1
|
Tian L, Peng N, Qian Z, Hu J, Cheng W, Xia Y, Cheng C, Ji Y. Clinical evaluation of resection of functional area gliomas guided by intraoperative 3.0 T MRI combined with functional MRI navigation. BMC Surg 2024; 24:216. [PMID: 39068399 PMCID: PMC11282846 DOI: 10.1186/s12893-024-02506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND In assessing the clinical utility and safety of 3.0 T intraoperative magnetic resonance imaging (iMRI) combined with multimodality functional MRI (fMRI) guidance in the resection of functional area gliomas, we conducted a study. METHOD Among 120 patients with newly diagnosed functional area gliomas who underwent surgical treatment, 60 were included in each group: the integrated group with iMRI and fMRI and the conventional navigation group. Between-group comparisons were made for the extent of resection (EOR), preoperative and postoperative activities of daily living based on the Karnofsky performance status, surgery duration, and postoperative intracranial infection rate. RESULTS Compared to the conventional navigation group, the integrated navigation group with iMRI and fMRI exhibited significant improvements in tumor resection (complete resection rate: 85.0% vs. 60.0%, P = 0.006) and postoperative life self-care ability scores (Karnofsky score) (median ± interquartile range: 90 ± 25 vs. 80 ± 30, P = 0.013). Additionally, although the integrated navigation group with iMRI and fMRI required significantly longer surgeries than the conventional navigation group (mean ± standard deviation: 411.42 ± 126.4 min vs. 295.97 ± 96.48 min, P<0.0001), there was no significant between-group difference in the overall incidence of postoperative intracranial infection (16.7% vs. 18.3%, P = 0.624). CONCLUSION The combination of 3.0 T iMRI with multimodal fMRI guidance enables effective tumor resection with minimal neurological damage.
Collapse
Affiliation(s)
- Luoyi Tian
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 1, Swan lake road, Shushan district, 230001, Hefei, Anhui, China
- Department of Neurosurgery, The Affiliated Provincial Hospital of Anhui Medical University, No. 1, Swan lake road, Shushan district, 230001, Hefei, Anhui, China
| | - Nan Peng
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 1, Swan lake road, Shushan district, 230001, Hefei, Anhui, China
| | - Zhongrun Qian
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 1, Swan lake road, Shushan district, 230001, Hefei, Anhui, China
| | - Jinpeng Hu
- Department of Neurosurgery, The Affiliated Provincial Hospital of Anhui Medical University, No. 1, Swan lake road, Shushan district, 230001, Hefei, Anhui, China
| | - Wei Cheng
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 1, Swan lake road, Shushan district, 230001, Hefei, Anhui, China
| | - Yanghua Xia
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 1, Swan lake road, Shushan district, 230001, Hefei, Anhui, China
| | - Chuandong Cheng
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 1, Swan lake road, Shushan district, 230001, Hefei, Anhui, China.
| | - Ying Ji
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 1, Swan lake road, Shushan district, 230001, Hefei, Anhui, China.
- Department of Neurosurgery, The Affiliated Provincial Hospital of Anhui Medical University, No. 1, Swan lake road, Shushan district, 230001, Hefei, Anhui, China.
| |
Collapse
|
2
|
Cossu G, Vandenbulcke A, Zaccarini S, Gaudet JG, Hottinger AF, Rimorini N, Potie A, Beaud V, Guerra-Lopez U, Daniel RT, Berna C, Messerer M. Hypnosis-Assisted Awake Craniotomy for Eloquent Brain Tumors: Advantages and Pitfalls. Cancers (Basel) 2024; 16:1784. [PMID: 38730736 PMCID: PMC11083963 DOI: 10.3390/cancers16091784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Awake craniotomy (AC) is recommended for the resection of tumors in eloquent areas. It is traditionally performed under monitored anesthesia care (MAC), which relies on hypnotics and opioids. Hypnosis-assisted AC (HAAC) is an emerging technique that aims to provide psychological support while reducing the need for pharmacological sedation and analgesia. We aimed to compare the characteristics and outcomes of patients who underwent AC under HAAC or MAC. METHODS We retrospectively analyzed the clinical, anesthetic, surgical, and neuropsychological data of patients who underwent awake surgical resection of eloquent brain tumors under HAAC or MAC. We used Mann-Whitney U tests, Wilcoxon signed-rank tests, and repeated-measures analyses of variance to identify statistically significant differences at the 0.05 level. RESULTS A total of 22 patients were analyzed, 14 in the HAAC group and 8 in the MAC group. Demographic, radiological, and surgical characteristics as well as postoperative outcomes were similar. Patients in the HAAC group received less remifentanil (p = 0.047) and propofol (p = 0.002), but more dexmedetomidine (p = 0.025). None of them received ketamine as a rescue analgesic. Although patients in the HAAC group experienced higher levels of perioperative pain (p < 0.05), they reported decreasing stress levels (p = 0.04) and greater levels of satisfaction (p = 0.02). CONCLUSION HAAC is a safe alternative to MAC as it reduces perioperative stress and increases overall satisfaction. Further research is necessary to assess whether hypnosis is clinically beneficial.
