1
|
Gendron WH, Fertan E, Roddick KM, Wong AA, Maliougina M, Hiani YE, Anini Y, Brown RE. Intranasal insulin treatment ameliorates spatial memory, muscular strength, and frailty deficits in 5xFAD mice. Physiol Behav 2024; 281:114583. [PMID: 38750806 DOI: 10.1016/j.physbeh.2024.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
The 5xFAD mouse model shows age-related weight loss as well as cognitive and motor deficits. Metabolic dysregulation, especially impaired insulin signaling, is also present in AD. This study examined whether intranasal delivery of insulin (INI) at low (0.875 U) or high (1.750 U) doses would ameliorate these deficits compared to saline in 10-month-old female 5xFAD and B6SJL wildtype (WT) mice. INI increased forelimb grip strength in the wire hang test in 5xFAD mice in a dose-dependent manner but did not improve the performance of 5xFAD mice on the balance beam. High INI doses reduced frailty scores in 5xFAD mice and improved spatial memory in both acquisition and reversal probe trials in the Morris water maze. INI increased swim speed in 5xFAD mice but had no effect on object recognition memory or working memory in the spontaneous alternation task, nor did it improve memory in the contextual or cued fear memory tasks. High doses of insulin increased the liver, spleen, and kidney weights and reduced brown adipose tissue weights. P-Akt signaling in the hippocampus was increased by insulin in a dose-dependent manner. Altogether, INI increased strength, reduced frailty scores, and improved visual spatial memory. Hypoglycemia was not present after INI, however alterations in tissue and organ weights were present. These results are novel and important as they indicate that intra-nasal insulin can reverse cognitive, motor and frailty deficits found in this mouse model of AD.
Collapse
Affiliation(s)
- William H Gendron
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Emre Fertan
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyle M Roddick
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Aimée A Wong
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Maria Maliougina
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Yassine El Hiani
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Younes Anini
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Departments of Obstetrics and Gynecology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Richard E Brown
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
2
|
Plangger A, Rath B, Hochmair M, Funovics M, Neumayer C, Zeillinger R, Hamilton G. Synergistic cytotoxicity of the CDK4 inhibitor Fascaplysin in combination with EGFR inhibitor Afatinib against Non-small Cell Lung Cancer. Invest New Drugs 2022; 40:215-223. [PMID: 34596822 PMCID: PMC8993745 DOI: 10.1007/s10637-021-01181-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
In the absence of suitable molecular markers, non-small cell lung cancer (NSCLC) patients have to be treated with chemotherapy with poor results at advanced stages. Therefore, the activity of the anticancer marine drug fascaplysin was tested against primary NSCLC cell lines established from pleural effusions. Cytotoxicity of the drug or combinations were determined using MTT assays and changes in intracellular phosphorylation by Western blot arrays. Fascaplysin revealed high cytotoxicity against NSCLC cells and exhibit an activity pattern different of the standard drug cisplatin. Furthermore, fascaplysin synergizes with the EGFR tyrosine kinase inhibitor (TKI) afatinib to yield a twofold increased antitumor effect. Interaction with the Chk1/2 inhibitor AZD7762 confirm the differential effects of fascplysin and cisplatin. Protein phosphorylation assays showed hypophosphorylation of Akt1/2/3 and ERK1/2 as well as hyperphosphorylation of stress response mediators of H1299 NSCLC cells. In conclusion, fascaplysin shows high cytotoxicity against pleural primary NSCLC lines that could be further boosted when combined with the EGFR TKI afatinib.
Collapse
Affiliation(s)
- Adelina Plangger
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Maximilian Hochmair
- Department of Respiratory & Critical Care Medicine, Karl Landsteiner Institute of Lung Research & Pulmonary Oncology, Vienna, Austria
| | - Martin Funovics
- Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-Guided Therapy Medical, University of Vienna, Vienna, Austria
| | - Christoph Neumayer
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Guisantes-Batan E, Mazuecos L, Rubio B, Pereira-Caro G, Moreno-Rojas JM, Andrés A, Gómez-Alonso S, Gallardo N. Grape seed extract supplementation modulates hepatic lipid metabolism in rats. Implication of PPARβ/δ. Food Funct 2022; 13:11353-11368. [DOI: 10.1039/d2fo02199d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Grape seed extract supplementationat low doses (25 mg per kg BW per day) modulates the transcriptional programs that controls the hepatic lipid metabolism in lean normolipidemic Wistar rats through PPARβ/δ activation.
