1
|
Bröhl T, Rings T, Pukropski J, von Wrede R, Lehnertz K. The time-evolving epileptic brain network: concepts, definitions, accomplishments, perspectives. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 3:1338864. [PMID: 38293249 PMCID: PMC10825060 DOI: 10.3389/fnetp.2023.1338864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024]
Abstract
Epilepsy is now considered a network disease that affects the brain across multiple levels of spatial and temporal scales. The paradigm shift from an epileptic focus-a discrete cortical area from which seizures originate-to a widespread epileptic network-spanning lobes and hemispheres-considerably advanced our understanding of epilepsy and continues to influence both research and clinical treatment of this multi-faceted high-impact neurological disorder. The epileptic network, however, is not static but evolves in time which requires novel approaches for an in-depth characterization. In this review, we discuss conceptual basics of network theory and critically examine state-of-the-art recording techniques and analysis tools used to assess and characterize a time-evolving human epileptic brain network. We give an account on current shortcomings and highlight potential developments towards an improved clinical management of epilepsy.
Collapse
Affiliation(s)
- Timo Bröhl
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Thorsten Rings
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Jan Pukropski
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Randi von Wrede
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Johnson GW, Doss DJ, Morgan VL, Paulo DL, Cai LY, Shless JS, Negi AS, Gummadavelli A, Kang H, Reddy SB, Naftel RP, Bick SK, Williams Roberson S, Dawant BM, Wallace MT, Englot DJ. The Interictal Suppression Hypothesis in focal epilepsy: network-level supporting evidence. Brain 2023; 146:2828-2845. [PMID: 36722219 PMCID: PMC10316780 DOI: 10.1093/brain/awad016] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/24/2022] [Accepted: 01/08/2023] [Indexed: 02/02/2023] Open
Abstract
Why are people with focal epilepsy not continuously having seizures? Previous neuronal signalling work has implicated gamma-aminobutyric acid balance as integral to seizure generation and termination, but is a high-level distributed brain network involved in suppressing seizures? Recent intracranial electrographic evidence has suggested that seizure-onset zones have increased inward connectivity that could be associated with interictal suppression of seizure activity. Accordingly, we hypothesize that seizure-onset zones are actively suppressed by the rest of the brain network during interictal states. Full testing of this hypothesis would require collaboration across multiple domains of neuroscience. We focused on partially testing this hypothesis at the electrographic network level within 81 individuals with drug-resistant focal epilepsy undergoing presurgical evaluation. We used intracranial electrographic resting-state and neurostimulation recordings to evaluate the network connectivity of seizure onset, early propagation and non-involved zones. We then used diffusion imaging to acquire estimates of white-matter connectivity to evaluate structure-function coupling effects on connectivity findings. Finally, we generated a resting-state classification model to assist clinicians in detecting seizure-onset and propagation zones without the need for multiple ictal recordings. Our findings indicate that seizure onset and early propagation zones demonstrate markedly increased inwards connectivity and decreased outwards connectivity using both resting-state (one-way ANOVA, P-value = 3.13 × 10-13) and neurostimulation analyses to evaluate evoked responses (one-way ANOVA, P-value = 2.5 × 10-3). When controlling for the distance between regions, the difference between inwards and outwards connectivity remained stable up to 80 mm between brain connections (two-way repeated measures ANOVA, group effect P-value of 2.6 × 10-12). Structure-function coupling analyses revealed that seizure-onset zones exhibit abnormally enhanced coupling (hypercoupling) of surrounding regions compared to presumably healthy tissue (two-way repeated measures ANOVA, interaction effect P-value of 9.76 × 10-21). Using these observations, our support vector classification models achieved a maximum held-out testing set accuracy of 92.0 ± 2.2% to classify early propagation and seizure-onset zones. These results suggest that seizure-onset zones are actively segregated and suppressed by a widespread brain network. Furthermore, this electrographically observed functional suppression is disproportionate to any observed structural connectivity alterations of the seizure-onset zones. These findings have implications for the identification of seizure-onset zones using only brief electrographic recordings to reduce patient morbidity and augment the presurgical evaluation of drug-resistant epilepsy. Further testing of the interictal suppression hypothesis can provide insight into potential new resective, ablative and neuromodulation approaches to improve surgical success rates in those suffering from drug-resistant focal epilepsy.