Collapse
Affiliation(s)
- Giulia Cossu
- Department of Neurosurgery, University Hospital of Lausanne and University of Lausanne, 1011 Lausanne, Switzerland; (A.V.); (R.T.D.); (M.M.)
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, University Hospital of Lausanne, 1011 Lausanne, Switzerland;
| | - Alberto Vandenbulcke
- Department of Neurosurgery, University Hospital of Lausanne and University of Lausanne, 1011 Lausanne, Switzerland; (A.V.); (R.T.D.); (M.M.)
| | - Sonia Zaccarini
- Department of Anesthesiology, University Hospital of Lausanne, 1011 Lausanne, Switzerland; (S.Z.); (J.G.G.)
- Center for Integrative and Complementary Medicine, Department of Anesthesiology, University Hospital of Lausanne, The Sense and University of Lausanne, 1011 Lausanne, Switzerland; (N.R.); (C.B.)
| | - John G. Gaudet
- Department of Anesthesiology, University Hospital of Lausanne, 1011 Lausanne, Switzerland; (S.Z.); (J.G.G.)
| | - Andreas F. Hottinger
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, University Hospital of Lausanne, 1011 Lausanne, Switzerland;
- Division of Neuro-oncology, Department of Oncology, University Hospital of Lausanne and University of Lausanne, 1011 Lausanne, Switzerland
| | - Nina Rimorini
- Center for Integrative and Complementary Medicine, Department of Anesthesiology, University Hospital of Lausanne, The Sense and University of Lausanne, 1011 Lausanne, Switzerland; (N.R.); (C.B.)
| | - Arnaud Potie
- Department of Anesthesiology, University Hospital of Lausanne, 1011 Lausanne, Switzerland; (S.Z.); (J.G.G.)
| | - Valerie Beaud
- Service of Neuropsychology and Neurorehabilitation, University Hospital of Lausanne, 1011 Lausanne, Switzerland; (V.B.); (U.G.-L.)
| | - Ursula Guerra-Lopez
- Service of Neuropsychology and Neurorehabilitation, University Hospital of Lausanne, 1011 Lausanne, Switzerland; (V.B.); (U.G.-L.)
| | - Roy T. Daniel
- Department of Neurosurgery, University Hospital of Lausanne and University of Lausanne, 1011 Lausanne, Switzerland; (A.V.); (R.T.D.); (M.M.)
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, University Hospital of Lausanne, 1011 Lausanne, Switzerland;
| | - Chantal Berna
- Center for Integrative and Complementary Medicine, Department of Anesthesiology, University Hospital of Lausanne, The Sense and University of Lausanne, 1011 Lausanne, Switzerland; (N.R.); (C.B.)
| | - Mahmoud Messerer
- Department of Neurosurgery, University Hospital of Lausanne and University of Lausanne, 1011 Lausanne, Switzerland; (A.V.); (R.T.D.); (M.M.)