Collapse
Affiliation(s)
- Eduardo Guisantes-Batan
- Regional Institute for Applied Scientific Research, University of Castilla-La Mancha, Avenida Camilo José Cela 1B, 13071 Ciudad Real, Spain
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Lorena Mazuecos
- Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Biochemistry Section, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Blanca Rubio
- Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Biochemistry Section, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Gema Pereira-Caro
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Avenida Menendez-Pidal, SN, 14004 Córdoba, Spain
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - José Manuel Moreno-Rojas
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Avenida Menendez-Pidal, SN, 14004 Córdoba, Spain
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Antonio Andrés
- Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Biochemistry Section, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Sergio Gómez-Alonso
- Regional Institute for Applied Scientific Research, University of Castilla-La Mancha, Avenida Camilo José Cela 1B, 13071 Ciudad Real, Spain
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Nilda Gallardo
- Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Biochemistry Section, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain
| |
Collapse
|
4
|
Kumar N, Perez-Novo C, Shaw P, Logie E, Privat-Maldonado A, Dewilde S, Smits E, Berghe WV, Bogaerts A. Physical plasma-derived oxidants sensitize pancreatic cancer cells to ferroptotic cell death. Free Radic Biol Med 2021; 166:187-200. [PMID: 33636332 DOI: 10.1016/j.freeradbiomed.2021.02.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022]
Abstract
Despite modern therapeutic advances, the survival prospects of pancreatic cancer patients remain poor, due to chemoresistance and dysregulated oncogenic kinase signaling networks. We applied a novel kinome activity-mapping approach using biological peptide targets as phospho-sensors to identify vulnerable kinase dependencies for therapy sensitization by physical plasma. Ser/Thr-kinome specific activity changes were mapped upon induction of ferroptotic cell death in pancreatic tumor cells exposed to reactive oxygen and nitrogen species of plasma-treated water (PTW). This revealed a broad kinome activity response involving the CAMK, the AGC and CMGC family of kinases. This systems-level kinome network response supports stress adaptive switches between chemoresistant anti-oxidant responses of Kelch-like ECH-associated protein 1 (KEAP1)/Heme Oxygenase 1 (HMOX1) and ferroptotic cell death sensitization upon suppression of Nuclear factor (erythroid derived 2)-like 2 (NRF2) and Glutathione peroxidase 4 (GPX4). This is further supported by ex vivo experiments in the chicken chorioallantoic membrane assay, showing decreased GPX4 and Glutathione (GSH) expression as well as increased lipid peroxidation, along with suppressed BxPC-3 tumor growth in response to PTW. Taken all together, we demonstrate that plasma treated water-derived oxidants sensitize pancreatic cancer cells to ferroptotic cell death by targeting a NRF2-HMOX1-GPX4 specific kinase signaling network.
Collapse
Affiliation(s)
- Naresh Kumar
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Antwerp, 2610, Belgium; National Institute of Pharmaceutical Education and Research, Guwahati, 781125, Guwahati, Assam, India.
| | - Claudina Perez-Novo
- Department of Biomedical Sciences, Laboratory of Protein Science, Proteomics & Epigenetic Signalling, University of Antwerp, Antwerp, 2610, Belgium
| | - Priyanka Shaw
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Antwerp, 2610, Belgium; Solid Tumor Immunology Group, Center for Oncological Research, University of Antwerp, 2610, Belgium
| | - Emilie Logie
- Department of Biomedical Sciences, Laboratory of Protein Science, Proteomics & Epigenetic Signalling, University of Antwerp, Antwerp, 2610, Belgium
| | - Angela Privat-Maldonado
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Antwerp, 2610, Belgium; Solid Tumor Immunology Group, Center for Oncological Research, University of Antwerp, 2610, Belgium
| | - Sylvia Dewilde
- Department of Biomedical Sciences, Laboratory of Protein Science, Proteomics & Epigenetic Signalling, University of Antwerp, Antwerp, 2610, Belgium
| | - Evelien Smits
- Solid Tumor Immunology Group, Center for Oncological Research, University of Antwerp, 2610, Belgium
| | - Wim Vanden Berghe
- Department of Biomedical Sciences, Laboratory of Protein Science, Proteomics & Epigenetic Signalling, University of Antwerp, Antwerp, 2610, Belgium.
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Antwerp, 2610, Belgium.
| |
Collapse
|
5
|
Chiang S, Huang MLH, Richardson DR. Treatment of dilated cardiomyopathy in a mouse model of Friedreich's ataxia using N-acetylcysteine and identification of alterations in microRNA expression that could be involved in its pathogenesis. Pharmacol Res 2020; 159:104994. [PMID: 32534099 DOI: 10.1016/j.phrs.2020.104994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 01/01/2023]
Abstract
Deficient expression of the mitochondrial protein, frataxin, leads to a deadly cardiomyopathy. Our laboratory reported the master regulator of oxidative stress, nuclear factor erythroid 2-related factor-2 (Nrf2), demonstrates marked down-regulation after frataxin deletion in the heart. This was due, in part, to a pronounced increase in Keap1. To assess if this can be therapeutically targeted, cells were incubated with N-acetylcysteine (NAC), or buthionine sulfoximine (BSO), which increases or decreases glutathione (GSH), respectively, or the NRF2-inducer, sulforaphane (SFN). While SFN significantly (p < 0.05) induced NRF2, KEAP1 and BACH1, NAC attenuated SFN-induced NRF2, KEAP1 and BACH1. The down-regulation of KEAP1 by NAC was of interest, as Keap1 is markedly increased in the MCK conditional frataxin knockout (MCK KO) mouse model and this could lead to the decreased Nrf2 levels. Considering this, MCK KO mice were treated with i.p. NAC (500- or 1500-mg/kg, 5 days/week for 5-weeks) and demonstrated slightly less (p > 0.05) body weight loss versus the vehicle-treated KO. However, NAC did not rescue the cardiomyopathy. To additionally examine the dys-regulation of Nrf2 upon frataxin deletion, studies assessed the role of microRNA (miRNA) in this process. In MCK KO mice, miR-144 was up-regulated, which down-regulates Nrf2. Furthermore, miRNA screening in MCK KO mice demonstrated 23 miRNAs from 756 screened were significantly (p < 0.05) altered in KOs versus WT littermates. Of these, miR-21*, miR-34c*, and miR-200c, demonstrated marked alterations, with functional clustering analysis showing they regulate genes linked to cardiac hypertrophy, cardiomyopathy, and oxidative stress, respectively.
