1
|
Zhang B, Ma X, Zhou Y, Zhu B, Yu J, Liu H, Ma Y, Luan Y, Chen M. Diagnostic Value of Circulating microRNAs for Hepatocellular Carcinoma: Results of a Meta-analysis and Validation. Biochem Genet 2025:10.1007/s10528-024-11001-2. [PMID: 39751721 DOI: 10.1007/s10528-024-11001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
Mounting evidence suggests that circulating microRNAs (miRNAs) hold diagnostic value in various malignancies. To identify circulating miRNAs for the early diagnosis of hepatocellular carcinoma (HCC), we conducted a meta-analysis to evaluate the diagnostic utility of miRNAs in HCC and further validated the results of the meta-analysis. English articles published prior to December 2023 were retrieved from databases including PubMed, Embase, and Web of Science. A random-effects or fixed-effects model was applied depending on the heterogeneity among studies. The pooled sensitivity, specificity, and the area under the summary receiver operating characteristic curve (AUC) were calculated to assess diagnostic accuracy. Additionally, RT-qPCR and receiver operating characteristic (ROC) analyses were employed to further validate the findings. A total of 36 studies were included, involving 3362 patients with HCC and 2150 patients with chronic hepatitis. The pooled sensitivity, specificity, and diagnostic odds ratio were 0.79 (95% CI 0.75-0.82), 0.79 (95% CI 0.73-0.84), and 14 (95% CI 9-22), respectively; the positive and negative likelihood ratios were 4.0 and 0.27, respectively; the area under the curve (AUC) in the summary receiver operating characteristic (ROC) was 0.85 (95% CI 0.82-0.88). Validation indicated a significant upregulation of miR-1246, miR-21, and miR-221 in HCC patients compared to those with chronic hepatitis (P < 0.01), while miR-122 and miR-26a were significantly downregulated (P < 0.01). Moreover, the validation results also demonstrated that serum levels of miR-21, miR-26a, miR-122, miR-221, and miR-1246 exhibit high sensitivity and specificity in the diagnosis of HCC. Circulating miRNAs may be promising biomarkers for HCC diagnosis.
Collapse
Affiliation(s)
- Bingqiang Zhang
- Qingdao Ruiside Medical Laboratory Co., LTD, Qingdao, 266111, Shandong, People's Republic of China
| | - Xiaoyan Ma
- Department of Oncology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266111, Shandong, People's Republic of China
| | - Yang Zhou
- Qingdao Ruiside Medical Laboratory Co., LTD, Qingdao, 266111, Shandong, People's Republic of China
| | - Boyang Zhu
- School of Clinical and Basic Medical Sciences, Shandong First Medical, University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Junmei Yu
- Qingdao Ruiside Medical Laboratory Co., LTD, Qingdao, 266111, Shandong, People's Republic of China
| | - He Liu
- Qingdao Ruiside Medical Laboratory Co., LTD, Qingdao, 266111, Shandong, People's Republic of China
| | - Yongchao Ma
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266111, Shandong, People's Republic of China
| | - Yansong Luan
- Qingdao Ruiside Medical Laboratory Co., LTD, Qingdao, 266111, Shandong, People's Republic of China.
| | - Mengmeng Chen
- Qingdao Ruiside Medical Laboratory Co., LTD, Qingdao, 266111, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Al Ageeli E. Dual Roles of microRNA-122 in Hepatocellular Carcinoma and Breast Cancer Progression and Metastasis: A Comprehensive Review. Curr Issues Mol Biol 2024; 46:11975-11992. [PMID: 39590305 PMCID: PMC11592835 DOI: 10.3390/cimb46110711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
microRNA-122 (miR-122) plays crucial yet contrasting roles in hepatocellular carcinoma (HCC) and breast cancer (BC), two prevalent and aggressive malignancies. This review synthesizes current research on miR-122's functions in these cancers, focusing on its potential as a diagnostic, prognostic, and therapeutic target. A comprehensive literature search was conducted using PubMed, Web of Science, and Scopus databases. In HCC, miR-122 is downregulated in most cases, suppressing oncogenic pathways and reducing tumor growth and metastasis. Restoring miR-122 levels has shown promising therapeutic potential, increasing sensitivity to treatments like sorafenib. In contrast, in BC, miR-122 plays a pro-metastatic role, especially in triple-negative breast cancer (TNBC) and metastatic lesions. miR-122's ability to influence key pathways, such as the Wnt/β-catenin and NF-κB pathways in HCC, and its role in enhancing the Warburg effect in BC underline its significance in cancer biology. miR-122, a key factor in breast cancer radioresistance, suppresses tumors in radiosensitive cells. Inhibiting miR-122 could reverse resistance and potentially overcome radiotherapy resistance. Given its context-dependent functions, miR-122 could serve as a potential therapeutic target, where restoring or inhibiting its expression may help in treating HCC and BC, respectively. The dual roles of miR-122 underscore its significance in cancer biology and its potential in precision medicine.