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, University Hospital of Lausanne, 1011 Lausanne, Switzerland;
| |
Collapse
|
3
|
Calvo-Imirizaldu M, Aramendía-Vidaurreta V, Sánchez-Albardíaz C, Vidorreta M, García de Eulate R, Domínguez Echávarri PD, Pfeuffer J, Bejarano Herruzo B, Gonzalez-Quarante LH, Martinez-Simon A, Fernández-Seara MA. Clinical utility of intraoperative arterial spin labeling for resection control in brain tumor surgery at 3 T. NMR IN BIOMEDICINE 2023:e4938. [PMID: 36967637 DOI: 10.1002/nbm.4938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Resection control in brain tumor surgery can be achieved in real time with intraoperative MRI (iMRI). Arterial spin labeling (ASL), a technique that measures cerebral blood flow (CBF) non-invasively without the use of intravenous contrast agents, can be performed intraoperatively, providing morpho-physiological information. This study aimed to evaluate the feasibility, image quality and potential to depict residual tumor of a pseudo-continuous ASL (PCASL) sequence at 3 T. Seventeen patients with brain tumors, primary (16) or metastatic (1), undergoing resection surgery with iMRI monitoring, were prospectively recruited (nine men, age 56 ± 16.6 years). A PCASL sequence with long labeling duration (3000 ms) and postlabeling delay (2000 ms) was added to the conventional protocol, which consisted of pre- and postcontrast 3D T1 -weighted (T1w) images, optional 3D-FLAIR, and diffusion. Three observers independently assessed the image quality (four-point scale) of PCASL-derived CBF maps. In those with diagnostic quality (Scores 2-4) they evaluated the presence of residual tumor using the conventional sequences first, and the CBF maps afterwards (three-point scale). Inter-observer agreement for image quality and the presence of residual tumor was assessed using Fleiss kappa statistics. The intraoperative CBF ratio of the surgical margins (i.e., perilesional CBF values normalized to contralateral gray matter CBF) was compared with preoperative CBF ratio within the tumor (Wilcoxon's test). Diagnostic ASL image quality was observed in 94.1% of patients (interobserver Fleiss κ = 0.76). PCASL showed additional foci suggestive of high-grade residual component in three patients, and a hyperperfused area extending outside the enhancing component in one patient. Interobserver agreement was almost perfect in the evaluation of residual tumor with the conventional sequences (Fleiss κ = 0.92) and substantial for PCASL (Fleiss κ = 0.80). No significant differences were found between pre and intraoperative CBF ratios (p = 0.578) in patients with residual tumor (n = 7). iMRI-PCASL perfusion is feasible at 3 T and is useful for the intraoperative assessment of residual tumor, providing in some cases additional information to the conventional sequences.
Collapse
Affiliation(s)
| | - Verónica Aramendía-Vidaurreta
- Radiology Department, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | | | | | | | - Pablo D Domínguez Echávarri
- Radiology Department, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Josef Pfeuffer
- Application Development, Siemens Healthcare, Erlangen, Germany
| | | | | | - Antonio Martinez-Simon
- Anesthesia and Intensive Care Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - María A Fernández-Seara
- Radiology Department, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
4
|
Duffau H. Neural Connectivity: How to Reinforce the Bidirectional Synapse Between Basic Neuroscience and Routine Neurosurgical Practice? Front Neurol 2021; 12:705135. [PMID: 34354668 PMCID: PMC8336871 DOI: 10.3389/fneur.2021.705135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," National Institute for Health and Medical Research (INSERM), U1191 Laboratory, Institute of Functional Genomics, University of Montpellier, Montpellier, France
| |
Collapse
|
5
|
Rogers CM, Jones PS, Weinberg JS. Intraoperative MRI for Brain Tumors. J Neurooncol 2021; 151:479-490. [PMID: 33611714 DOI: 10.1007/s11060-020-03667-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The use of intraoperative imaging has been a critical tool in the neurosurgeon's armamentarium and is of particular benefit during tumor surgery. This article summarizes the history of its development, implementation, clinical experience and future directions. METHODS We reviewed the literature focusing on the development and clinical experience with intraoperative MRI. Utilizing the authors' personal experience as well as evidence from the literature, we present an overview of the utility of MRI during neurosurgery. RESULTS In the 1990s, the first description of using a low field MRI in the operating room was published describing the additional benefit provided by improved resolution of MRI as compared to ultrasound. Since then, implementation has varied in magnetic field strength and in configuration from floor mounted to ceiling mounted units as well as those that are accessible to the operating room for use during surgery and via an outpatient entrance to use for diagnostic imaging. The experience shows utility of this technique for increasing extent of resection for low and high grade tumors as well as preventing injury to important structures while incorporating techniques such as intraoperative monitoring. CONCLUSION This article reviews the history of intraoperative MRI and presents a review of the literature revealing the successful implementation of this technology and benefits noted for the patient and the surgeon.