Collapse
MESH Headings
- Acetylcysteine/pharmacology
- Animals
- Basic-Leucine Zipper Transcription Factors/metabolism
- Cardiomyopathy, Dilated/drug therapy
- Cardiomyopathy, Dilated/etiology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cell Line, Tumor
- Disease Models, Animal
- Friedreich Ataxia/complications
- Friedreich Ataxia/genetics
- Gene Expression Regulation
- Humans
- Iron-Binding Proteins/genetics
- Iron-Binding Proteins/metabolism
- Isothiocyanates/pharmacology
- Kelch-Like ECH-Associated Protein 1/metabolism
- Mice, Knockout
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/metabolism
- Sulfoxides/pharmacology
- Frataxin
Collapse
Affiliation(s)
- S Chiang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales, 2006 Australia
| | - M L H Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales, 2006 Australia
| | - D R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales, 2006 Australia; Centre for Cancer Cell Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia.
| |
Collapse
|
6
|
Li S, Ren Q. Effects of Arsenic on wnt/β-catenin Signaling Pathway: A Systematic Review and Meta-analysis. Chem Res Toxicol 2020; 33:1458-1467. [PMID: 32307979 DOI: 10.1021/acs.chemrestox.0c00019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We aimed to systematically evaluate the regulatory effect of arsenic on wnt/β-catenin signaling pathway and to provide theoretical basis for revealing the mechanism of the relationship between arsenic and cell proliferation. The meta-analysis was carried out using Revman5.2 and Stata13.0 to describe the differences between groups with standard mean difference. We found in normal cells that the levels of wnt3a, β-catenin, glycogen synthase kinase-3β phosphorylated at serine 9 (p-GSK-3β(Ser9)), cyclinD1, proto-oncogene c-myc, and vascular endothelial growth factor (VEGF) in the arsenic intervention group were higher than those in the control group, and the level of glycogen synthase kinase-3β (GSK-3β) was lower than that in the control group (P < 0.05, respectively). Subgroup analysis showed that for a long time period (>24 h), the level of β-catenin in the arsenic intervention group was higher than that in the control group, and the level of GSK-3β of the same long-time period (>24 h) with low-dose (≤5 μM) intervention was lower than those in the control group (P < 0.05, respectively). In cancer cells, the levels of β-catenin, cyclinD1, c-myc, and VEGF in the arsenic intervention group were lower than those in the control group, while the level of GSK-3β in the arsenic intervention group was higher than that in the control group (P < 0.05, respectively). Subgroup analysis showed that the levels of β-catenin, cyclinD1, and c-myc in the high-dose (>5 μM) arsenic intervention group were lower than those in the control group, and the levels of β-catenin and cyclinD1 in the high-dose (>5 μM) arsenic intervention group were lower than those in the low-dose (≤5 μM) arsenic intervention group (P < 0.05, respectively). In addition, the regulation of arsenic on β-catenin was dose-dependent in the range of arsenic concentration from 0 to 7.5 μM. This study revealed that arsenic could upregulate wnt/β-catenin signaling pathway in normal cells and downregulate it in cancer cells, and its effect was affected by time and dose.