Collapse
Affiliation(s)
- Graham W Johnson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
| | - Derek J Doss
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
| | - Victoria L Morgan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Danika L Paulo
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Leon Y Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
| | - Jared S Shless
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Aarushi S Negi
- Department of Neuroscience, Vanderbilt University, Nashville, TN 37232, USA
| | - Abhijeet Gummadavelli
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University, Nashville, TN 37232, USA
| | - Shilpa B Reddy
- Department of Pediatrics, Vanderbilt Children’s Hospital, Nashville, TN 37232, USA
| | - Robert P Naftel
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sarah K Bick
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Benoit M Dawant
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Mark T Wallace
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Psychology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Dario J Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
3
|
Ratcliffe C, Adan G, Marson A, Solomon T, Saini J, Sinha S, Keller SS. Neurocysticercosis-related Seizures: Imaging Biomarkers. Seizure 2023; 108:13-23. [PMID: 37060627 DOI: 10.1016/j.seizure.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Neurocysticercosis (NCC)-a parasitic CNS infection endemic to developing nations-has been called the leading global cause of acquired epilepsy yet remains understudied. It is currently unknown why a large proportion of patients develop recurrent seizures, often following the presentation of acute seizures. Furthermore, the presentation of NCC is heterogenous and the features that predispose to the development of an epileptogenic state remain uncertain. Perilesional factors (such as oedema and gliosis) have been implicated in NCC-related ictogenesis, but the effects of cystic factors, including lesion load and location, seem not to play a role in the development of habitual epilepsy. In addition, the cytotoxic consequences of the cyst's degenerative stages are varied and the majority of research, relying on retrospective data, lacks the necessary specificity to distinguish between acute symptomatic and unprovoked seizures. Previous research has established that epileptogenesis can be the consequence of abnormal network connectivity, and some imaging studies have suggested that a causative link may exist between NCC and aberrant network organisation. In wider epilepsy research, network approaches have been widely adopted; studies benefiting predominantly from the rich, multimodal data provided by advanced MRI methods are at the forefront of the field. Quantitative MRI approaches have the potential to elucidate the lesser-understood epileptogenic mechanisms of NCC. This review will summarise the current understanding of the relationship between NCC and epilepsy, with a focus on MRI methodologies. In addition, network neuroscience approaches with putative value will be highlighted, drawing from current imaging trends in epilepsy research.
Collapse
Affiliation(s)
- Corey Ratcliffe
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK; Department of Neuro Imaging and Interventional Radiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India.
| | - Guleed Adan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Anthony Marson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Tom Solomon
- The Walton Centre NHS Foundation Trust, Liverpool, UK; Veterinary and Ecological Sciences, National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, University of Liverpool, Liverpool, UK; Tropical and Infectious Diseases Unit, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - Jitender Saini
- Department of Neuro Imaging and Interventional Radiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
4
|
Jirsa V, Wang H, Triebkorn P, Hashemi M, Jha J, Gonzalez-Martinez J, Guye M, Makhalova J, Bartolomei F. Personalised virtual brain models in epilepsy. Lancet Neurol 2023; 22:443-454. [PMID: 36972720 DOI: 10.1016/s1474-4422(23)00008-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 03/29/2023]
Abstract
Individuals with drug-resistant focal epilepsy are candidates for surgical treatment as a curative option. Before surgery can take place, the patient must have a presurgical evaluation to establish whether and how surgical treatment might stop their seizures without causing neurological deficits. Virtual brains are a new digital modelling technology that map the brain network of a person with epilepsy, using data derived from MRI. This technique produces a computer simulation of seizures and brain imaging signals, such as those that would be recorded with intracranial EEG. When combined with machine learning, virtual brains can be used to estimate the extent and organisation of the epileptogenic zone (ie, the brain regions related to seizure generation and the spatiotemporal dynamics during seizure onset). Virtual brains could, in the future, be used for clinical decision making, to improve precision in localisation of seizure activity, and for surgical planning, but at the moment these models have some limitations, such as low spatial resolution. As evidence accumulates in support of the predictive power of personalised virtual brain models, and as methods are tested in clinical trials, virtual brains might inform clinical practice in the near future.
Collapse
Affiliation(s)
- Viktor Jirsa
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Aix Marseille Université, Marseille, France.