Collapse
Affiliation(s)
- Cara Marie Rogers
- Department of Neurosurgery, Virginia Tech Carilion, Roanoke, VA, USA
| | - Pamela S Jones
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey S Weinberg
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
The role of tailored intraoperative neurophysiological monitoring in glioma surgery: a single institute experience. J Neurooncol 2020; 146:459-467. [PMID: 32020476 DOI: 10.1007/s11060-019-03347-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/15/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Glioma surgery near the functional area is still a dilemma. Intraoperative neurophysiologic monitoring (IONM) and functional mapping can play a role to maximize the extent of resection (EOR), while minimizing the risk of sequelae. We herein review the utility of tailored intraoperative mapping and monitoring in patients undergoing glioma surgery in our institute. METHODS Patients were divided into two groups on the basis of application tailored IONM (group A, 2013-2017, n = 53) or not (group B, 2008-2012, n = 49) between January 2008 and December 2017. The setup, tailored IONM protocols, surgery, and clinical results of all patients with eloquent glioma were analyzed with the EOR, functionality scores, overall survival (OS) and progression-free survival (PFS) retrospectively. RESULTS The 102 patients were considered eligible for analysis. High grade and low grade gliomas accounted for 73 (72%) and 29 (28%) cases, respectively. There was a positive association between the application of neuromonitor and post-operative functional preservation, but no significant statistical differences over the EOR, OS and PFS between the two groups. CONCLUSIONS In our experience, tailored intraoperative functional mapping provides an effective neurological function preservation. Routine implementation of neurophysiological monitoring with adequate pre-operative planning and intraoperative teamwork in eloquent glioma can get more satisfied functional preservation. Due to the maturation and experience of our IONM team may also be the variation factor, prospective studies with a more prominent sample and proper multivariate analysis will be expected to determine the real benefit.
Collapse
|
7
|
Whiting BB, Lee BS, Mahadev V, Borghei-Razavi H, Ahuja S, Jia X, Mohammadi AM, Barnett GH, Angelov L, Rajan S, Avitsian R, Vogelbaum MA. Combined use of minimal access craniotomy, intraoperative magnetic resonance imaging, and awake functional mapping for the resection of gliomas in 61 patients. J Neurosurg 2020; 132:159-167. [PMID: 30684941 DOI: 10.3171/2018.9.jns181802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Current management of gliomas involves a multidisciplinary approach, including a combination of maximal safe resection, radiotherapy, and chemotherapy. The use of intraoperative MRI (iMRI) helps to maximize extent of resection (EOR), and use of awake functional mapping supports preservation of eloquent areas of the brain. This study reports on the combined use of these surgical adjuncts. METHODS The authors performed a retrospective review of patients with gliomas who underwent minimal access craniotomy in their iMRI suite (IMRIS) with awake functional mapping between 2010 and 2017. Patient demographics, tumor characteristics, intraoperative and postoperative adverse events, and treatment details were obtained. Volumetric analysis of preoperative tumor volume as well as intraoperative and postoperative residual volumes was performed. RESULTS A total of 61 patients requiring 62 tumor resections met the inclusion criteria. Of the tumors resected, 45.9% were WHO grade I or II and 54.1% were WHO grade III or IV. Intraoperative neurophysiological monitoring modalities included speech alone in 23 cases (37.1%), motor alone in 24 (38.7%), and both speech and motor in 15 (24.2%). Intraoperative MRI demonstrated residual tumor in 48 cases (77.4%), 41 (85.4%) of whom underwent further resection. Median EOR on iMRI and postoperative MRI was 86.0% and 98.5%, respectively, with a mean difference of 10% and a median difference of 10.5% (p < 0.001). Seventeen of 62 cases achieved an increased EOR > 15% related to use of iMRI. Seventeen (60.7%) of 28 low-grade gliomas and 10 (30.3%) of 33 high-grade gliomas achieved complete resection. Significant intraoperative events included at least temporary new or worsened speech alteration in 7 of 38 cases who underwent speech mapping (18.4%), new or worsened weakness in 7 of 39 cases who underwent motor mapping (18.0%), numbness in 2 cases (3.2%), agitation in 2 (3.2%), and seizures in 2 (3.2%). Among the patients with new intraoperative deficits, 2 had residual speech difficulty, and 2 had weakness postoperatively, which improved to baseline strength by 6 months. CONCLUSIONS In this retrospective case series, the combined use of iMRI and awake functional mapping was demonstrated to be safe and feasible. This combined approach allows one to achieve the dual goals of maximal tumor removal and minimal functional consequences in patients undergoing glioma resection.