Collapse
Affiliation(s)
- Shugang Li
- Department of Child, Adolescent Health and Maternal Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Qingxin Ren
- Department of Public Health, College of Medicine, Shihezi University, Shihezi 832000, Xinjiang China
| |
Collapse
|
7
|
Kim HN, Kim JD, Park SB, Son HJ, Park GH, Eo HJ, Kim HS, Jeong JB. Anti-inflammatory activity of the extracts from Rodgersia podophylla leaves through activation of Nrf2/HO-1 pathway, and inhibition of NF-κB and MAPKs pathway in mouse macrophage cells. Inflamm Res 2020; 69:233-244. [PMID: 31907559 DOI: 10.1007/s00011-019-01311-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 12/13/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE Recently, Rodgersia podophylla has been reported to exhibit anti-inflammatory activity. However, little is known about the potential mechanisms about its anti-inflammatory activity. We elucidated the anti-inflammatory mechanisms of leaves extracts from Rodgersia podophylla (RP-L) in RAW264.7 cells. MATERIALS AND METHODS LPS-induced NO was measured by Griess and mRNA of pro-inflammatory mediators was analyzed by RT-PCR. Cell viability was measured using MTT assay. The protein level was analyzed by Western blot. RESULTS RP-L significantly inhibited the production of the pro-inflammatory mediators such as NO, iNOS, IL-1β and IL-6 in LPS-stimulated RAW264.7 cells. RP-L increased HO-1 expression in RAW264.7 cells, and the inhibition of HO-1 by ZnPP reduced the inhibitory effect of RP-L against LPS-induced NO production in RAW264.7 cells. Inhibition of p38, ROS and GSK3β attenuated RP-L-mediated HO-1 expression. Inhibition of ROS inhibited p38 phosphorylation and GSK3β expression induced by RP-L. In addition, inhibition of GSK3β blocked RP-L-mediated p38 phosphorylation. RP-L induced nuclear accumulation of Nrf2, and inhibition of p38, ROS and GSK3β abolished RP-L-mediated nuclear accumulation of Nrf2. Furthermore, RP-L blocked LPS-induced degradation of IκB-α and nuclear accumulation of p65. RP-L also attenuated LPS-induced phosphorylation of ERK1/2 and p38. In GC/MS analysis of RP-L, pyrogallol was detected as bioactive compound for anti-inflammatory activity of RP-L. Pyrogallol was observed to activate HO-1 expression through ROS/GSK3β/p38/Nrf2/HO-1 signaling. CONCLUSIONS Our results suggest that RP-L exerts potential anti-inflammatory activity by activating ROS/GSK3β/p38/Nrf2/HO-1 signaling and inhibiting NF-κB and MAPK signaling in RAW264.7 cells. These findings suggest that RP-L may have great potential for the development of anti-inflammatory drug.
Collapse
Affiliation(s)
- Ha Na Kim
- Department of Medicinal Plant Resources, Andong National University, Andong, 36729, Republic of Korea
| | - Jeong Dong Kim
- Department of Medicinal Plant Resources, Andong National University, Andong, 36729, Republic of Korea
| | - Su Bin Park
- Department of Medicinal Plant Resources, Andong National University, Andong, 36729, Republic of Korea
| | - Ho-Jun Son
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yongju, 36040, Republic of Korea
| | - Gwang Hun Park
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yongju, 36040, Republic of Korea
| | - Hyun Ji Eo
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yongju, 36040, Republic of Korea
| | - Hyun-Seok Kim
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Jin Boo Jeong
- Department of Medicinal Plant Resources, Andong National University, Andong, 36729, Republic of Korea. .,Agricultural Science and Technology Research Institute, Andong National University, Andong, 36729, Republic of Korea.
| |
Collapse
|
8
|
Bianchi M, D'Oria V, Braghini MR, Petrini S, Manco M. Liraglutide Treatment Ameliorates Neurotoxicity Induced by Stable Silencing of Pin1. Int J Mol Sci 2019; 20:ijms20205064. [PMID: 31614723 PMCID: PMC6829573 DOI: 10.3390/ijms20205064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
Post-translational modulation of peptidylprolyl isomerase Pin1 might link impaired glucose metabolism and neurodegeneration, being Pin1 effectors target for the glucagon-Like-Peptide1 analog liraglutide. We tested the hypotheses in Pin1 silenced cells (SH-SY5Y) treated with 2-deoxy-d-glucose (2DG) and methylglyoxal (MG), stressors causing altered glucose trafficking, glucotoxicity and protein glycation. Rescue by liraglutide was investigated. Pin1 silencing caused increased levels of reactive oxygen species, upregulated energy metabolism as suggested by raised levels of total ATP content and mRNA of SIRT1, PGC1α, NRF1; enhanced mitochondrial fission events as supported by raised protein expression of FIS1 and DRP1. 2DG and MG reduced significantly cell viability in all the cell lines. In Pin1 KD clones, 2DG exacerbated altered mitochondrial dynamics causing higher rate of fission events. Liraglutide influenced insulin signaling pathway (GSK3b/Akt); improved cell viability also in cells treated with 2DG; but it did not revert mitochondrial dysfunction in Pin1 KD model. In cells treated with MG, liraglutide enhanced cell viability, reduced ROS levels and cell death (AnnexinV/PI); and trended to reduce anti-apoptotic signals (BAX, BCL2, CASP3). Pin1 silencing mimics neuronal metabolic impairment of patients with impaired glucose metabolism and neurodegeneration. Liraglutide rescues to some extent cellular dysfunctions induced by Pin1 silencing.
Collapse
Affiliation(s)
- Marzia Bianchi
- Research Area for Multi-factorial Diseases, Obesity and Diabetes, Bambino Gesù Children's Research Hospital, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), viale di San Paolo 15, 00146 Rome, Italy.
| | - Valentina D'Oria
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesu' Children's Research Hospital, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), viale di San Paolo 15, 00146 Rome, Italy.
| | - Maria Rita Braghini
- Molecular Genetics of Complex Phenotypes Research Unit, Bambino Gesù Children's Research Hospital, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), viale di San Paolo 15, 00146 Rome, Italy.