| | - Huifang Wang
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Aix Marseille Université, Marseille, France
| | - Paul Triebkorn
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Aix Marseille Université, Marseille, France
| | - Meysam Hashemi
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Aix Marseille Université, Marseille, France
| | - Jayant Jha
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Aix Marseille Université, Marseille, France
| | | | - Maxime Guye
- Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, Aix Marseille Université, Marseille, France; Centre d'Exploration Métabolique par Résonance Magnétique, Assistance Publique - Hôpitaux de Marseille, La Timone University Hospital, Marseille, France
| | - Julia Makhalova
- Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, Aix Marseille Université, Marseille, France; Centre d'Exploration Métabolique par Résonance Magnétique, Assistance Publique - Hôpitaux de Marseille, La Timone University Hospital, Marseille, France; Epileptology and Clinical Neurophysiology Department, Assistance Publique - Hôpitaux de Marseille, La Timone University Hospital, Marseille, France
| | - Fabrice Bartolomei
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Aix Marseille Université, Marseille, France; Epileptology and Clinical Neurophysiology Department, Assistance Publique - Hôpitaux de Marseille, La Timone University Hospital, Marseille, France
| |
Collapse
|
5
|
Batista Tsukahara VH, de Oliveira Júnior JN, de Oliveira Barth VB, de Oliveira JC, Rosa Cota V, Maciel CD. Data-Driven Network Dynamical Model of Rat Brains During Acute Ictogenesis. Front Neural Circuits 2022; 16:747910. [PMID: 36034337 PMCID: PMC9399918 DOI: 10.3389/fncir.2022.747910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders worldwide. Recent findings suggest that the brain is a complex system composed of a network of neurons, and seizure is considered an emergent property resulting from its interactions. Based on this perspective, network physiology has emerged as a promising approach to explore how brain areas coordinate, synchronize and integrate their dynamics, both under perfect health and critical illness conditions. Therefore, the objective of this paper is to present an application of (Dynamic) Bayesian Networks (DBN) to model Local Field Potentials (LFP) data on rats induced to epileptic seizures based on the number of arcs found using threshold analytics. Results showed that DBN analysis captured the dynamic nature of brain connectivity across ictogenesis and a significant correlation with neurobiology derived from pioneering studies employing techniques of pharmacological manipulation, lesion, and modern optogenetics. The arcs evaluated under the proposed approach achieved consistent results based on previous literature, in addition to demonstrating robustness regarding functional connectivity analysis. Moreover, it provided fascinating and novel insights, such as discontinuity between forelimb clonus and generalized tonic-clonic seizure (GTCS) dynamics. Thus, DBN coupled with threshold analytics may be an excellent tool for investigating brain circuitry and their dynamical interplay, both in homeostasis and dysfunction conditions.
Collapse
Affiliation(s)
- Victor Hugo Batista Tsukahara
- Signal Processing Laboratory, School of Engineering of São Carlos, Department of Electrical Engineering, University of São Paulo, São Carlos, Brazil
| | - Jordão Natal de Oliveira Júnior
- Signal Processing Laboratory, School of Engineering of São Carlos, Department of Electrical Engineering, University of São Paulo, São Carlos, Brazil
| | - Vitor Bruno de Oliveira Barth
- Signal Processing Laboratory, School of Engineering of São Carlos, Department of Electrical Engineering, University of São Paulo, São Carlos, Brazil
| | - Jasiara Carla de Oliveira
- Laboratory of Neuroengineering and Neuroscience, Department of Electrical Engineering, Federal University of São João Del-Rei, São João Del Rei, Brazil
| | - Vinicius Rosa Cota
- Laboratory of Neuroengineering and Neuroscience, Department of Electrical Engineering, Federal University of São João Del-Rei, São João Del Rei, Brazil
| | - Carlos Dias Maciel
- Signal Processing Laboratory, School of Engineering of São Carlos, Department of Electrical Engineering, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
6
|
Sinha N, Johnson GW, Davis KA, Englot DJ. Integrating Network Neuroscience Into Epilepsy Care: Progress, Barriers, and Next Steps. Epilepsy Curr 2022; 22:272-278. [PMID: 36285209 PMCID: PMC9549227 DOI: 10.1177/15357597221101271] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Drug resistant epilepsy is a disorder involving widespread brain network
alterations. Recently, many groups have reported neuroimaging and
electrophysiology network analysis techniques to aid medical
management, support presurgical planning, and understand postsurgical
seizure persistence. While these approaches may supplement standard
tests to improve care, they are not yet used clinically or influencing
medical or surgical decisions. When will this change? Which approaches
have shown the most promise? What are the barriers to translating them
into clinical use? How do we facilitate this transition? In this
review, we will discuss progress, barriers, and next steps regarding
the integration of brain network analysis into the medical and
presurgical pipeline.