Collapse
Affiliation(s)
- Benjamin B Whiting
- 1Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland
- 2Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland
| | - Bryan S Lee
- 1Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland
- 2Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland
| | - Vaidehi Mahadev
- 3School of Medicine, Northeast Ohio Medical University, Rootstown
| | - Hamid Borghei-Razavi
- 4Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland
| | - Sanchit Ahuja
- 5Department of General Anesthesiology, Anesthesiology Institute, Cleveland Clinic, Cleveland; and
| | - Xuefei Jia
- 6Quantitative Health Sciences, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Alireza M Mohammadi
- 1Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland
- 2Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland
- 4Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland
| | - Gene H Barnett
- 1Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland
- 2Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland
- 4Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland
| | - Lilyana Angelov
- 1Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland
- 2Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland
- 4Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland
| | - Shobana Rajan
- 5Department of General Anesthesiology, Anesthesiology Institute, Cleveland Clinic, Cleveland; and
| | - Rafi Avitsian
- 5Department of General Anesthesiology, Anesthesiology Institute, Cleveland Clinic, Cleveland; and
| | - Michael A Vogelbaum
- 1Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland
- 2Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland
- 4Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland
| |
Collapse
|
8
|
Krivosheya D, Rao G, Tummala S, Kumar V, Suki D, Bastos DCA, Prabhu SS. Impact of Multi-modality Monitoring Using Direct Electrical Stimulation to Determine Corticospinal Tract Shift and Integrity in Tumors using the Intraoperative MRI. J Neurol Surg A Cent Eur Neurosurg 2019; 82:375-380. [PMID: 31659724 DOI: 10.1055/s-0039-1698383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Preserving the integrity of the corticospinal tract (CST) while maximizing the extent of tumor resection is one of the key principles of brain tumor surgery to prevent new neurologic deficits. Our goal was to determine the impact of the use of perioperative diffusion tensor imaging (DTI) fiber-tracking protocols for location of the CSTs, in conjunction with intraoperative direct electrical stimulation (DES) on patient neurologic outcomes. The role of combining DES and CST shift in intraoperative magnetic resonance imaging (iMRI) to enhance extent of resection (EOR) has not been studied previously. METHODS A total of 53 patients underwent resection of tumors adjacent to the motor gyrus and the underlying CST between June 5, 2009, and April 16, 2013. All cases were performed in the iMRI (BrainSuite 1.5 T). Preoperative DTI mapping and intraoperative cortical and subcortical DES including postoperative DTI mapping were performed in all patients. There were 32 men and 21 women with 40 high-grade gliomas (76%), 4 low-grade gliomas (8%), and 9 (17%) metastases. Thirty-four patients (64%) were newly diagnosed, and 19 (36%) had a previous resection. There were 31 (59%) right-sided and 22 (42%) left-sided tumors. Eighteen patients (34%) had a re-resection after the first intraoperative scan. Most patients had motor-only mapping, and one patient had both speech and motor mapping. Relative to the resection margin, the CST after the first iMRI was designated as having an outward shift (OS), inward shift (IS), or no shift (NS). RESULTS A gross total resection (GTR) was achieved in 41 patients (77%), subtotal resection in 4 (7.5%), and a partial resection in 8 (15%). Eighteen patients had a re-resection, and the mean EOR increased from 84% to 95% (p = 0.002). Of the 18 patients, 7 had an IS, 8 an OS, and in 3 NS was noted. More patients in the OS group had a GTR compared with the IS or NS groups (p = 0.004). Patients were divided into four groups based on the proximity of the tumor to the CST as measured from the preoperative scan. Group 1 (32%) included patients whose tumors were 0 to 5 mm from the CST based on preoperative scans; group 2 (28%), 6 to 10 mm; group 3 (13%), 11 to 15 mm; and group 4 (26%), 16 to 20 mm, respectively. Patients in group 4 had fewer neurologic complications compared with other groups at 1 and 3 months postoperatively (p = 0.001 and p = 0.007, respectively) despite achieving a similar degree of resection (p = 0.61). Furthermore, the current of intraoperative DES was correlated to the distance of the tumor to the CST, and the regression equation showed a close linear relationship between the two parameters. CONCLUSIONS Combining information about intraoperative CST and DES in the iMRI can enhance resection in brain tumors (77% had a GTR). The relative relationship between the positions of the CST to the resection cavity can be a dynamic process that could further influence the surgeon's decision about the stimulation parameters and EOR. Also, the patients with an OS of the CST relative to the resection cavity had a GTR comparable with the other groups.