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesu' Children's Research Hospital, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), viale di San Paolo 15, 00146 Rome, Italy.
| | - Melania Manco
- Research Area for Multi-factorial Diseases, Obesity and Diabetes, Bambino Gesù Children's Research Hospital, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), viale di San Paolo 15, 00146 Rome, Italy.
| |
Collapse
|
9
|
Koss-Mikołajczyk I, Baranowska M, Todorovic V, Albini A, Sansone C, Andreoletti P, Cherkaoui-Malki M, Lizard G, Noonan D, Sobajic S, Bartoszek A. Prophylaxis of Non-communicable Diseases: Why Fruits and Vegetables may be Better Chemopreventive Agents than Dietary Supplements Based on Isolated Phytochemicals? Curr Pharm Des 2019; 25:1847-1860. [DOI: 10.2174/1381612825666190702093301] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/20/2019] [Indexed: 12/23/2022]
Abstract
The World Health Organization (WHO) report from 2014 documented that non-communicable socalled civilization diseases such as cardiovascular disease, chronic respiratory diseases, cancer or type 2 diabetes are responsible for over 50% of all premature deaths in the world. Research carried out over the past 20 years has provided data suggesting that diet is an essential factor influencing the risk of development of these diseases. The increasing knowledge on chemopreventive properties of certain food ingredients, in particular, those of plant origin, opened the discussion on the possibility to use edible plants or their active components in the prevention of these chronic diseases. Health-promoting properties of plant foods are associated with the presence of secondary metabolites that can affect many biological mechanisms of critical importance to the proper functioning of the human organism. Particularly, there have been numerous investigations indicating strong physiological effects of bioactive plant phenols belonging to the flavonoid family. These observations initiated mass production of dietary supplements containing flavonoids commercialized under the name antioxidants, even if their chemical properties did not justify such a term. However, epidemiological studies revealed that isolated bioactive phytochemicals are not as effective as fruits and vegetables containing these substances whereas they are of interest of the functional food industry. In this paper, the critical assessment of reasons for this turn of events has been attempted and the concept of food synergy has been suggested as a future strategy of dietary chemoprevention.
Collapse
Affiliation(s)
- Izabela Koss-Mikołajczyk
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdansk, Poland
| | - Monika Baranowska
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdansk, Poland
| | - Vanja Todorovic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Studentski trg 1, Beograd, GabrielaNarutowicza 11/12, 80-233, Gdanski, Serbia
| | - Adriana Albini
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | | | | | | | - Gérard Lizard
- BioPeroxIL Laboratory, Universite de Bourgogne-Franche Comte, France
| | | | - Sladjana Sobajic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Studentski trg 1, Beograd, GabrielaNarutowicza 11/12, 80-233, Gdanski, Serbia
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdansk, Poland
| |
Collapse
|
10
|
Glycogen synthase kinase-3 inhibition as a potential pharmacological target for vascular dementia: In silico and in vivo evidence. Comput Biol Med 2019; 108:305-316. [PMID: 31022582 DOI: 10.1016/j.compbiomed.2019.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/13/2019] [Accepted: 03/02/2019] [Indexed: 12/18/2022]
Abstract
Vascular dementia is a serious problem as it creates significant disability and dependency in the affected person. Lives of these patients can be improved through the advent of novel drug targets which can be targeted by pharmacological therapies. However, finding a precise and druggable target for vascular dementia is experimentally impossible and challenging task owing to a complex and mostly unknown interplay between the cognitive abilities of the brain with a diversity of vascular diseases. To address this issue, we have systematically analyzed the literature reports by using well-known methods and approaches of bioinformatics (viz. network pharmacology, reverse pharmacology, enrichment analysis of KEGG pathways, biological processes of Gene Ontology and DIAMOnD algorithm). Because glycogen synthase kinase-3 (GSK-3) seems to be one of the most promising targets, therefore, we have tested the capacity of lithium carbonate, a classical inhibitor of GSK-3, for treatment of dementia resulting from mild chronic cerebral hypoperfusion in mice. To this end, our study shows in-vivo validation of predicted target, i.e., pharmacological deactivation of GSK-3 enzyme and its impact on cognitive abilities employing a behavioral test battery, i.e., object recognition task, step-through passive avoidance task, elevated plus maze task and water maze task. In this framework, we observed that lithium carbonate attenuates recognition, emotion, spatial and fear-motivated learning and memory impairments along with attenuation of oxidative stress, cholinergic dysfunction and glutamate-induced excitotoxicity in cerebral cortex and hippocampus. In conclusion, we propose GSK-3 as a promising drug target for vascular dementia in light of experimental results and in-silico predictions.