Collapse
Affiliation(s)
- Essam Al Ageeli
- Department of Basic Medical Sciences (Medical Genetics), Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
3
|
Moore LL, Qu D, Sureban S, Mitchell S, Pitts K, Cooper N, Fazili J, Harty R, Oseini A, Ding K, Bronze M, Houchen CW. From Inflammation to Oncogenesis: Tracing Serum DCLK1 and miRNA Signatures in Chronic Liver Diseases. Int J Mol Sci 2024; 25:6481. [PMID: 38928187 PMCID: PMC11203803 DOI: 10.3390/ijms25126481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic liver diseases, fibrosis, cirrhosis, and HCC are often a consequence of persistent inflammation. However, the transition mechanisms from a normal liver to fibrosis, then cirrhosis, and further to HCC are not well understood. This study focused on the role of the tumor stem cell protein doublecortin-like kinase 1 (DCLK1) in the modulation of molecular factors in fibrosis, cirrhosis, or HCC. Serum samples from patients with hepatic fibrosis, cirrhosis, and HCC were analyzed via ELISA or NextGen sequencing and were compared with control samples. Differentially expressed (DE) microRNAs (miRNA) identified from these patient sera were correlated with DCLK1 expression. We observed elevated serum DCLK1 levels in fibrosis, cirrhosis, and HCC patients; however, TGF-β levels were only elevated in fibrosis and cirrhosis. While DE miRNAs were identified for all three disease states, miR-12136 was elevated in fibrosis but was significantly increased further in cirrhosis. Additionally, miR-1246 and miR-184 were upregulated when DCLK1 was high, while miR-206 was downregulated. This work distinguishes DCLK1 and miRNAs' potential role in different axes promoting inflammation to tumor progression and may serve to identify biomarkers for tracking the progression from pre-neoplastic states to HCC in chronic liver disease patients as well as provide targets for treatment.
Collapse
Affiliation(s)
- Landon L. Moore
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Dongfeng Qu
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
| | - Sripathi Sureban
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Stephanie Mitchell
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
| | - Kamille Pitts
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Nasya Cooper
- Department of Natural Sciences, Langston University, Langston, OK 73050, USA;
| | - Javid Fazili
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
| | - Richard Harty
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
| | - Abdul Oseini
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
| | - Kai Ding
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Michael Bronze
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
| | - Courtney W. Houchen
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
4
|
Michalczuk MT, Longo L, Keingeski MB, Basso BDS, Guerreiro GTS, Ferrari JT, Vargas JE, Oliveira CP, Uribe-Cruz C, Cerski CTS, Filippi-Chiela E, Álvares-da-Silva MR. Rifaximin on epigenetics and autophagy in animal model of hepatocellular carcinoma secondary to metabolic-dysfunction associated steatotic liver disease. World J Hepatol 2024; 16:75-90. [PMID: 38313241 PMCID: PMC10835481 DOI: 10.4254/wjh.v16.i1.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Prevalence of hepatocellular carcinoma (HCC) is increasing, especially in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). AIM To investigate rifaximin (RIF) effects on epigenetic/autophagy markers in animals. METHODS Adult Sprague-Dawley rats were randomly assigned (n = 8, each) and treated from 5-16 wk: Control [standard diet, water plus gavage with vehicle (Veh)], HCC [high-fat choline deficient diet (HFCD), diethylnitrosamine (DEN) in drinking water and Veh gavage], and RIF [HFCD, DEN and RIF (50 mg/kg/d) gavage]. Gene expression of epigenetic/autophagy markers and circulating miRNAs were obtained. RESULTS All HCC and RIF animals developed metabolic-dysfunction associated steatohepatitis fibrosis, and cirrhosis, but three RIF-group did not develop HCC. Comparing animals who developed HCC with those who did not, miR-122, miR-34a, tubulin alpha-1c (Tuba-1c), metalloproteinases-2 (Mmp2), and metalloproteinases-9 (Mmp9) were significantly higher in the HCC-group. The opposite occurred with Becn1, coactivator associated arginine methyltransferase-1 (Carm1), enhancer of zeste homolog-2 (Ezh2), autophagy-related factor LC3A/B (Map1 Lc3b), and p62/sequestosome-1 (p62/SQSTM1)-protein. Comparing with controls, Map1 Lc3b, Becn1 and Ezh2 were lower in HCC and RIF-groups (P < 0.05). Carm1 was lower in HCC compared to RIF (P < 0.05). Hepatic expression of Mmp9 was higher in HCC in relation to the control; the opposite was observed for p62/Sqstm1 (P < 0.05). Expression of p62/SQSTM1 protein was lower in the RIF-group compared to the control (P = 0.024). There was no difference among groups for Tuba-1c, Aldolase-B, alpha-fetoprotein, and Mmp2 (P > 0.05). miR-122 was higher in HCC, and miR-34a in RIF compared to controls (P < 0.05). miR-26b was lower in HCC compared to RIF, and the inverse was observed for miR-224 (P < 0.05). There was no difference among groups regarding miR-33a, miR-143, miR-155, miR-375 and miR-21 (P > 0.05). CONCLUSION RIF might have a possible beneficial effect on preventing/delaying liver carcinogenesis through epigenetic modulation in a rat model of MASLD-HCC.
Collapse
Affiliation(s)
- Matheus Truccolo Michalczuk
- Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| | - Larisse Longo
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Melina Belén Keingeski
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Bruno de Souza Basso
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Gabriel Tayguara Silveira Guerreiro
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Jessica T Ferrari
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| | - José Eduardo Vargas
- Laboratory of Inflammatory and Neoplastic Cells, Universidade Federal do Paraná, Paraná 81530900, Brazil
| | - Cláudia P Oliveira
- Department of Gastroenterology (LIM07), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246903, Brazil
| | - Carolina Uribe-Cruz
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Facultad de Ciencias de la Salud, Universidad Católica de las Misiones, Posadas, Misiones 3300, Argentina
| | - Carlos Thadeu Schmidt Cerski
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Unit of Surgical Pathology, Hospital de Clinicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Eduardo Filippi-Chiela
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.050-170, Rio Grande do Sul, Brazil
| | - Mário Reis Álvares-da-Silva
- Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Researcher, Brasília 71.605-001, Brazil.
| |
Collapse
|
5
|
Yu X, Zhang S, Wang W. Determination of microRNA-122 in hepatocytes by two-step amplification of duplex-specific nuclease with laser-induced fluorescence detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1715-1720. [PMID: 35438691 DOI: 10.1039/d2ay00360k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
MicroRNAs (miRNAs) play important roles in physiological and pathological processes of cells. To develop a fast, simple and sensitive method to determine miRNAs is significant for miRNA studies. In this work, determination of microRNA-122 (miR-122) was achieved by laser-induced fluorescence (LIF) detection. A vial-LIF interface was first applied for sample analysis. A two-step amplification of the fluorescence signal for miR-122 was designed and realized by applying duplex-specific nuclease in the cleaving of two sensing probes. Under optimized conditions, the analysis of a miR-122 sample could be completed in less than 50 min. Only 10 μL sample was required for each test and the detection limit for the method was 0.60 pM equal to 1.2 amol of miR-122 in 10 μL solution. Lastly, the developed method was successfully applied to determine miR-122 in chicken and duck liver. The developed method was fast, selective, sensitive and sample-saving for the determination of miRNAs.
Collapse
Affiliation(s)
- Xiufeng Yu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Shaoyan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Wei Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China.
| |
Collapse
|