japan
| | - Takuro Ishiguro
- Department of Internal Medicine, Niigata Cancer Center Hospital, Niigata, Niigata, 951-8566, Japan
| | - Takaaki Chou
- Department of Internal Medicine, Niigata Cancer Center Hospital, Niigata, Niigata, 951-8566, Japan
| | - Muneatsu Toshima
- Niitsu Medical Center Hospital, Niigata, Niigata, 956-0025, Japan
| | - Hiroshi Terada
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Niigata, 956-8603, Japan
| | - Masayuki Nashimoto
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Niigata, 956-8603, Japan
| |
Collapse
|