Collapse
|
11
|
Influence of 6-aminonicotinamide (6AN) on Leishmania promastigotes evaluated by metabolomics: Beyond the pentose phosphate pathway. Chem Biol Interact 2018; 294:167-177. [PMID: 30170107 DOI: 10.1016/j.cbi.2018.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/31/2018] [Accepted: 08/17/2018] [Indexed: 11/23/2022]
Abstract
6-Aminonicotinamide (6AN) is an antimetabolite used to inhibit the NADPH-producing pentose phosphate pathway (PPP) in many cellular systems, making them more susceptible to oxidative stress. It is converted by a NAD(P)+ glycohydrolase to 6-aminoNAD and 6-aminoNADP, causing the accumulation of PPP intermediates, due to their inability to participate in redox reactions. Some parasites like Plasmodium falciparum and Coccidia are highly sensitive but not all cell types showed a strong responsiveness to 6AN, probably due to the different targeted pathway. For instance, in bacteria the main target is the Preiss-Handler salvage pathway for NAD+ biosynthesis. We were interested in testing 6AN on the kinetoplastid protozoan Leishmania as another model to clarify the mechanisms of action of 6AN, by using metabolomics. Leishmania promastigotes, the life-cycle stage residing in the sandfly, demonstrated a three order of magnitude higher EC50 (mM) compared to P. falciparum and mammalian cells (μM), although pre-treatment with 100 μM 6AN prior to sub-lethal oxidative challenge induced a supra-additive cell kill in L. infantum. By metabolomics, we did not detect 6ANAD/P suggesting that NAD+ glycohydrolases in Leishmania may not be highly efficient in catalysing transglycosidation as happens in other microorganisms. Contrariwise to the reported effect on 6AN-treated cancer cells, we did not detect 6-phosphogluconate (6 PG) accumulation, indicating that 6ANADP cannot bind with high affinity to the PPP enzyme 6 PG dehydrogenase. By contrast, 6AN caused a profound phosphoribosylpyrophosphate (PRPP) decrease and nucleobases accumulation confirming that PPP is somehow affected. More importantly, we found a decrease in nicotinate production, evidencing the interference with the Preiss-Handler salvage pathway for NAD+ biosynthesis, most probably by inhibiting the reaction catalysed by nicotinamidase. Therefore, our combined data from Leishmania strains, though confirming the interference with PPP, also showed that 6AN impairs the Preiss-Handler pathway, underlining the importance to develop compounds targeting this last route.
Collapse
|
12
|
Morroni F, Sita G, Graziosi A, Turrini E, Fimognari C, Tarozzi A, Hrelia P. Neuroprotective Effect of Caffeic Acid Phenethyl Ester in A Mouse Model of Alzheimer's Disease Involves Nrf2/HO-1 Pathway. Aging Dis 2018; 9:605-622. [PMID: 30090650 PMCID: PMC6065293 DOI: 10.14336/ad.2017.0903] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/03/2017] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive pathology, where dementia symptoms gradually worsen over a number of years. The hallmarks of AD, such as amyloid β-peptide (Aβ) in senile plaque and neurofibrillary tangles, are strongly intertwined with oxidative stress, which is considered one of the common effectors of the cascade of degenerative events. The endogenous nuclear factor erythroid 2-related factor 2 (Nrf2) is the "master regulator" of the antioxidant response and it is known as an indicator and regulator of oxidative stress. The present study aimed to determine the potential neuroprotective activity of caffeic acid phenethyl ester (CAPE), a polyphenolic compound abundant in honeybee, against the neurotoxicity of Aβ1-42 oligomers (AβO) in mice. An intracerebroventricular (i.c.v.) injection of AβO into the mouse brain triggered increased reactive oxygen species levels, neurodegeneration, neuroinflammation, and memory impairment. In contrast, the intraperitoneal administration of CAPE (10 mg/kg) after i.c.v. AβO-injection counteracted oxidative stress accompanied by an induction of Nrf2 and heme oxygenase-1 via the modulation of glycogen synthase kinase 3β in the hippocampus of mice. Additionally, CAPE treatment decreased AβO-induced neuronal apoptosis and neuroinflammation, and improved learning and memory, protecting mice against the decline in spatial cognition. Our findings demonstrate that CAPE could potentially be considered as a promising neuroprotective agent against progressive neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Fabiana Morroni
- 1Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Giulia Sita
- 1Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Agnese Graziosi
- 1Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Eleonora Turrini
- 2Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47900 Rimini, Italy
| | - Carmela Fimognari
- 2Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47900 Rimini, Italy
| | - Andrea Tarozzi
- 2Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47900 Rimini, Italy
| | - Patrizia Hrelia
- 1Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Morroni F, Sita G, Graziosi A, Turrini E, Fimognari C, Tarozzi A, Hrelia P. Protective Effects of 6-(Methylsulfinyl)hexyl Isothiocyanate on Aβ 1-42-Induced Cognitive Deficit, Oxidative Stress, Inflammation, and Apoptosis in Mice. Int J Mol Sci 2018; 19:E2083. [PMID: 30021941 PMCID: PMC6073905 DOI: 10.3390/ijms19072083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia among older people. Although soluble amyloid species are recognized triggers of the disease, no therapeutic approach is able to stop it. 6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major bioactive compound in Wasabia japonica, which is a typical Japanese pungent spice. Recently, in vivo and in vitro studies demonstrated that 6-MSITC has several biological properties. The aim of the present study was to investigate the neuroprotective activity of 6-MSITC in a murine AD model, induced by intracerebroventricular injection of β-amyloid oligomers (Aβ1-42O). The treatment with 6-MSITC started 1 h after the surgery for the next 10 days. Behavioral analysis showed that 6-MSITC ameliorated Aβ1-42O-induced memory impairments. The decrease of glutathione levels and increase of reactive oxygen species in hippocampal tissues following Aβ1-42O injection were reduced by 6-MSITC. Moreover, activation of caspases, increase of inflammatory factors, and phosphorylation of ERK and GSK3 were inhibited by 6-MSITC. These results highlighted an interesting neuroprotective activity of 6-MSITC, which was able to restore a physiological oxidative status, interfere positively with Nrf2-pathway, decrease apoptosis and neuroinflammation and contribute to behavioral recovery. Taken together, these findings demonstrated that 6-MSITC could be a promising complement for AD therapy.