Collapse
Affiliation(s)
- Nishant Sinha
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA, USA
- Department of Neurology, Penn Epilepsy Center, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Graham W. Johnson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science at Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kathryn A. Davis
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA, USA
- Department of Neurology, Penn Epilepsy Center, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Dario J. Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science at Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
7
|
Johnson GW, Doss DJ, Englot DJ. Network dysfunction in pre and postsurgical epilepsy: connectomics as a tool and not a destination. Curr Opin Neurol 2022; 35:196-201. [PMID: 34799514 PMCID: PMC8891078 DOI: 10.1097/wco.0000000000001008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Patients with focal drug-resistant epilepsy (DRE) sometimes continue to have seizures after surgery. Recently, there is increasing interest in using advanced network analyses (connectomics) to better understand this problem. Connectomics has changed the way researchers and clinicians view DRE, but it must be applied carefully in a hypothesis-driven manner to avoid spurious results. This review will focus on studies published in the last 18 months that have thoughtfully used connectomics to advance our fundamental understanding of network dysfunction in DRE - hopefully for the eventual direct benefit to patient care. RECENT FINDINGS Impactful recent findings have centered on using patient-specific differences in network dysfunction to predict surgical outcome. These works span functional and structural connectivity and include the modalities of functional and diffusion magnetic resonance imaging (MRI) and electrophysiology. Using functional MRI, many groups have described an increased functional segregation outside of the surgical resection zone in patients who fail surgery. Using electrophysiology, groups have reported network characteristics of resected tissue that suggest whether a patient will respond favorably to surgery. SUMMARY If we can develop accurate models to outline functional and structural network characteristics that predict failure of standard surgical approaches, then we can not only improve current clinical decision-making; we can also begin developing alternative treatments including network approaches to improve surgical success rates.
Collapse
Affiliation(s)
- Graham W. Johnson
- Department of Biomedical Engineering at Vanderbilt University
- Vanderbilt University Institute of Imaging Science at Vanderbilt University Medical Center
| | - Derek J. Doss
- Department of Biomedical Engineering at Vanderbilt University
- Vanderbilt University Institute of Imaging Science at Vanderbilt University Medical Center
| | - Dario J. Englot
- Department of Biomedical Engineering at Vanderbilt University
- Vanderbilt University Institute of Imaging Science at Vanderbilt University Medical Center
- Department of Neurological Surgery
- Department of Neurology
- Department of Radiology and Radiological Sciences at Vanderbilt University Medical Center
| |
Collapse
|
8
|
Li T, Niu S, Qiu X, Zhai Z, Yang L, Chen L, Zhang XM. Altered Cerebral Blood Flow is Linked to Disease Duration in Patients with Generalized tonic‒clonic Seizures. Neuropsychiatr Dis Treat 2022; 18:2649-2659. [PMID: 36387946 PMCID: PMC9662018 DOI: 10.2147/ndt.s386509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To investigate cerebral blood flow (CBF) characteristics in individuals with generalized tonic‒clonic seizures (GTCS) during the interictal phase using voxel-based analysis of 3D pseudocontinuous arterial spin labeling (PCASL). PATIENTS AND METHODS Patients with GTCS (GTCS group) (during the interictal period) and healthy volunteers (control group) underwent head MR imaging with a 3.0T MR scanner with a 3D PCASL sequence. CBF was compared between the two groups. Spearman correlations of CBF in regions of interest (ROIs) in GTCS patients with the duration of disease and age of onset were analyzed and corrected using the false discovery rate (FDR). RESULTS Twenty patients with GTCS (GTCS group) and twenty healthy volunteers (control group) were recruited for this study. On 3D PCASL, (1) GTCS patients had lower CBF in the brainstem, right cerebellum, right inferior temporal gyrus, parahippocampal gyrus, superior frontal gyrus, middle frontal gyrus, triangular part of inferior frontal gyrus, left temporal pole of superior temporal gyrus and thalamus and had higher CBF in the bilateral superior parietal gyri, precuneus, precentral gyri, postcentral gyri, and left dorsolateral superior frontal gyrus than controls. (2) The CBF of the right temporal pole of the middle temporal gyrus was negatively correlated with the duration of disease (PFDRcorrected<0.05), with a correlation coefficient r of -0.7333 and a PFDRcorrected value of 0.04. CONCLUSION Voxel-based analysis of 3D PCASL imaging can be used to sensitively detect brain perfusion differences in GTCS patients. The decrease in CBF in the right temporal pole of the middle temporal gyrus may be associated with disease onset. These findings may offer new perspectives on the pathogenesis of GTCS and the underlying pathophysiological changes associated with perfusion.