Collapse
Affiliation(s)
- Daria Krivosheya
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio, United States
| | - Ganesh Rao
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Sudhakar Tummala
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Vinodh Kumar
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Dima Suki
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Dheigo C A Bastos
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Sujit S Prabhu
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| |
Collapse
|
9
|
Abstract
Technological breakthroughs along with modern application of awake craniotomy and new neuroanesthesia protocols have led to a progressive development in outpatient brain tumor surgery and improved surgical outcomes. As a result, outpatient neurosurgery has become a standard of care at the authors' center due to its clinical benefits and impact on patient recovery and overall satisfaction. On the other hand, the financial savings derived from its application is also another favorable factor exerting influence on patients, health care systems, and society. Although validated several years ago and with recent data supporting its application, outpatient brain tumor surgery has not gained the traction that it deserves, based on scientific skepticism and perceived potential for medicolegal issues. The goal of this review, based on the available literature and the senior author's experience in outpatient brain tumor surgery, was to evaluate the most important aspects regarding indications, clinical outcomes, economic burden, and patient perceptions.
Collapse
|
10
|
Zhang H, Ma Y, Wang H, Xu L, Yu Y. MMP-2 expression and correlation with pathology and MRI of glioma. Oncol Lett 2018; 17:1826-1832. [PMID: 30675244 PMCID: PMC6341586 DOI: 10.3892/ol.2018.9806] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/30/2018] [Indexed: 01/01/2023] Open
Abstract
The expression of matrix metalloproteinase-2 (MMP-2) in brain glioma and its correlation with patients' clinicopathological characteristics and magnetic resonance imaging (MRI) features were investigated. A total of 104 patients with brain glioma admitted and treated in the First Affiliated Hospital of Anhui Medical University from June 2010 to September 2014 were randomly enrolled. MRI examination was performed before operation. Immunohistochemistry (IHC) was used to detect the expression levels of MMP-2 in brain glioma tissues and paired normal brain tissues after operation and to analyze the associations of MMP-2 expression with the clinicopathological characteristics of brain glioma and survival time of patients. The relationship between MMP-2 expression and preoperative MRI features of glioma was analyzed. The positive rate of MMP-2 expression in brain glioma was 73.08% (76/104), while that in paired normal brain tissues was only 12.5% (13/104), obviously lower than that in brain glioma tissues (P<0.05). The MMP-2 expression in the body of glioma was not related to the patients' sex, age, tumor location and pathological type (P>0.05), but there was a significant correlation with the tumor diameter and pathological grade of the patients (P<0.05). Analysis by Cox model suggested that tumor diameter, pathological grade and MMP-2 were independent prognostic factors for glioma (P<0.05). The overall survival (OS) of patients in the positive MMP-2 expression group was 16.4 months, while the OS in the negative MMP-2 expression group was 20.16 months, and the difference between the two groups was statistically significant (P<0.05). The positive expression of MMP-2 in glioma was closely related to the uniformity of MRI signal for tumor, tumor diameter, severity of peritumoral edema, degree of enhancement and pathological grade of tumor (P<0.05). MMP-2 is highly expressed in brain glioma, and it is a negative factor for prognosis. Therefore, the MRI manifestations of glioma can reflect to some extent the intensity of MMP-2 expression.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yunxia Ma
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Haibao Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Liyan Xu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|