Collapse
Affiliation(s)
- Fabiana Morroni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | - Giulia Sita
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | - Agnese Graziosi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | - Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto, 237, 47900 Rimini, Italy.
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto, 237, 47900 Rimini, Italy.
| | - Andrea Tarozzi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto, 237, 47900 Rimini, Italy.
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| |
Collapse
|
14
|
Niyomchan A, Visitnonthachai D, Suntararuks S, Ngamsiri P, Watcharasit P, Satayavivad J. Arsenic impairs insulin signaling in differentiated neuroblastoma SH-SY5Y cells. Neurotoxicology 2018. [DOI: 10.1016/j.neuro.2018.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Hur EH, Goo BK, Moon J, Choi Y, Hwang JJ, Kim CS, Bae KS, Choi J, Cho SY, Yang SH, Seo J, Lee G, Lee JH. Induction of immunoglobulin transcription factor 2 and resistance to MEK inhibitor in melanoma cells. Oncotarget 2018; 8:41387-41400. [PMID: 28574827 PMCID: PMC5522248 DOI: 10.18632/oncotarget.17866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/11/2017] [Indexed: 12/31/2022] Open
Abstract
Primary or acquired resistance to MEK inhibitors has been a barrier to successful treatment with MEK inhibitors in many tumors. In this study, we analyzed genome-wide gene expression profiling data from 6 sensitive and 6 resistant cell lines to identify candidate genes whose expression changes are associated with responses to a MEK inhibitor, selumetinib (AZD6244). Of 62 identified differentially expressed genes, we selected Immunoglobulin Transcription Factor 2, also known as transcription factor 4 as a potential drug resistance marker for further analysis. This was because the ITF-2 expression increase in resistant cell lines was relatively high and a previous study has suggested that ITF-2 functions as an oncogene in human colon cancers. We also established an AZD6244 resistant cell line (M14/AZD-3) from an AZD6244 sensitive M14 cell line. The expression of the ITF-2 was elevated both in primary AZD6244 resistant cell line, LOX-IMVI and acquired resistant cell line, M14/AZD-3. Targeted silencing of ITF-2 by siRNA significantly enhanced susceptibility to AZD6244 in resistant cells. Wnt/β-catenin pathway was activated through direct interaction of p-ERK and GSK3β. Our results suggest that up-regulation of the ITF-2 gene expression is associated with cellular resistance to MEK inhibitors, and activation of Wnt signaling pathway through interaction of p-ERK and GSK3β seems to be a mechanism for increase of ITF-2.