Collapse
Affiliation(s)
- Ting Li
- The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China.,Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Shaowei Niu
- Department of Infection, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Xiang Qiu
- Department of Radiology, Integrated TCM & Western Medicine Hospital Affiliated to Chengdu University of TCM, Chengdu First People's Hospital, Chengdu, People's Republic of China
| | - Zhaohua Zhai
- Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Lin Yang
- Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Li Chen
- Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Xiao Ming Zhang
- The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China.,Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| |
Collapse
|
9
|
Changes in the Functional Brain Network of Children Undergoing Repeated Epilepsy Surgery: An EEG Source Connectivity Study. Diagnostics (Basel) 2021; 11:diagnostics11071234. [PMID: 34359317 PMCID: PMC8306224 DOI: 10.3390/diagnostics11071234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 11/19/2022] Open
Abstract
About 30% of children with drug-resistant epilepsy (DRE) continue to have seizures after epilepsy surgery. Since epilepsy is increasingly conceptualized as a network disorder, understanding how brain regions interact may be critical for planning re-operation in these patients. We aimed to estimate functional brain connectivity using scalp EEG and its evolution over time in patients who had repeated surgery (RS-group, n = 9) and patients who had one successful surgery (seizure-free, SF-group, n = 12). We analyzed EEGs without epileptiform activity at varying time points (before and after each surgery). We estimated functional connectivity between cortical regions and their relative centrality within the network. We compared the pre- and post-surgical centrality of all the non-resected (untouched) regions (far or adjacent to resection) for each group (using the Wilcoxon signed rank test). In alpha, theta, and beta frequency bands, the post-surgical centrality of the untouched cortical regions increased in the SF group (p < 0.001) whereas they decreased (p < 0.05) or did not change (p > 0.05) in the RS group after failed surgeries; when re-operation was successful, the post-surgical centrality of far regions increased (p < 0.05). Our data suggest that removal of the epileptogenic focus in children with DRE leads to a gain in the network centrality of the untouched areas. In contrast, unaltered or decreased connectivity is seen when seizures persist after surgery.
Collapse
|
10
|
Parihar J, Agrawal M, Samala R, Chandra PS, Tripathi M. Role of Neuromodulation for Treatment of Drug-Resistant Epilepsy. Neurol India 2021; 68:S249-S258. [PMID: 33318359 DOI: 10.4103/0028-3886.302476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The choice of neuromodulation techniques has greatly increased over the past two decades. While vagal nerve stimulation (VNS) has become established, newer variations of VNS have been introduced. Following the SANTE's trial, deep brain stimulation (DBS) is now approved for clinical use. In addition, responsive neurostimulation (RNS) has provided exciting new opportunities for treatment of drug-resistant epilepsy. While neuromodulation mostly offers only a 'palliative' measure, it still provides a significant reduction of frequency and intensity of epilepsy. We provide an overview of all the techniques of neuromodulation which are available, along with long-term outcomes. Further research is required to delineate the exact mechanism of action, the indications and the stimulation parameters to extract the maximum clinical benefit from these techniques.
Collapse
Affiliation(s)
- Jasmine Parihar
- Department of Neurology, Lady Harding Medical College, New Delhi, India
| | | | - Raghu Samala
- Department of Neurosurgery, AIIMS, New Delhi, India
| | | | | |
Collapse
|
11
|
Foit NA, Bernasconi A, Ladbon-Bernasconi N. Contributions of Imaging to Neuromodulatory Treatment of Drug-Refractory Epilepsy. Brain Sci 2020; 10:E700. [PMID: 33023078 PMCID: PMC7601437 DOI: 10.3390/brainsci10100700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 12/17/2022] Open
Abstract
Epilepsy affects about 1% of the world's population, and up to 30% of all patients will ultimately not achieve freedom from seizures with anticonvulsive medication alone. While surgical resection of a magnetic resonance imaging (MRI) -identifiable lesion remains the first-line treatment option for drug-refractory epilepsy, surgery cannot be offered to all. Neuromodulatory therapy targeting "seizures" instead of "epilepsy" has emerged as a valuable treatment option for these patients, including invasive procedures such as deep brain stimulation (DBS), responsive neurostimulation (RNS) and peripheral approaches such as vagus nerve stimulation (VNS). The purpose of this review is to provide in-depth information on current concepts and evidence on network-level aspects of drug-refractory epilepsy. We reviewed the current evidence gained from studies utilizing advanced imaging methodology, with a specific focus on their contributions to neuromodulatory therapy.
Collapse
Affiliation(s)
- Niels Alexander Foit
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A2B4, Canada; (A.B.); (N.L.-B.)
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, D-79106 Freiburg, Germany
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A2B4, Canada; (A.B.); (N.L.-B.)
| | - Neda Ladbon-Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A2B4, Canada; (A.B.); (N.L.-B.)
| |
Collapse
|