Collapse
Affiliation(s)
- Eun-Hye Hur
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bon-Kwan Goo
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Juhyun Moon
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yunsuk Choi
- Division of Hematology and Hematological Malignancies, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Jung Jin Hwang
- Institute for Innovative Cancer Research, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Choung-Soo Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyun Seop Bae
- Department of Clinical Pharmacology and Therapeutics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jene Choi
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | - Sang-Hwa Yang
- Department of Biotechnology, College of Life Science and Biotechnology, National Creative Research Initiatives Center for Inflammatory Response Modulation, Yonsei University, Seoul, Korea.,MD Healthcare, Inc., Seoul, Repulic of Korea
| | - Jeongbeob Seo
- Department of Medicinal Chemistry, CHABIOMED Co., LTD., Seongnam-Si, Korea
| | - Gilnam Lee
- Department of Medicinal Chemistry, CHABIOMED Co., LTD., Seongnam-Si, Korea
| | - Je-Hwan Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Lal N, Chiu APL, Wang F, Zhang D, Jia J, Wan A, Vlodavsky I, Hussein B, Rodrigues B. Loss of VEGFB and its signaling in the diabetic heart is associated with increased cell death signaling. Am J Physiol Heart Circ Physiol 2017; 312:H1163-H1175. [DOI: 10.1152/ajpheart.00659.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/08/2017] [Accepted: 02/23/2017] [Indexed: 11/22/2022]
Abstract
Vascular endothelial growth factor B (VEGFB) is highly expressed in metabolically active tissues, such as the heart and skeletal muscle, suggesting a function in maintaining oxidative metabolic and contractile function in these tissues. Multiple models of heart failure have indicated a significant drop in VEGFB. However, whether there is a role for decreased VEGFB in diabetic cardiomyopathy is currently unknown. Of the VEGFB located in cardiomyocytes, there is a substantial and readily releasable pool localized on the cell surface. The immediate response to high glucose and the secretion of endothelial heparanase is the release of this surface-bound VEGFB, which triggers signaling pathways and gene expression to influence endothelial cell (autocrine action) and cardiomyocyte (paracrine effects) survival. Under conditions of hyperglycemia, when VEGFB production is impaired, a robust increase in vascular endothelial growth factor receptor (VEGFR)-1 expression ensues as a possible mechanism to enhance or maintain VEGFB signaling. However, even with an increase in VEGFR1 after diabetes, cardiomyocytes are unable to respond to VEGFB. In addition to the loss of VEGFB production and signaling, evaluation of latent heparanase, the protein responsible for VEGFB release, also showed a significant decline in expression in whole hearts from animals with chronic or acute diabetes. Defects in these numerous VEGFB pathways were associated with an increased cell death signature in our models of diabetes. Through this bidirectional interaction between endothelial cells (which secrete heparanase) and cardiomyocytes (which release VEGFB), this growth factor could provide the diabetic heart protection against cell death and may be a critical tool to delay or prevent cardiomyopathy. NEW & NOTEWORTHY We discovered a bidirectional interaction between endothelial cells (which secrete heparanase) and cardiomyocytes [which release vascular endothelial growth factor B (VEGFB)]. VEGFB promoted cell survival through ERK and cell death gene expression. Loss of VEGFB and its downstream signaling is an early event following hyperglycemia, is sustained with disease progression, and could explain diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Nathaniel Lal
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Amy Pei-Ling Chiu
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Fulong Wang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Dahai Zhang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Jocelyn Jia
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada; and
| | | | - Israel Vlodavsky
- Rappaport Faculty of Medicine, Cancer and Vascular Biology Research Center, Technion, Haifa, Israel
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada; and
| |
Collapse
|
17
|
Valvassori SS, Dal-Pont GC, Resende WR, Jornada LK, Peterle BR, Machado AG, Farias HR, de Souza CT, Carvalho AF, Quevedo J. Lithium and valproate act on the GSK-3β signaling pathway to reverse manic-like behavior in an animal model of mania induced by ouabain. Neuropharmacology 2017; 117:447-459. [DOI: 10.1016/j.neuropharm.2016.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 10/04/2016] [Accepted: 10/13/2016] [Indexed: 11/28/2022]
|
18
|
Luca A, Calandra C, Luca M. Gsk3 Signalling and Redox Status in Bipolar Disorder: Evidence from Lithium Efficacy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3030547. [PMID: 27630757 PMCID: PMC5007367 DOI: 10.1155/2016/3030547] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/28/2016] [Accepted: 07/20/2016] [Indexed: 12/15/2022]
Abstract
Objective. To discuss the link between glycogen synthase kinase-3 (GSK3) and the main biological alterations demonstrated in bipolar disorder (BD), with special attention to the redox status and the evidence supporting the efficacy of lithium (a GSK3 inhibitor) in the treatment of BD. Methods. A literature research on the discussed topics, using Pubmed and Google Scholar, has been conducted. Moreover, a manual selection of interesting references from the identified articles has been performed. Results. The main biological alterations of BD, pertaining to inflammation, oxidative stress, membrane ion channels, and circadian system, seem to be intertwined. The dysfunction of the GSK3 signalling pathway is involved in all the aforementioned "biological causes" of BD. In a complex scenario, it can be seen as the common denominator linking them all. Lithium inhibition of GSK3 could, at least in part, explain its positive effect on these biological dysfunctions and its superiority in terms of clinical efficacy. Conclusions. Deepening the knowledge on the molecular bases of BD is fundamental to identifying the biochemical pathways that must be targeted in order to provide patients with increasingly effective therapeutic tools against an invalidating disorder such as BD.
Collapse
Affiliation(s)
- Antonina Luca
- Department of Medical and Surgical Sciences and Advanced Technologies, University Hospital Policlinico-Vittorio Emanuele, Santa Sofia Street 78, Catania, 95100 Sicily, Italy
| | - Carmela Calandra
- Psychiatry Unit, Department of Medical and Surgical Sciences and Advanced Technologies, University Hospital Policlinico-Vittorio Emanuele, Santa Sofia Street 78, Catania, 95100 Sicily, Italy
| | - Maria Luca
- Psychiatry Unit, Department of Medical and Surgical Sciences and Advanced Technologies, University Hospital Policlinico-Vittorio Emanuele, Santa Sofia Street 78, Catania, 95100 Sicily, Italy
| |
Collapse
|